blob: 17b8e8a511998f3c3870dd1f401c370d6e098795 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sql/recovery.h"
#include <stddef.h>
#include <memory>
#include <string>
#include <utility>
#include "base/bind.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/files/scoped_temp_dir.h"
#include "base/path_service.h"
#include "base/strings/string_number_conversions.h"
#include "base/test/metrics/histogram_tester.h"
#include "sql/database.h"
#include "sql/meta_table.h"
#include "sql/statement.h"
#include "sql/test/paths.h"
#include "sql/test/scoped_error_expecter.h"
#include "sql/test/sql_test_base.h"
#include "sql/test/test_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/sqlite/sqlite3.h"
namespace {
using sql::test::ExecuteWithResults;
using sql::test::ExecuteWithResult;
// Dump consistent human-readable representation of the database
// schema. For tables or indices, this will contain the sql command
// to create the table or index. For certain automatic SQLite
// structures with no sql, the name is used.
std::string GetSchema(sql::Database* db) {
static const char kSql[] =
"SELECT COALESCE(sql, name) FROM sqlite_master ORDER BY 1";
return ExecuteWithResults(db, kSql, "|", "\n");
}
using SQLRecoveryTest = sql::SQLTestBase;
// Baseline sql::Recovery test covering the different ways to dispose of the
// scoped pointer received from sql::Recovery::Begin().
TEST_F(SQLRecoveryTest, RecoverBasic) {
static const char kCreateSql[] = "CREATE TABLE x (t TEXT)";
static const char kInsertSql[] = "INSERT INTO x VALUES ('This is a test')";
static const char kAltInsertSql[] =
"INSERT INTO x VALUES ('That was a test')";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kInsertSql));
ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db()));
// If the Recovery handle goes out of scope without being
// Recovered(), the database is razed.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery.get());
}
EXPECT_FALSE(db().is_open());
ASSERT_TRUE(Reopen());
EXPECT_TRUE(db().is_open());
ASSERT_EQ("", GetSchema(&db()));
// Recreate the database.
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kInsertSql));
ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db()));
// Unrecoverable() also razes.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery.get());
sql::Recovery::Unrecoverable(std::move(recovery));
// TODO(shess): Test that calls to recover.db() start failing.
}
EXPECT_FALSE(db().is_open());
ASSERT_TRUE(Reopen());
EXPECT_TRUE(db().is_open());
ASSERT_EQ("", GetSchema(&db()));
// Attempting to recover a previously-recovered handle fails early.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery.get());
recovery.reset();
recovery = sql::Recovery::Begin(&db(), db_path());
ASSERT_FALSE(recovery.get());
}
ASSERT_TRUE(Reopen());
// Recreate the database.
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kInsertSql));
ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db()));
// Unrecovered table to distinguish from recovered database.
ASSERT_TRUE(db().Execute("CREATE TABLE y (c INTEGER)"));
ASSERT_NE("CREATE TABLE x (t TEXT)", GetSchema(&db()));
// Recovered() replaces the original with the "recovered" version.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery.get());
// Create the new version of the table.
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
// Insert different data to distinguish from original database.
ASSERT_TRUE(recovery->db()->Execute(kAltInsertSql));
// Successfully recovered.
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
EXPECT_FALSE(db().is_open());
ASSERT_TRUE(Reopen());
EXPECT_TRUE(db().is_open());
ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db()));
const char* kXSql = "SELECT * FROM x ORDER BY 1";
ASSERT_EQ("That was a test", ExecuteWithResult(&db(), kXSql));
// Reset the database contents.
ASSERT_TRUE(db().Execute("DELETE FROM x"));
ASSERT_TRUE(db().Execute(kInsertSql));
// Rollback() discards recovery progress and leaves the database as it was.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery.get());
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
ASSERT_TRUE(recovery->db()->Execute(kAltInsertSql));
sql::Recovery::Rollback(std::move(recovery));
}
EXPECT_FALSE(db().is_open());
ASSERT_TRUE(Reopen());
EXPECT_TRUE(db().is_open());
ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db()));
ASSERT_EQ("This is a test", ExecuteWithResult(&db(), kXSql));
}
// Test operation of the virtual table used by sql::Recovery.
TEST_F(SQLRecoveryTest, VirtualTable) {
static const char kCreateSql[] = "CREATE TABLE x (t TEXT)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('This is a test')"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('That was a test')"));
// Successfully recover the database.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
// Tables to recover original DB, now at [corrupt].
static const char kRecoveryCreateSql[] =
"CREATE VIRTUAL TABLE temp.recover_x using recover("
" corrupt.x,"
" t TEXT STRICT"
")";
ASSERT_TRUE(recovery->db()->Execute(kRecoveryCreateSql));
// Re-create the original schema.
