blob: 2b40a7da95d28b1ef3885178ecbe8f1ac875a332 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/secure_hash.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <string>
#include <utility>
#include "crypto/sha2.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/boringssl/src/include/openssl/sha.h"
class SecureHashTest : public testing::Test,
public testing::WithParamInterface<
std::pair<crypto::SecureHash::Algorithm, uint64_t>> {
public:
SecureHashTest()
: algorithm_(GetParam().first), hash_length_(GetParam().second) {}
protected:
crypto::SecureHash::Algorithm algorithm_;
const uint64_t hash_length_;
};
TEST_P(SecureHashTest, TestUpdateSHA256) {
std::string input3;
std::vector<uint8_t> expected_hash_of_input_3;
switch (algorithm_) {
case crypto::SecureHash::SHA256:
// Example B.3 from FIPS 180-2: long message.
input3 = std::string(500000, 'a'); // 'a' repeated half a million times
expected_hash_of_input_3 = {
0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7,
0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97,
0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0};
break;
case crypto::SecureHash::SHA512:
// Example C.3 from FIPS 180-2: long message.
input3 = std::string(500000, 'a'); // 'a' repeated half a million times
expected_hash_of_input_3 = {
0xe7, 0x18, 0x48, 0x3d, 0x0c, 0xe7, 0x69, 0x64, 0x4e, 0x2e, 0x42,
0xc7, 0xbc, 0x15, 0xb4, 0x63, 0x8e, 0x1f, 0x98, 0xb1, 0x3b, 0x20,
0x44, 0x28, 0x56, 0x32, 0xa8, 0x03, 0xaf, 0xa9, 0x73, 0xeb, 0xde,
0x0f, 0xf2, 0x44, 0x87, 0x7e, 0xa6, 0x0a, 0x4c, 0xb0, 0x43, 0x2c,
0xe5, 0x77, 0xc3, 0x1b, 0xeb, 0x00, 0x9c, 0x5c, 0x2c, 0x49, 0xaa,
0x2e, 0x4e, 0xad, 0xb2, 0x17, 0xad, 0x8c, 0xc0, 0x9b};
break;
}
uint8_t output3[hash_length_];
std::unique_ptr<crypto::SecureHash> ctx(
crypto::SecureHash::Create(algorithm_));
ctx->Update(input3.data(), input3.size());
ctx->Update(input3.data(), input3.size());
ctx->Finish(output3, sizeof(output3));
for (size_t i = 0; i < hash_length_; i++)
EXPECT_EQ(expected_hash_of_input_3[i], static_cast<int>(output3[i]));
}
TEST_P(SecureHashTest, TestClone) {
std::string input1(10001, 'a'); // 'a' repeated 10001 times
std::string input2(10001, 'd'); // 'd' repeated 10001 times
std::vector<uint8_t> expected_hash_of_input_1;
std::vector<uint8_t> expected_hash_of_input_1_and_2;
switch (algorithm_) {
case crypto::SecureHash::SHA256:
expected_hash_of_input_1 = {
0x0c, 0xab, 0x99, 0xa0, 0x58, 0x60, 0x0f, 0xfa, 0xad, 0x12, 0x92,
0xd0, 0xc5, 0x3c, 0x05, 0x48, 0xeb, 0xaf, 0x88, 0xdd, 0x1d, 0x01,
0x03, 0x03, 0x45, 0x70, 0x5f, 0x01, 0x8a, 0x81, 0x39, 0x09};
expected_hash_of_input_1_and_2 = {
0x4c, 0x8e, 0x26, 0x5a, 0xc3, 0x85, 0x1f, 0x1f, 0xa5, 0x04, 0x1c,
0xc7, 0x88, 0x53, 0x1c, 0xc7, 0x80, 0x47, 0x15, 0xfb, 0x47, 0xff,
0x72, 0xb1, 0x28, 0x37, 0xb0, 0x4d, 0x6e, 0x22, 0x2e, 0x4d};
break;
case crypto::SecureHash::SHA512:
expected_hash_of_input_1 = {
0xea, 0x03, 0xb2, 0x23, 0x32, 0x29, 0xc8, 0x87, 0x86, 0x33, 0xa3,
