blob: 604e82b3270c96c1db77dbabab81c487f5057a57 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/rtree.h"
#include <stddef.h>
#include <utility>
#include "testing/gtest/include/gtest/gtest.h"
namespace cc {
namespace {
// Helper function to use in place of rtree. Search that ensures that every
// call to Search / SearchRefs produces the same results.
template <typename T>
void SearchAndVerifyRefs(const RTree<T>& rtree,
const gfx::Rect& query,
std::vector<T>* results) {
rtree.Search(query, results);
// Perform the same query with SearchRefs and make sure it matches Search.
std::vector<const T*> ref_results;
rtree.SearchRefs(query, &ref_results);
ASSERT_EQ(ref_results.size(), results->size());
for (size_t i = 0; i < results->size(); ++i) {
EXPECT_EQ(*ref_results[i], (*results)[i]);
}
}
template <typename T>
void SearchAndVerifyBounds(const RTree<T>& rtree,
const gfx::Rect& query,
std::vector<T>* results,
std::vector<gfx::Rect>* rects) {
rtree.Search(query, results, rects);
ASSERT_EQ(results->size(), rects->size());
for (auto& rect : *rects) {
EXPECT_TRUE(rect.Intersects(query));
}
}
} // namespace
TEST(RTreeTest, ReserveNodesDoesntDcheck) {
// Make sure that anywhere between 0 and 1000 rects, our reserve math in rtree
// is correct. (This test would DCHECK if broken either in
// RTree::AllocateNodeAtLevel, indicating that the capacity calculation was
// too small or in RTree::Build, indicating the capacity was too large).
for (int i = 0; i < 1000; ++i) {
std::vector<gfx::Rect> rects;
for (int j = 0; j < i; ++j)
rects.push_back(gfx::Rect(j, i, 1, 1));
RTree<size_t> rtree;
rtree.Build(rects);
}
}
TEST(RTreeTest, NoOverlap) {
std::vector<gfx::Rect> rects;
for (int y = 0; y < 50; ++y) {
for (int x = 0; x < 50; ++x) {
rects.push_back(gfx::Rect(x, y, 1, 1));
}
}
RTree<size_t> rtree;
rtree.Build(rects);
std::vector<size_t> results;
SearchAndVerifyRefs(rtree, gfx::Rect(0, 0, 50, 50), &results);
ASSERT_EQ(2500u, results.size());
// Note that the results have to be sorted.
for (size_t i = 0; i < 2500; ++i) {
ASSERT_EQ(results[i], i);
}
SearchAndVerifyRefs(rtree, gfx::Rect(0, 0, 50, 49), &results);
ASSERT_EQ(2450u, results.size());
for (size_t i = 0; i < 2450; ++i) {
ASSERT_EQ(results[i], i);
}
SearchAndVerifyRefs(rtree, gfx::Rect(5, 6, 1, 1), &results);
ASSERT_EQ(1u, results.size());
EXPECT_EQ(6u * 50 + 5u, results[0]);
}
TEST(RTreeTest, Overlap) {
std::vector<gfx::Rect> rects;
for (int h = 1; h <= 50; ++h) {
for (int w = 1; w <= 50; ++w) {
rects.push_back(gfx::Rect(0, 0, w, h));
}
}
RTree<size_t> rtree;
rtree.Build(rects);
std::vector<size_t> results;
SearchAndVerifyRefs(rtree, gfx::Rect(0, 0, 1, 1), &results);
ASSERT_EQ(2500u, results.size());
// Both the checks for the elements assume elements are sorted.
for (size_t i = 0; i < 2500; ++i) {
ASSERT_EQ(results[i], i);
}
SearchAndVerifyRefs(rtree, gfx::Rect(0, 49, 1, 1), &results);
ASSERT_EQ(50u, results.size());
for (size_t i = 0; i < 50; ++i) {
EXPECT_EQ(results[i], 2450u + i);
}
}
static void VerifySorted(const std::vector<size_t>& results) {
for (size_t i = 1; i < results.size(); ++i) {
ASSERT_LT(results[i - 1], results[i]);
}
}
TEST(RTreeTest, SortedResults) {
// This test verifies that all queries return sorted elements.