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
// Copy the data from the recovery tables to the new database.
static const char kRecoveryCopySql[] =
"INSERT INTO x SELECT t FROM recover_x";
ASSERT_TRUE(recovery->db()->Execute(kRecoveryCopySql));
// Successfully recovered.
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
// Since the database was not corrupt, the entire schema and all
// data should be recovered.
ASSERT_TRUE(Reopen());
ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db()));
static const char* kXSql = "SELECT * FROM x ORDER BY 1";
ASSERT_EQ("That was a test\nThis is a test",
ExecuteWithResults(&db(), kXSql, "|", "\n"));
}
void RecoveryCallback(sql::Database* db,
const base::FilePath& db_path,
const char* create_table,
const char* create_index,
int* record_error,
int error,
sql::Statement* stmt) {
*record_error = error;
// Clear the error callback to prevent reentrancy.
db->reset_error_callback();
std::unique_ptr<sql::Recovery> recovery = sql::Recovery::Begin(db, db_path);
ASSERT_TRUE(recovery.get());
ASSERT_TRUE(recovery->db()->Execute(create_table));
ASSERT_TRUE(recovery->db()->Execute(create_index));
size_t rows = 0;
ASSERT_TRUE(recovery->AutoRecoverTable("x", &rows));
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
// Build a database, corrupt it by making an index reference to
// deleted row, then recover when a query selects that row.
TEST_F(SQLRecoveryTest, RecoverCorruptIndex) {
static const char kCreateTable[] = "CREATE TABLE x (id INTEGER, v INTEGER)";
static const char kCreateIndex[] = "CREATE UNIQUE INDEX x_id ON x (id)";
ASSERT_TRUE(db().Execute(kCreateTable));
ASSERT_TRUE(db().Execute(kCreateIndex));
// Insert a bit of data.
{
ASSERT_TRUE(db().BeginTransaction());
static const char kInsertSql[] = "INSERT INTO x (id, v) VALUES (?, ?)";
sql::Statement s(db().GetUniqueStatement(kInsertSql));
for (int i = 0; i < 10; ++i) {
s.Reset(true);
s.BindInt(0, i);
s.BindInt(1, i);
EXPECT_FALSE(s.Step());
EXPECT_TRUE(s.Succeeded());
}
ASSERT_TRUE(db().CommitTransaction());
}
db().Close();
// Delete a row from the table, while leaving the index entry which
// references it.
static const char kDeleteSql[] = "DELETE FROM x WHERE id = 0";
ASSERT_TRUE(sql::test::CorruptTableOrIndex(db_path(), "x_id", kDeleteSql));
ASSERT_TRUE(Reopen());
int error = SQLITE_OK;
db().set_error_callback(base::BindRepeating(
&RecoveryCallback, &db(), db_path(), kCreateTable, kCreateIndex, &error));
// This works before the callback is called.
static const char kTrivialSql[] = "SELECT COUNT(*) FROM sqlite_master";
EXPECT_TRUE(db().IsSQLValid(kTrivialSql));
// TODO(shess): Could this be delete? Anything which fails should work.
static const char kSelectSql[] = "SELECT v FROM x WHERE id = 0";
ASSERT_FALSE(db().Execute(kSelectSql));
EXPECT_EQ(SQLITE_CORRUPT, error);
// Database handle has been poisoned.
EXPECT_FALSE(db().IsSQLValid(kTrivialSql));
ASSERT_TRUE(Reopen());
// The recovered table should reflect the deletion.
static const char kSelectAllSql[] = "SELECT v FROM x ORDER BY id";
EXPECT_EQ("1,2,3,4,5,6,7,8,9",
ExecuteWithResults(&db(), kSelectAllSql, "|", ","));
// The failing statement should now succeed, with no results.
EXPECT_EQ("", ExecuteWithResults(&db(), kSelectSql, "|", ","));
}
// Build a database, corrupt it by making a table contain a row not
// referenced by the index, then recover the database.
TEST_F(SQLRecoveryTest, RecoverCorruptTable) {
static const char kCreateTable[] = "CREATE TABLE x (id INTEGER, v INTEGER)";
static const char kCreateIndex[] = "CREATE UNIQUE INDEX x_id ON x (id)";
ASSERT_TRUE(db().Execute(kCreateTable));
ASSERT_TRUE(db().Execute(kCreateIndex));
// Insert a bit of data.