0x70, 0xc7, 0xb2, 0x40, 0xea, 0xef, 0xd9, 0x55, 0xe2, 0xb3, 0x79,
0xd6, 0xb3, 0x3f, 0x5e, 0xff, 0x89, 0xfd, 0x86, 0x7b, 0x10, 0xe2,
0xc1, 0x3b, 0x2f, 0xf5, 0x29, 0x80, 0xa0, 0xb0, 0xf9, 0xcf, 0x47,
0xa7, 0xff, 0x73, 0xac, 0xd2, 0x66, 0x9e, 0x53, 0x78, 0x9f, 0xc6,
0x07, 0x7a, 0xb7, 0x09, 0x1f, 0xa4, 0x3b, 0x18, 0x00};
expected_hash_of_input_1_and_2 = {
0x41, 0x6d, 0x46, 0x8d, 0x8a, 0x84, 0x3d, 0xf9, 0x43, 0xac, 0xe6,
0x4d, 0x5b, 0x60, 0xd7, 0x1a, 0xb1, 0xe6, 0x2d, 0xd3, 0xe6, 0x97,
0xaf, 0x6f, 0x34, 0x97, 0x8f, 0x01, 0xd4, 0x15, 0x06, 0xfa, 0x69,
0x48, 0x0e, 0x24, 0x0d, 0x98, 0x84, 0x76, 0xd2, 0x95, 0x4c, 0x16,
0x02, 0xfd, 0x71, 0xd4, 0x25, 0xb3, 0x8f, 0xf2, 0x60, 0xa3, 0x0e,
0xdb, 0xe9, 0x87, 0x32, 0xfc, 0xf3, 0x2d, 0x0a, 0x28};
break;
}
uint8_t output1[hash_length_];
uint8_t output2[hash_length_];
uint8_t output3[hash_length_];
std::unique_ptr<crypto::SecureHash> ctx1(
crypto::SecureHash::Create(algorithm_));
ctx1->Update(input1.data(), input1.size());
std::unique_ptr<crypto::SecureHash> ctx2(ctx1->Clone());
std::unique_ptr<crypto::SecureHash> ctx3(ctx2->Clone());
// At this point, ctx1, ctx2, and ctx3 are all equivalent and represent the
// state after hashing input1.
// Updating ctx1 and ctx2 with input2 should produce equivalent results.
ctx1->Update(input2.data(), input2.size());
ctx1->Finish(output1, sizeof(output1));
ctx2->Update(input2.data(), input2.size());
ctx2->Finish(output2, sizeof(output2));
EXPECT_EQ(0, memcmp(output1, output2, hash_length_));
EXPECT_EQ(
0, memcmp(output1, expected_hash_of_input_1_and_2.data(), hash_length_));
// Finish() ctx3, which should produce the hash of input1.
ctx3->Finish(&output3, sizeof(output3));
EXPECT_EQ(0, memcmp(output3, expected_hash_of_input_1.data(), hash_length_));
}
TEST_P(SecureHashTest, TestLength) {
std::unique_ptr<crypto::SecureHash> ctx(
crypto::SecureHash::Create(algorithm_));
EXPECT_EQ(hash_length_, ctx->GetHashLength());
}
TEST_P(SecureHashTest, Equality) {
std::string input1(10001, 'a'); // 'a' repeated 10001 times
std::string input2(10001, 'd'); // 'd' repeated 10001 times
uint8_t output1[hash_length_];
uint8_t output2[hash_length_];
// Call Update() twice on input1 and input2.
std::unique_ptr<crypto::SecureHash> ctx1(
crypto::SecureHash::Create(algorithm_));
ctx1->Update(input1.data(), input1.size());
ctx1->Update(input2.data(), input2.size());
ctx1->Finish(output1, sizeof(output1));
// Call Update() once one input1 + input2 (concatenation).
std::unique_ptr<crypto::SecureHash> ctx2(
crypto::SecureHash::Create(algorithm_));
std::string input3 = input1 + input2;
ctx2->Update(input3.data(), input3.size());
ctx2->Finish(output2, sizeof(output2));
// The hash should be the same.
EXPECT_EQ(0, memcmp(output1, output2, hash_length_));
}
INSTANTIATE_TEST_SUITE_P(
All,
SecureHashTest,
testing::Values(
std::make_pair(crypto::SecureHash::SHA256, SHA256_DIGEST_LENGTH),
std::make_pair(crypto::SecureHash::SHA512, SHA512_DIGEST_LENGTH)));