blob: 76c393032c1feb23e855bf201cdeadc347ee8dab [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/seccomp-bpf-helpers/syscall_parameters_restrictions.h"
#include <errno.h>
#include <fcntl.h>
#include <linux/elf.h>
#include <sched.h>
#include <sys/prctl.h>
#include <sys/ptrace.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/user.h>
#include <time.h>
#include <unistd.h>
#include "base/bind.h"
#include "base/posix/eintr_wrapper.h"
#include "base/single_thread_task_runner.h"
#include "base/synchronization/waitable_event.h"
#include "base/system/sys_info.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "sandbox/linux/bpf_dsl/bpf_dsl.h"
#include "sandbox/linux/bpf_dsl/policy.h"
#include "sandbox/linux/seccomp-bpf-helpers/sigsys_handlers.h"
#include "sandbox/linux/seccomp-bpf/bpf_tests.h"
#include "sandbox/linux/seccomp-bpf/sandbox_bpf.h"
#include "sandbox/linux/seccomp-bpf/syscall.h"
#include "sandbox/linux/services/syscall_wrappers.h"
#include "sandbox/linux/system_headers/linux_ptrace.h"
#include "sandbox/linux/system_headers/linux_syscalls.h"
#include "sandbox/linux/system_headers/linux_time.h"
#include "sandbox/linux/tests/unit_tests.h"
namespace sandbox {
namespace {
// NOTE: most of the parameter restrictions are tested in
// baseline_policy_unittest.cc as a more end-to-end test.
using sandbox::bpf_dsl::Allow;
using sandbox::bpf_dsl::ResultExpr;
class RestrictClockIdPolicy : public bpf_dsl::Policy {
public:
RestrictClockIdPolicy() {}
~RestrictClockIdPolicy() override {}
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_clock_gettime:
#if defined(__NR_clock_gettime64)
case __NR_clock_gettime64:
#endif
case __NR_clock_getres:
case __NR_clock_nanosleep:
#if defined(__NR_clock_nanosleep_time64)
case __NR_clock_nanosleep_time64:
#endif
return RestrictClockID();
default:
return Allow();
}
}
};
void CheckClock(clockid_t clockid) {
struct timespec ts;
ts.tv_sec = -1;
ts.tv_nsec = -1;
BPF_ASSERT_EQ(0, clock_getres(clockid, &ts));
BPF_ASSERT_EQ(0, ts.tv_sec);
BPF_ASSERT_LE(0, ts.tv_nsec);
ts.tv_sec = -1;
ts.tv_nsec = -1;
BPF_ASSERT_EQ(0, clock_gettime(clockid, &ts));
BPF_ASSERT_LE(0, ts.tv_sec);
BPF_ASSERT_LE(0, ts.tv_nsec);
}
BPF_TEST_C(ParameterRestrictions,
clock_gettime_allowed,
RestrictClockIdPolicy) {
CheckClock(CLOCK_MONOTONIC);
CheckClock(CLOCK_MONOTONIC_COARSE);
CheckClock(CLOCK_MONOTONIC_RAW);
CheckClock(CLOCK_PROCESS_CPUTIME_ID);
CheckClock(CLOCK_BOOTTIME);
CheckClock(CLOCK_REALTIME);
CheckClock(CLOCK_REALTIME_COARSE);
CheckClock(CLOCK_THREAD_CPUTIME_ID);
#if defined(OS_ANDROID)
clockid_t clock_id;
pthread_getcpuclockid(pthread_self(), &clock_id);
CheckClock(clock_id);
#endif
}
void CheckClockNanosleep(clockid_t clockid) {
struct timespec ts;
struct timespec out_ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
clock_nanosleep(clockid, 0, &ts, &out_ts);
}
BPF_TEST_C(ParameterRestrictions,
clock_nanosleep_allowed,
RestrictClockIdPolicy) {
CheckClockNanosleep(CLOCK_MONOTONIC);
CheckClockNanosleep(CLOCK_MONOTONIC_COARSE);
CheckClockNanosleep(CLOCK_MONOTONIC_RAW);
CheckClockNanosleep(CLOCK_BOOTTIME);
CheckClockNanosleep(CLOCK_REALTIME);
CheckClockNanosleep(CLOCK_REALTIME_COARSE);
}
BPF_DEATH_TEST_C(ParameterRestrictions,
clock_gettime_crash_clock_fd,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictClockIdPolicy) {
struct timespec ts;
syscall(SYS_clock_gettime, (~0) | CLOCKFD, &ts);
}
BPF_DEATH_TEST_C(ParameterRestrictions,
clock_nanosleep_crash_clock_fd,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictClockIdPolicy) {
struct timespec ts;
struct timespec out_ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
syscall(SYS_clock_nanosleep, (~0) | CLOCKFD, 0, &ts, &out_ts);
}
#if !defined(OS_ANDROID)
BPF_DEATH_TEST_C(ParameterRestrictions,
clock_gettime_crash_cpu_clock,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictClockIdPolicy) {
// We can't use clock_getcpuclockid() because it's not implemented in newlib,
// and it might not work inside the sandbox anyway.