{
ASSERT_TRUE(db().BeginTransaction());
static const char kInsertSql[] = "INSERT INTO x (id, v) VALUES (?, ?)";
sql::Statement s(db().GetUniqueStatement(kInsertSql));
for (int i = 0; i < 10; ++i) {
s.Reset(true);
s.BindInt(0, i);
s.BindInt(1, i);
EXPECT_FALSE(s.Step());
EXPECT_TRUE(s.Succeeded());
}
ASSERT_TRUE(db().CommitTransaction());
}
db().Close();
// Delete a row from the index while leaving a table entry.
static const char kDeleteSql[] = "DELETE FROM x WHERE id = 0";
ASSERT_TRUE(sql::test::CorruptTableOrIndex(db_path(), "x", kDeleteSql));
ASSERT_TRUE(Reopen());
int error = SQLITE_OK;
db().set_error_callback(base::BindRepeating(
&RecoveryCallback, &db(), db_path(), kCreateTable, kCreateIndex, &error));
// Index shows one less than originally inserted.
static const char kCountSql[] = "SELECT COUNT (*) FROM x";
EXPECT_EQ("9", ExecuteWithResult(&db(), kCountSql));
// A full table scan shows all of the original data. Using column [v] to
// force use of the table rather than the index.
static const char kDistinctSql[] = "SELECT DISTINCT COUNT (v) FROM x";
EXPECT_EQ("10", ExecuteWithResult(&db(), kDistinctSql));
// Insert id 0 again. Since it is not in the index, the insert
// succeeds, but results in a duplicate value in the table.
static const char kInsertSql[] = "INSERT INTO x (id, v) VALUES (0, 100)";
ASSERT_TRUE(db().Execute(kInsertSql));
// Duplication is visible.
EXPECT_EQ("10", ExecuteWithResult(&db(), kCountSql));
EXPECT_EQ("11", ExecuteWithResult(&db(), kDistinctSql));
// This works before the callback is called.
static const char kTrivialSql[] = "SELECT COUNT(*) FROM sqlite_master";
EXPECT_TRUE(db().IsSQLValid(kTrivialSql));
// TODO(shess): Figure out a statement which causes SQLite to notice the
// corruption. SELECT doesn't see errors because missing index values aren't
// visible. UPDATE or DELETE against v=0 don't see errors, even though the
// index item is missing. I suspect SQLite only deletes the key in these
// cases, but doesn't verify that one or more keys were deleted.
ASSERT_FALSE(db().Execute("INSERT INTO x (id, v) VALUES (0, 101)"));
EXPECT_EQ(SQLITE_CONSTRAINT_UNIQUE, error);
// Database handle has been poisoned.
EXPECT_FALSE(db().IsSQLValid(kTrivialSql));
ASSERT_TRUE(Reopen());
// The recovered table has consistency between the index and the table.
EXPECT_EQ("10", ExecuteWithResult(&db(), kCountSql));
EXPECT_EQ("10", ExecuteWithResult(&db(), kDistinctSql));
// Only one of the values is retained.
static const char kSelectSql[] = "SELECT v FROM x WHERE id = 0";
const std::string results = ExecuteWithResult(&db(), kSelectSql);
EXPECT_TRUE(results=="100" || results=="0") << "Actual results: " << results;
}
TEST_F(SQLRecoveryTest, Meta) {
const int kVersion = 3;
const int kCompatibleVersion = 2;
{
sql::MetaTable meta;
EXPECT_TRUE(meta.Init(&db(), kVersion, kCompatibleVersion));
EXPECT_EQ(kVersion, meta.GetVersionNumber());
}
// Test expected case where everything works.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
EXPECT_TRUE(recovery->SetupMeta());
int version = 0;
EXPECT_TRUE(recovery->GetMetaVersionNumber(&version));
EXPECT_EQ(kVersion, version);
sql::Recovery::Rollback(std::move(recovery));
}
ASSERT_TRUE(Reopen()); // Handle was poisoned.
// Test version row missing.
EXPECT_TRUE(db().Execute("DELETE FROM meta WHERE key = 'version'"));
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
EXPECT_TRUE(recovery->SetupMeta());
int version = 0;
EXPECT_FALSE(recovery->GetMetaVersionNumber(&version));
EXPECT_EQ(0, version);
sql::Recovery::Rollback(std::move(recovery));
}
ASSERT_TRUE(Reopen()); // Handle was poisoned.
// Test meta table missing.
EXPECT_TRUE(db().Execute("DROP TABLE meta"));
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT); // From virtual table.
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
EXPECT_FALSE(recovery->SetupMeta());
ASSERT_TRUE(expecter.SawExpectedErrors());
}
}
// Baseline AutoRecoverTable() test.
TEST_F(SQLRecoveryTest, AutoRecoverTable) {
// BIGINT and VARCHAR to test type affinity.
static const char kCreateSql[] =
"CREATE TABLE x (id BIGINT, t TEXT, v VARCHAR)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (11, 'This is', 'a test')"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (5, 'That was', 'a test')"));
// Save aside a copy of the original schema and data.
const std::string orig_schema(GetSchema(&db()));
static const char kXSql[] = "SELECT * FROM x ORDER BY 1";
const std::string orig_data(ExecuteWithResults(&db(), kXSql, "|", "\n"));
// Create a lame-duck table which will not be propagated by recovery to
// detect that the recovery code actually ran.
ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)"));
ASSERT_NE(orig_schema, GetSchema(&db()));
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
// Save a copy of the temp db's schema before recovering the table.
static const char kTempSchemaSql[] =
"SELECT name, sql FROM sqlite_temp_master";
const std::string temp_schema(
ExecuteWithResults(recovery->db(), kTempSchemaSql, "|", "\n"));
size_t rows = 0;
EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows));
EXPECT_EQ(2u, rows);
// Test that any additional temp tables were cleaned up.
EXPECT_EQ(temp_schema,
ExecuteWithResults(recovery->db(), kTempSchemaSql, "|", "\n"));
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
// Since the database was not corrupt, the entire schema and all
// data should be recovered.
ASSERT_TRUE(Reopen());
ASSERT_EQ(orig_schema, GetSchema(&db()));
ASSERT_EQ(orig_data, ExecuteWithResults(&db(), kXSql, "|", "\n"));
// Recovery fails if the target table doesn't exist.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
// TODO(shess): Should this failure implicitly lead to Raze()?
size_t rows = 0;
EXPECT_FALSE(recovery->AutoRecoverTable("y", &rows));
sql::Recovery::Unrecoverable(std::move(recovery));
}
}
// Test that default values correctly replace nulls. The recovery
// virtual table reads directly from the database, so DEFAULT is not
// interpretted at that level.
TEST_F(SQLRecoveryTest, AutoRecoverTableWithDefault) {
ASSERT_TRUE(db().Execute("CREATE TABLE x (id INTEGER)"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (5)"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (15)"));
// ALTER effectively leaves the new columns NULL in the first two
// rows. The row with 17 will get the default injected at insert
// time, while the row with 42 will get the actual value provided.
// Embedded "'" to make sure default-handling continues to be quoted
// correctly.
ASSERT_TRUE(db().Execute("ALTER TABLE x ADD COLUMN t TEXT DEFAULT 'a''a'"));
ASSERT_TRUE(db().Execute("ALTER TABLE x ADD COLUMN b BLOB DEFAULT x'AA55'"));
ASSERT_TRUE(db().Execute("ALTER TABLE x ADD COLUMN i INT DEFAULT 93"));
ASSERT_TRUE(db().Execute("INSERT INTO x (id) VALUES (17)"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (42, 'b', x'1234', 12)"));
// Save aside a copy of the original schema and data.
const std::string orig_schema(GetSchema(&db()));
static const char kXSql[] = "SELECT * FROM x ORDER BY 1";
const std::string orig_data(ExecuteWithResults(&db(), kXSql, "|", "\n"));
// Create a lame-duck table which will not be propagated by recovery to
// detect that the recovery code actually ran.
ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)"));
ASSERT_NE(orig_schema, GetSchema(&db()));
// Mechanically adjust the stored schema and data to allow detecting
// where the default value is coming from. The target table is just
// like the original with the default for [t] changed, to signal
// defaults coming from the recovery system. The two %5 rows should
// get the target-table default for [t], while the others should get
// the source-table default.
std::string final_schema(orig_schema);
std::string final_data(orig_data);
size_t pos;
while ((pos = final_schema.find("'a''a'")) != std::string::npos) {
final_schema.replace(pos, 6, "'c''c'");
}
while ((pos = final_data.find("5|a'a")) != std::string::npos) {
final_data.replace(pos, 5, "5|c'c");
}
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
// Different default to detect which table provides the default.
ASSERT_TRUE(recovery->db()->Execute(final_schema.c_str()));
size_t rows = 0;
EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows));
EXPECT_EQ(4u, rows);
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
// Since the database was not corrupt, the entire schema and all
// data should be recovered.
ASSERT_TRUE(Reopen());
ASSERT_EQ(final_schema, GetSchema(&db()));
ASSERT_EQ(final_data, ExecuteWithResults(&db(), kXSql, "|", "\n"));
}
// Test that rows with NULL in a NOT NULL column are filtered
// correctly. In the wild, this would probably happen due to
// corruption, but here it is simulated by recovering a table which
// allowed nulls into a table which does not.
TEST_F(SQLRecoveryTest, AutoRecoverTableNullFilter) {
static const char kOrigSchema[] = "CREATE TABLE x (id INTEGER, t TEXT)";
static const char kFinalSchema[] =
"CREATE TABLE x (id INTEGER, t TEXT NOT NULL)";
ASSERT_TRUE(db().Execute(kOrigSchema));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (5, NULL)"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (15, 'this is a test')"));
// Create a lame-duck table which will not be propagated by recovery to
// detect that the recovery code actually ran.
