blob: 8eb023e19d663e321c596c1a139a4e531b669344 [file] [log] [blame] [edit]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chromecast/media/base/slew_volume.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include "base/check_op.h"
#include "media/base/vector_math.h"
namespace {
// The time to slew from current volume to target volume.
const int kMaxSlewTimeMs = 100;
const int kDefaultSampleRate = 44100;
} // namespace
struct FMACTraits {
static void ProcessBulkData(const float* src,
float volume,
int frames,
float* dest) {
::media::vector_math::FMAC(src, volume, frames, dest);
}
static void ProcessSingleDatum(const float* src, float volume, float* dest) {
(*dest) += (*src) * volume;
}
static void ProcessZeroVolume(const float* src, int frames, float* dest) {}
static void ProcessUnityVolume(const float* src, int frames, float* dest) {
ProcessBulkData(src, 1.0, frames, dest);
}
};
struct FMULTraits {
static void ProcessBulkData(const float* src,
float volume,
int frames,
float* dest) {
::media::vector_math::FMUL(src, volume, frames, dest);
}
static void ProcessSingleDatum(const float* src, float volume, float* dest) {
(*dest) = (*src) * volume;
}
static void ProcessZeroVolume(const float* src, int frames, float* dest) {
std::memset(dest, 0, frames * sizeof(*dest));
}
static void ProcessUnityVolume(const float* src, int frames, float* dest) {
if (src == dest) {
return;
}
std::memcpy(dest, src, frames * sizeof(*dest));
}
};
namespace chromecast {
namespace media {
SlewVolume::SlewVolume() : SlewVolume(kMaxSlewTimeMs) {}
SlewVolume::SlewVolume(int max_slew_time_ms)
: SlewVolume(max_slew_time_ms, false) {}
SlewVolume::SlewVolume(int max_slew_time_ms, bool use_cosine_slew)
: sample_rate_(kDefaultSampleRate),
max_slew_time_ms_(max_slew_time_ms),
max_slew_per_sample_(1000.0 / (max_slew_time_ms_ * sample_rate_)),
use_cosine_slew_(use_cosine_slew) {}
void SlewVolume::SetSampleRate(int sample_rate) {
CHECK_GT(sample_rate, 0);
sample_rate_ = sample_rate;
SetVolume(volume_scale_);
}
void SlewVolume::SetVolume(double volume_scale) {
volume_scale_ = volume_scale;
if (interrupted_) {
current_volume_ = volume_scale_;
last_starting_volume_ = current_volume_;
}
// Slew rate should be volume_to_slew / slew_time / sample_rate, but use a
// minimum volume_to_slew of 0.1 to avoid very small slew per sample.
double volume_diff =
std::max(0.1, std::fabs(volume_scale_ - current_volume_));
max_slew_per_sample_ =
volume_diff * 1000.0 / (max_slew_time_ms_ * sample_rate_);
if (use_cosine_slew_) {
// Set initial state for cosine slew. Cosine fading always lasts
// max_slew_time_ms_.
slew_counter_ = max_slew_time_ms_ * 0.001 * sample_rate_;
slew_angle_ = sin(M_PI / slew_counter_);
slew_offset_ = (current_volume_ + volume_scale_) * 0.5;
slew_cos_ = (current_volume_ - volume_scale_) * 0.5;
slew_sin_ = 0.0;
}
}
float SlewVolume::LastBufferMaxMultiplier() {
return std::max(current_volume_, last_starting_volume_);
}
void SlewVolume::SetMaxSlewTimeMs(int max_slew_time_ms) {
CHECK_GE(max_slew_time_ms, 0);
max_slew_time_ms_ = max_slew_time_ms;
}
void SlewVolume::Interrupted() {
interrupted_ = true;
current_volume_ = volume_scale_;
}
void SlewVolume::ProcessFMAC(bool repeat_transition,
const float* src,
int frames,
int channels,
float* dest) {
ProcessData<FMACTraits>(repeat_transition, src, frames, channels, dest);
}
void SlewVolume::ProcessFMUL(bool repeat_transition,
const float* src,
int frames,
int channels,
float* dest) {
ProcessData<FMULTraits>(repeat_transition, src, frames, channels, dest);
}
template <typename Traits>
void SlewVolume::ProcessData(bool repeat_transition,
const float* src,
int frames,
int channels,
float* dest) {
DCHECK(src);
DCHECK(dest);
// Ensure |src| and |dest| are 16-byte aligned.
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) &
(::media::vector_math::kRequiredAlignment - 1));
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) &
(::media::vector_math::kRequiredAlignment - 1));
if (!frames) {
return;
}
interrupted_ = false;
if (repeat_transition) {
current_volume_ = last_starting_volume_;
} else {
last_starting_volume_ = current_volume_;
}
if (current_volume_ == volume_scale_) {
if (current_volume_ == 0.0) {
Traits::ProcessZeroVolume(src, frames * channels, dest);
return;
}
if (current_volume_ == 1.0) {
Traits::ProcessUnityVolume(src, frames * channels, dest);
return;
}
Traits::ProcessBulkData(src, current_volume_, frames * channels, dest);
return;
}
if (use_cosine_slew_) {
int slew_frames = std::min(slew_counter_, frames);
frames -= slew_frames;
slew_counter_ -= slew_frames;
for (; slew_frames > 0; --slew_frames) {
slew_cos_ -= slew_sin_ * slew_angle_;
slew_sin_ += slew_cos_ * slew_angle_;
current_volume_ = std::clamp(slew_offset_ + slew_cos_, 0.0, 1.0);
for (int i = 0; i < channels; ++i) {
Traits::ProcessSingleDatum(src, current_volume_, dest);
++src;
++dest;
}
}
if (!slew_counter_) {
current_volume_ = volume_scale_;
}
} else if (current_volume_ < volume_scale_) {
do {
for (int i = 0; i < channels; ++i) {
Traits::ProcessSingleDatum(src, current_volume_, dest);
++src;
++dest;
}
--frames;
current_volume_ += max_slew_per_sample_;
} while (current_volume_ < volume_scale_ && frames);
current_volume_ = std::min(current_volume_, volume_scale_);
} else { // current_volume_ > volume_scale_
do {
for (int i = 0; i < channels; ++i) {
Traits::ProcessSingleDatum(src, current_volume_, dest);
++src;
++dest;
}
--frames;
current_volume_ -= max_slew_per_sample_;
} while (current_volume_ > volume_scale_ && frames);
current_volume_ = std::max(current_volume_, volume_scale_);
}
while (frames && (reinterpret_cast<uintptr_t>(src) &
(::media::vector_math::kRequiredAlignment - 1))) {
for (int i = 0; i < channels; ++i) {
Traits::ProcessSingleDatum(src, current_volume_, dest);
++src;
++dest;
}
--frames;
}
if (!frames) {
return;
}
Traits::ProcessBulkData(src, current_volume_, frames * channels, dest);
}
} // namespace media
} // namespace chromecast