std::vector<gfx::Rect> rects;
for (int y = 0; y < 50; ++y) {
for (int x = 0; x < 50; ++x) {
rects.push_back(gfx::Rect(x, y, 1, 1));
rects.push_back(gfx::Rect(x, y, 2, 2));
rects.push_back(gfx::Rect(x, y, 3, 3));
}
}
RTree<size_t> rtree;
rtree.Build(rects);
for (int y = 0; y < 50; ++y) {
for (int x = 0; x < 50; ++x) {
std::vector<size_t> results;
SearchAndVerifyRefs(rtree, gfx::Rect(x, y, 1, 1), &results);
VerifySorted(results);
SearchAndVerifyRefs(rtree, gfx::Rect(x, y, 50, 1), &results);
VerifySorted(results);
SearchAndVerifyRefs(rtree, gfx::Rect(x, y, 1, 50), &results);
VerifySorted(results);
}
}
}
TEST(RTreeTest, GetBoundsEmpty) {
RTree<size_t> rtree;
EXPECT_EQ(gfx::Rect(), rtree.GetBoundsOrDie());
EXPECT_TRUE(rtree.GetAllBoundsForTracing().empty());
}
TEST(RTreeTest, GetBoundsNonOverlapping) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(5, 6, 7, 8));
rects.push_back(gfx::Rect(11, 12, 13, 14));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_EQ(gfx::Rect(5, 6, 19, 20), rtree.GetBoundsOrDie());
std::map<size_t, gfx::Rect> expected_all_bounds = {{0, rects[0]},
{1, rects[1]}};
EXPECT_EQ(expected_all_bounds, rtree.GetAllBoundsForTracing());
}
TEST(RTreeTest, GetBoundsOverlapping) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(0, 0, 10, 10));
rects.push_back(gfx::Rect(5, 5, 5, 5));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_EQ(gfx::Rect(0, 0, 10, 10), rtree.GetBoundsOrDie());
std::map<size_t, gfx::Rect> expected_all_bounds = {{0, rects[0]},
{1, rects[1]}};
EXPECT_EQ(expected_all_bounds, rtree.GetAllBoundsForTracing());
}
TEST(RTreeTest, GetBoundsWithEmptyRect) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect());
rects.push_back(gfx::Rect(5, 5, 5, 5));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_EQ(gfx::Rect(5, 5, 5, 5), rtree.GetBoundsOrDie());
std::map<size_t, gfx::Rect> expected_all_bounds = {{1, rects[1]}};
EXPECT_EQ(expected_all_bounds, rtree.GetAllBoundsForTracing());
}
TEST(RTreeTest, BuildAfterReset) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(0, 0, 10, 10));
rects.push_back(gfx::Rect(0, 0, 10, 10));
rects.push_back(gfx::Rect(0, 0, 10, 10));
rects.push_back(gfx::Rect(0, 0, 10, 10));
RTree<size_t> rtree;
rtree.Build(rects);
// Resetting should give the same as an empty rtree.
rtree.Reset();
EXPECT_EQ(gfx::Rect(), rtree.GetBoundsOrDie());
EXPECT_TRUE(rtree.GetAllBoundsForTracing().empty());
// Should be able to rebuild from a reset rtree.