ASSERT_EQ(kOrigSchema, GetSchema(&db()));
ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)"));
ASSERT_NE(kOrigSchema, GetSchema(&db()));
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery->db()->Execute(kFinalSchema));
size_t rows = 0;
EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows));
EXPECT_EQ(1u, rows);
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
// The schema should be the same, but only one row of data should
// have been recovered.
ASSERT_TRUE(Reopen());
ASSERT_EQ(kFinalSchema, GetSchema(&db()));
static const char kXSql[] = "SELECT * FROM x ORDER BY 1";
ASSERT_EQ("15|this is a test", ExecuteWithResults(&db(), kXSql, "|", "\n"));
}
// Test AutoRecoverTable with a ROWID alias.
TEST_F(SQLRecoveryTest, AutoRecoverTableWithRowid) {
// The rowid alias is almost always the first column, intentionally
// put it later.
static const char kCreateSql[] =
"CREATE TABLE x (t TEXT, id INTEGER PRIMARY KEY NOT NULL)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('This is a test', NULL)"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('That was a test', NULL)"));
// Save aside a copy of the original schema and data.
const std::string orig_schema(GetSchema(&db()));
static const char kXSql[] = "SELECT * FROM x ORDER BY 1";
const std::string orig_data(ExecuteWithResults(&db(), kXSql, "|", "\n"));
// Create a lame-duck table which will not be propagated by recovery to
// detect that the recovery code actually ran.
ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)"));
ASSERT_NE(orig_schema, GetSchema(&db()));
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
size_t rows = 0;
EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows));
EXPECT_EQ(2u, rows);
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
// Since the database was not corrupt, the entire schema and all
// data should be recovered.
ASSERT_TRUE(Reopen());
ASSERT_EQ(orig_schema, GetSchema(&db()));
ASSERT_EQ(orig_data, ExecuteWithResults(&db(), kXSql, "|", "\n"));
}
// Test that a compound primary key doesn't fire the ROWID code.
TEST_F(SQLRecoveryTest, AutoRecoverTableWithCompoundKey) {
static const char kCreateSql[] =
"CREATE TABLE x ("
"id INTEGER NOT NULL,"
"id2 TEXT NOT NULL,"
"t TEXT,"
"PRIMARY KEY (id, id2)"
")";
ASSERT_TRUE(db().Execute(kCreateSql));
// NOTE(shess): Do not accidentally use [id] 1, 2, 3, as those will
// be the ROWID values.
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (1, 'a', 'This is a test')"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (1, 'b', 'That was a test')"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (2, 'a', 'Another test')"));
// Save aside a copy of the original schema and data.
const std::string orig_schema(GetSchema(&db()));
static const char kXSql[] = "SELECT * FROM x ORDER BY 1";
const std::string orig_data(ExecuteWithResults(&db(), kXSql, "|", "\n"));
// Create a lame-duck table which will not be propagated by recovery to
// detect that the recovery code actually ran.
ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)"));
ASSERT_NE(orig_schema, GetSchema(&db()));
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
size_t rows = 0;
EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows));
EXPECT_EQ(3u, rows);
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
// Since the database was not corrupt, the entire schema and all
// data should be recovered.
ASSERT_TRUE(Reopen());
ASSERT_EQ(orig_schema, GetSchema(&db()));
ASSERT_EQ(orig_data, ExecuteWithResults(&db(), kXSql, "|", "\n"));
}
// Test recovering from a table with fewer columns than the target.
TEST_F(SQLRecoveryTest, AutoRecoverTableMissingColumns) {
static const char kCreateSql[] =
"CREATE TABLE x (id INTEGER PRIMARY KEY, t0 TEXT)";
static const char kAlterSql[] =
"ALTER TABLE x ADD COLUMN t1 TEXT DEFAULT 't'";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (1, 'This is')"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (2, 'That was')"));
// Generate the expected info by faking a table to match what recovery will
// create.
const std::string orig_schema(GetSchema(&db()));
static const char kXSql[] = "SELECT * FROM x ORDER BY 1";
std::string expected_schema;
std::string expected_data;
{
ASSERT_TRUE(db().BeginTransaction());
ASSERT_TRUE(db().Execute(kAlterSql));
expected_schema = GetSchema(&db());
expected_data = ExecuteWithResults(&db(), kXSql, "|", "\n");
db().RollbackTransaction();
}
// Following tests are pointless if the rollback didn't work.
ASSERT_EQ(orig_schema, GetSchema(&db()));
// Recover the previous version of the table into the altered version.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
ASSERT_TRUE(recovery->db()->Execute(kAlterSql));
size_t rows = 0;
EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows));
EXPECT_EQ(2u, rows);
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
// Since the database was not corrupt, the entire schema and all
// data should be recovered.