const pid_t kInitPID = 1;
const clockid_t kInitCPUClockID =
MAKE_PROCESS_CPUCLOCK(kInitPID, CPUCLOCK_SCHED);
struct timespec ts;
clock_gettime(kInitCPUClockID, &ts);
}
#endif // !defined(OS_ANDROID)
class RestrictSchedPolicy : public bpf_dsl::Policy {
public:
RestrictSchedPolicy() {}
~RestrictSchedPolicy() override {}
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_sched_getparam:
return RestrictSchedTarget(getpid(), sysno);
default:
return Allow();
}
}
};
void CheckSchedGetParam(pid_t pid, struct sched_param* param) {
BPF_ASSERT_EQ(0, sched_getparam(pid, param));
}
void SchedGetParamThread(base::WaitableEvent* thread_run) {
const pid_t pid = getpid();
const pid_t tid = sys_gettid();
BPF_ASSERT_NE(pid, tid);
struct sched_param current_pid_param;
CheckSchedGetParam(pid, &current_pid_param);
struct sched_param zero_param;
CheckSchedGetParam(0, &zero_param);
struct sched_param tid_param;
CheckSchedGetParam(tid, &tid_param);
BPF_ASSERT_EQ(zero_param.sched_priority, tid_param.sched_priority);
// Verify that the SIGSYS handler sets errno properly.
errno = 0;
BPF_ASSERT_EQ(-1, sched_getparam(tid, NULL));
BPF_ASSERT_EQ(EINVAL, errno);
thread_run->Signal();
}
BPF_TEST_C(ParameterRestrictions,
sched_getparam_allowed,
RestrictSchedPolicy) {
base::WaitableEvent thread_run(
base::WaitableEvent::ResetPolicy::MANUAL,
base::WaitableEvent::InitialState::NOT_SIGNALED);
// Run the actual test in a new thread so that the current pid and tid are
// different.
base::Thread getparam_thread("sched_getparam_thread");
BPF_ASSERT(getparam_thread.Start());
getparam_thread.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&SchedGetParamThread, &thread_run));
BPF_ASSERT(thread_run.TimedWait(base::TimeDelta::FromMilliseconds(5000)));
getparam_thread.Stop();
}
BPF_DEATH_TEST_C(ParameterRestrictions,
sched_getparam_crash_non_zero,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictSchedPolicy) {
const pid_t kInitPID = 1;
struct sched_param param;
sched_getparam(kInitPID, &param);
}
class RestrictPrlimit64Policy : public bpf_dsl::Policy {
public:
RestrictPrlimit64Policy() {}
~RestrictPrlimit64Policy() override {}
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_prlimit64:
return RestrictPrlimit64(getpid());
default:
return Allow();
}
}
};
BPF_TEST_C(ParameterRestrictions, prlimit64_allowed, RestrictPrlimit64Policy) {
BPF_ASSERT_EQ(0, sys_prlimit64(0, RLIMIT_AS, NULL, NULL));
BPF_ASSERT_EQ(0, sys_prlimit64(getpid(), RLIMIT_AS, NULL, NULL));
}
BPF_DEATH_TEST_C(ParameterRestrictions,
prlimit64_crash_not_self,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictPrlimit64Policy) {
const pid_t kInitPID = 1;
BPF_ASSERT_NE(kInitPID, getpid());
sys_prlimit64(kInitPID, RLIMIT_AS, NULL, NULL);
}
class RestrictGetrusagePolicy : public bpf_dsl::Policy {
public:
RestrictGetrusagePolicy() {}
~RestrictGetrusagePolicy() override {}
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_getrusage:
return RestrictGetrusage();
default:
return Allow();
}
}
};
BPF_TEST_C(ParameterRestrictions, getrusage_allowed, RestrictGetrusagePolicy) {
struct rusage usage;
BPF_ASSERT_EQ(0, getrusage(RUSAGE_SELF, &usage));
}
BPF_DEATH_TEST_C(ParameterRestrictions,
getrusage_crash_not_self,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictGetrusagePolicy) {
struct rusage usage;
getrusage(RUSAGE_CHILDREN, &usage);
}
// The following ptrace() tests do not actually set up a tracer/tracee
// relationship, so allowed operations return ESRCH errors. Blocked operations
// are tested with death tests.