rtree.Build(rects);
EXPECT_EQ(gfx::Rect(0, 0, 10, 10), rtree.GetBoundsOrDie());
std::map<size_t, gfx::Rect> expected_all_bounds = {
{0, rects[0]}, {1, rects[1]}, {2, rects[2]}, {3, rects[3]}};
EXPECT_EQ(expected_all_bounds, rtree.GetAllBoundsForTracing());
}
TEST(RTreeTest, Payload) {
using Container = std::vector<std::pair<gfx::Rect, float>>;
Container data;
data.emplace_back(gfx::Rect(10, 10, 10, 10), 40.f);
data.emplace_back(gfx::Rect(0, 0, 10, 10), 10.f);
data.emplace_back(gfx::Rect(0, 10, 10, 10), 30.f);
data.emplace_back(gfx::Rect(10, 0, 10, 10), 20.f);
RTree<float> rtree;
rtree.Build(
data,
[](const Container& items, size_t index) { return items[index].first; },
[](const Container& items, size_t index) { return items[index].second; });
std::vector<float> results;
SearchAndVerifyRefs(rtree, gfx::Rect(0, 0, 1, 1), &results);
ASSERT_EQ(1u, results.size());
EXPECT_FLOAT_EQ(10.f, results[0]);
// Search with bounds
std::vector<gfx::Rect> rects;
SearchAndVerifyBounds(rtree, gfx::Rect(0, 0, 1, 1), &results, &rects);
ASSERT_EQ(1u, results.size());
ASSERT_EQ(results.size(), rects.size());
EXPECT_FLOAT_EQ(10.f, results[0]);
EXPECT_EQ(gfx::Rect(0, 0, 10, 10), rects[0]);
SearchAndVerifyRefs(rtree, gfx::Rect(5, 5, 10, 10), &results);
ASSERT_EQ(4u, results.size());
// Items returned should be in the order they were inserted.
EXPECT_FLOAT_EQ(40.f, results[0]);
EXPECT_FLOAT_EQ(10.f, results[1]);
EXPECT_FLOAT_EQ(30.f, results[2]);
EXPECT_FLOAT_EQ(20.f, results[3]);
}
TEST(RTreeTest, InvalidBounds) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(-INT_MAX, -INT_MAX, INT_MAX, INT_MAX));
rects.push_back(gfx::Rect(100, 100, 10, 10));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_FALSE(rtree.has_valid_bounds());
}
TEST(RTreeTest, InvalidBoundsReset) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(-INT_MAX, -INT_MAX, INT_MAX, INT_MAX));
rects.push_back(gfx::Rect(100, 100, 10, 10));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_FALSE(rtree.has_valid_bounds());
// Reset() should restore us to an empty (but valid) state.
rtree.Reset();
ASSERT_TRUE(rtree.has_valid_bounds());
EXPECT_EQ(rtree.GetBoundsOrDie(), gfx::Rect());
}
TEST(RTreeTest, InvalidBoundsSearch) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(-INT_MAX, -INT_MAX, INT_MAX, INT_MAX));
rects.push_back(gfx::Rect(100, 100, 10, 10));
rects.push_back(gfx::Rect(105, 105, 10, 10));
rects.push_back(gfx::Rect(-50, -50, 10, 10));
rects.push_back(gfx::Rect(INT_MAX - 100, INT_MAX - 100, 10, 10));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_FALSE(rtree.has_valid_bounds());
// Searching should still work.
std::vector<size_t> found;
SearchAndVerifyRefs(rtree, gfx::Rect(0, 0, INT_MAX, INT_MAX), &found);
EXPECT_EQ(found, std::vector<size_t>({1, 2, 4}));
SearchAndVerifyRefs(rtree, gfx::Rect(-INT_MAX, -INT_MAX, INT_MAX, INT_MAX),
&found);
EXPECT_EQ(found, std::vector<size_t>({0, 3}));
SearchAndVerifyRefs(rtree, gfx::Rect(-50, -50, INT_MAX, INT_MAX), &found);
EXPECT_EQ(found, std::vector<size_t>({0, 1, 2, 3, 4}));
}
TEST(RTreeTest, InvalidBoundsGetAllBounds) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(-INT_MAX, -INT_MAX, INT_MAX, INT_MAX));
rects.push_back(gfx::Rect(100, 100, 10, 10));
rects.push_back(gfx::Rect(105, 105, 10, 10));
rects.push_back(gfx::Rect(-50, -50, 10, 10));
rects.push_back(gfx::Rect(INT_MAX - 100, INT_MAX - 100, 10, 10));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_FALSE(rtree.has_valid_bounds());
// Getting all bounds should still work.
std::map<size_t, gfx::Rect> all_bounds = rtree.GetAllBoundsForTracing();
std::map<size_t, gfx::Rect> expected_all_bounds = {{0, rects[0]},
{1, rects[1]},
{2, rects[2]},
{3, rects[3]},
{4, rects[4]}};
EXPECT_EQ(all_bounds, expected_all_bounds);
}
} // namespace cc