ASSERT_TRUE(Reopen());
ASSERT_EQ(expected_schema, GetSchema(&db()));
ASSERT_EQ(expected_data, ExecuteWithResults(&db(), kXSql, "|", "\n"));
}
// Recover a golden file where an interior page has been manually modified so
// that the number of cells is greater than will fit on a single page. This
// case happened in <http://crbug.com/387868>.
TEST_F(SQLRecoveryTest, Bug387868) {
base::FilePath golden_path;
ASSERT_TRUE(base::PathService::Get(sql::test::DIR_TEST_DATA, &golden_path));
golden_path = golden_path.AppendASCII("recovery_387868");
db().Close();
ASSERT_TRUE(base::CopyFile(golden_path, db_path()));
ASSERT_TRUE(Reopen());
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery.get());
// Create the new version of the table.
static const char kCreateSql[] =
"CREATE TABLE x (id INTEGER PRIMARY KEY, t0 TEXT)";
ASSERT_TRUE(recovery->db()->Execute(kCreateSql));
size_t rows = 0;
EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows));
EXPECT_EQ(43u, rows);
// Successfully recovered.
EXPECT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
}
// Memory-mapped I/O interacts poorly with I/O errors. Make sure the recovery
// database doesn't accidentally enable it.
TEST_F(SQLRecoveryTest, NoMmap) {
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::Begin(&db(), db_path());
ASSERT_TRUE(recovery.get());
// In the current implementation, the PRAGMA successfully runs with no result
// rows. Running with a single result of |0| is also acceptable.
sql::Statement s(recovery->db()->GetUniqueStatement("PRAGMA mmap_size"));
EXPECT_TRUE(!s.Step() || !s.ColumnInt64(0));
}
TEST_F(SQLRecoveryTest, RecoverDatabase) {
// As a side effect, AUTOINCREMENT creates the sqlite_sequence table for
// RecoverDatabase() to handle.
ASSERT_TRUE(db().Execute(
"CREATE TABLE x (id INTEGER PRIMARY KEY AUTOINCREMENT, v TEXT)"));
EXPECT_TRUE(db().Execute("INSERT INTO x (v) VALUES ('turtle')"));
EXPECT_TRUE(db().Execute("INSERT INTO x (v) VALUES ('truck')"));
EXPECT_TRUE(db().Execute("INSERT INTO x (v) VALUES ('trailer')"));
// This table needs index and a unique index to work.
ASSERT_TRUE(db().Execute("CREATE TABLE y (name TEXT, v TEXT)"));
ASSERT_TRUE(db().Execute("CREATE UNIQUE INDEX y_name ON y(name)"));
ASSERT_TRUE(db().Execute("CREATE INDEX y_v ON y(v)"));
EXPECT_TRUE(db().Execute("INSERT INTO y VALUES ('jim', 'telephone')"));
EXPECT_TRUE(db().Execute("INSERT INTO y VALUES ('bob', 'truck')"));
EXPECT_TRUE(db().Execute("INSERT INTO y VALUES ('dean', 'trailer')"));
// View which is the intersection of [x.v] and [y.v].
ASSERT_TRUE(db().Execute(
"CREATE VIEW v AS SELECT x.v FROM x, y WHERE x.v = y.v"));
// When an element is deleted from [x], trigger a delete on [y]. Between the
// BEGIN and END, [old] stands for the deleted rows from [x].
ASSERT_TRUE(db().Execute("CREATE TRIGGER t AFTER DELETE ON x "
"BEGIN DELETE FROM y WHERE y.v = old.v; END"));
// Save aside a copy of the original schema, verifying that it has the created
// items plus the sqlite_sequence table.
const std::string orig_schema(GetSchema(&db()));
ASSERT_EQ(6, std::count(orig_schema.begin(), orig_schema.end(), '\n'));
static const char kXSql[] = "SELECT * FROM x ORDER BY 1";
static const char kYSql[] = "SELECT * FROM y ORDER BY 1";
static const char kVSql[] = "SELECT * FROM v ORDER BY 1";
EXPECT_EQ("1|turtle\n2|truck\n3|trailer",
ExecuteWithResults(&db(), kXSql, "|", "\n"));
EXPECT_EQ("bob|truck\ndean|trailer\njim|telephone",
ExecuteWithResults(&db(), kYSql, "|", "\n"));
EXPECT_EQ("trailer\ntruck", ExecuteWithResults(&db(), kVSql, "|", "\n"));
// Database handle is valid before recovery, poisoned after.
static const char kTrivialSql[] = "SELECT COUNT(*) FROM sqlite_master";
EXPECT_TRUE(db().IsSQLValid(kTrivialSql));
sql::Recovery::RecoverDatabase(&db(), db_path());
EXPECT_FALSE(db().IsSQLValid(kTrivialSql));
// Since the database was not corrupt, the entire schema and all
// data should be recovered.