class RestrictPtracePolicy : public bpf_dsl::Policy {
public:
RestrictPtracePolicy() = default;
~RestrictPtracePolicy() override = default;
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_ptrace:
return RestrictPtrace();
default:
return Allow();
}
}
};
BPF_TEST_C(ParameterRestrictions,
ptrace_getregs_allowed,
RestrictPtracePolicy) {
#if defined(__arm__)
user_regs regs;
#else
user_regs_struct regs;
#endif
iovec iov;
iov.iov_base = &regs;
iov.iov_len = sizeof(regs);
errno = 0;
int rv = ptrace(PTRACE_GETREGSET, getpid(),
reinterpret_cast<void*>(NT_PRSTATUS), &iov);
BPF_ASSERT_EQ(-1, rv);
BPF_ASSERT_EQ(ESRCH, errno);
}
BPF_DEATH_TEST_C(
ParameterRestrictions,
ptrace_syscall_blocked,
DEATH_SEGV_MESSAGE(sandbox::GetPtraceErrorMessageContentForTests()),
RestrictPtracePolicy) {
ptrace(PTRACE_SYSCALL, getpid(), nullptr, nullptr);
}
BPF_DEATH_TEST_C(
ParameterRestrictions,
ptrace_setregs_blocked,
DEATH_SEGV_MESSAGE(sandbox::GetPtraceErrorMessageContentForTests()),
RestrictPtracePolicy) {
#if defined(__arm__)
user_regs regs{};
#else
user_regs_struct regs{};
#endif
iovec iov;
iov.iov_base = &regs;
iov.iov_len = sizeof(regs);
errno = 0;
ptrace(PTRACE_SETREGSET, getpid(), reinterpret_cast<void*>(NT_PRSTATUS),
&iov);
}
#if defined(__aarch64__)
BPF_DEATH_TEST_C(
ParameterRestrictions,
ptrace_getregs_nt_arm_paca_keys_blocked,
DEATH_SEGV_MESSAGE(sandbox::GetPtraceErrorMessageContentForTests()),
RestrictPtracePolicy) {
user_regs_struct regs{};
iovec iov;
iov.iov_base = &regs;
iov.iov_len = sizeof(regs);
errno = 0;
ptrace(PTRACE_GETREGSET, getpid(), reinterpret_cast<void*>(NT_ARM_PACA_KEYS),
&iov);
}
BPF_DEATH_TEST_C(
ParameterRestrictions,
ptrace_getregs_nt_arm_pacg_keys_blocked,
DEATH_SEGV_MESSAGE(sandbox::GetPtraceErrorMessageContentForTests()),
RestrictPtracePolicy) {
user_regs_struct regs{};
iovec iov;
iov.iov_base = &regs;
iov.iov_len = sizeof(regs);
errno = 0;
ptrace(PTRACE_GETREGSET, getpid(), reinterpret_cast<void*>(NT_ARM_PACG_KEYS),
&iov);
}
#endif
} // namespace
} // namespace sandbox