ASSERT_TRUE(Reopen());
ASSERT_EQ(orig_schema, GetSchema(&db()));
EXPECT_EQ("1|turtle\n2|truck\n3|trailer",
ExecuteWithResults(&db(), kXSql, "|", "\n"));
EXPECT_EQ("bob|truck\ndean|trailer\njim|telephone",
ExecuteWithResults(&db(), kYSql, "|", "\n"));
EXPECT_EQ("trailer\ntruck", ExecuteWithResults(&db(), kVSql, "|", "\n"));
// Test that the trigger works.
ASSERT_TRUE(db().Execute("DELETE FROM x WHERE v = 'truck'"));
EXPECT_EQ("1|turtle\n3|trailer",
ExecuteWithResults(&db(), kXSql, "|", "\n"));
EXPECT_EQ("dean|trailer\njim|telephone",
ExecuteWithResults(&db(), kYSql, "|", "\n"));
EXPECT_EQ("trailer", ExecuteWithResults(&db(), kVSql, "|", "\n"));
}
// When RecoverDatabase() encounters SQLITE_NOTADB, the database is deleted.
TEST_F(SQLRecoveryTest, RecoverDatabaseDelete) {
// Create a valid database, then write junk over the header. This should lead
// to SQLITE_NOTADB, which will cause ATTACH to fail.
ASSERT_TRUE(db().Execute("CREATE TABLE x (t TEXT)"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('This is a test')"));
db().Close();
WriteJunkToDatabase(SQLTestBase::TYPE_OVERWRITE);
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_NOTADB);
// Reopen() here because it will see SQLITE_NOTADB.
ASSERT_TRUE(Reopen());
// This should "recover" the database by making it valid, but empty.
sql::Recovery::RecoverDatabase(&db(), db_path());
ASSERT_TRUE(expecter.SawExpectedErrors());
}
// Recovery poisoned the handle, must re-open.
db().Close();
ASSERT_TRUE(Reopen());
EXPECT_EQ("", GetSchema(&db()));
}
// Allow callers to validate the database between recovery and commit.
TEST_F(SQLRecoveryTest, BeginRecoverDatabase) {
// Create a table with a broken index.
ASSERT_TRUE(db().Execute("CREATE TABLE t (id INTEGER PRIMARY KEY, c TEXT)"));
ASSERT_TRUE(db().Execute("CREATE UNIQUE INDEX t_id ON t (id)"));
ASSERT_TRUE(db().Execute("INSERT INTO t VALUES (1, 'hello world')"));
ASSERT_TRUE(db().Execute("INSERT INTO t VALUES (2, 'testing')"));
ASSERT_TRUE(db().Execute("INSERT INTO t VALUES (3, 'nope')"));
// Inject corruption into the index.
db().Close();
static const char kDeleteSql[] = "DELETE FROM t WHERE id = 3";
ASSERT_TRUE(sql::test::CorruptTableOrIndex(db_path(), "t_id", kDeleteSql));
ASSERT_TRUE(Reopen());
// id as read from index.
static const char kSelectIndexIdSql[] = "SELECT id FROM t INDEXED BY t_id";
EXPECT_EQ("1,2,3", ExecuteWithResults(&db(), kSelectIndexIdSql, "|", ","));
// id as read from table.
static const char kSelectTableIdSql[] = "SELECT id FROM t NOT INDEXED";
EXPECT_EQ("1,2", ExecuteWithResults(&db(), kSelectTableIdSql, "|", ","));
// Run recovery code, then rollback. Database remains the same.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::BeginRecoverDatabase(&db(), db_path());
ASSERT_TRUE(recovery);
sql::Recovery::Rollback(std::move(recovery));
}
db().Close();
ASSERT_TRUE(Reopen());
EXPECT_EQ("1,2,3", ExecuteWithResults(&db(), kSelectIndexIdSql, "|", ","));
EXPECT_EQ("1,2", ExecuteWithResults(&db(), kSelectTableIdSql, "|", ","));
// Run recovery code, then commit. The failing row is dropped.
{
std::unique_ptr<sql::Recovery> recovery =
sql::Recovery::BeginRecoverDatabase(&db(), db_path());
ASSERT_TRUE(recovery);
ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery)));
}
db().Close();
ASSERT_TRUE(Reopen());
EXPECT_EQ("1,2", ExecuteWithResults(&db(), kSelectIndexIdSql, "|", ","));
EXPECT_EQ("1,2", ExecuteWithResults(&db(), kSelectTableIdSql, "|", ","));
}
// Test histograms recorded when the invalid database cannot be attached.
TEST_F(SQLRecoveryTest, AttachFailure) {
// Create a valid database, then write junk over the header. This should lead
// to SQLITE_NOTADB, which will cause ATTACH to fail.
ASSERT_TRUE(db().Execute("CREATE TABLE x (t TEXT)"));
ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('This is a test')"));
db().Close();
WriteJunkToDatabase(SQLTestBase::TYPE_OVERWRITE);
static const char kEventHistogramName[] = "Sqlite.RecoveryEvents";
const int kEventEnum = 5; // RECOVERY_FAILED_ATTACH
static const char kErrorHistogramName[] = "Sqlite.RecoveryAttachError";
base::HistogramTester tester;
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_NOTADB);
// Reopen() here because it will see SQLITE_NOTADB.
ASSERT_TRUE(Reopen());
// Begin() should fail.
std::unique_ptr<sql::Recovery>
recovery = sql::Recovery::Begin(&db(), db_path());
ASSERT_FALSE(recovery.get());
ASSERT_TRUE(expecter.SawExpectedErrors());
}
// Verify that the failure was in the right place with the expected code.
tester.ExpectBucketCount(kEventHistogramName, kEventEnum, 1);
tester.ExpectBucketCount(kErrorHistogramName, SQLITE_NOTADB, 1);
}
// Helper for SQLRecoveryTest.PageSize. Creates a fresh db based on db_prefix,
// with the given initial page size, and verifies it against the expected size.
// Then changes to the final page size and recovers, verifying that the
// recovered database ends up with the expected final page size.
void TestPageSize(const base::FilePath& db_prefix,
int initial_page_size,
const std::string& expected_initial_page_size,
int final_page_size,
const std::string& expected_final_page_size) {
static const char kCreateSql[] = "CREATE TABLE x (t TEXT)";
static const char kInsertSql1[] = "INSERT INTO x VALUES ('This is a test')";
static const char kInsertSql2[] = "INSERT INTO x VALUES ('That was a test')";
static const char kSelectSql[] = "SELECT * FROM x ORDER BY t";
const base::FilePath db_path = db_prefix.InsertBeforeExtensionASCII(
base::NumberToString(initial_page_size));
sql::Database::Delete(db_path);
sql::Database db;
db.set_page_size(initial_page_size);
ASSERT_TRUE(db.Open(db_path));
ASSERT_TRUE(db.Execute(kCreateSql));
ASSERT_TRUE(db.Execute(kInsertSql1));
ASSERT_TRUE(db.Execute(kInsertSql2));
ASSERT_EQ(expected_initial_page_size,
ExecuteWithResult(&db, "PRAGMA page_size"));
// Recovery will use the page size set in the connection object, which may not
// match the file's page size.
db.set_page_size(final_page_size);
sql::Recovery::RecoverDatabase(&db, db_path);
// Recovery poisoned the handle, must re-open.
db.Close();
// Make sure the page size is read from the file.
db.set_page_size(sql::Database::kDefaultPageSize);
ASSERT_TRUE(db.Open(db_path));
ASSERT_EQ(expected_final_page_size,
ExecuteWithResult(&db, "PRAGMA page_size"));
EXPECT_EQ("That was a test\nThis is a test",
ExecuteWithResults(&db, kSelectSql, "|", "\n"));
}
// Verify that sql::Recovery maintains the page size, and the virtual table
// works with page sizes other than SQLite's default. Also verify the case
// where the default page size has changed.
TEST_F(SQLRecoveryTest, PageSize) {
const std::string default_page_size =
ExecuteWithResult(&db(), "PRAGMA page_size");
// Check the default page size first.
EXPECT_NO_FATAL_FAILURE(TestPageSize(
db_path(), sql::Database::kDefaultPageSize, default_page_size,
sql::Database::kDefaultPageSize, default_page_size));
// Sync uses 32k pages.
EXPECT_NO_FATAL_FAILURE(
TestPageSize(db_path(), 32768, "32768", 32768, "32768"));
// Many clients use 4k pages. This is the SQLite default after 3.12.0.
EXPECT_NO_FATAL_FAILURE(TestPageSize(db_path(), 4096, "4096", 4096, "4096"));
// 1k is the default page size before 3.12.0.
EXPECT_NO_FATAL_FAILURE(TestPageSize(db_path(), 1024, "1024", 1024, "1024"));
// Databases with no page size specified should recover with the new default
// page size. 2k has never been the default page size.
ASSERT_NE("2048", default_page_size);
EXPECT_NO_FATAL_FAILURE(TestPageSize(db_path(), 2048, "2048",
sql::Database::kDefaultPageSize,
default_page_size));
}
} // namespace