blob: 564c9535129ee237ba027190ac7235dd5fdd77c4 [file] [log] [blame]
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: inlined_vector.h
// -----------------------------------------------------------------------------
//
// This header file contains the declaration and definition of an "inlined
// vector" which behaves in an equivalent fashion to a `std::vector`, except
// that storage for small sequences of the vector are provided inline without
// requiring any heap allocation.
//
// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
// its template parameters. Instances where `size() <= N` hold contained
// elements in inline space. Typically `N` is very small so that sequences that
// are expected to be short do not require allocations.
//
// An `absl::InlinedVector` does not usually require a specific allocator. If
// the inlined vector grows beyond its initial constraints, it will need to
// allocate (as any normal `std::vector` would). This is usually performed with
// the default allocator (defined as `std::allocator<T>`). Optionally, a custom
// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
#define ABSL_CONTAINER_INLINED_VECTOR_H_
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include "absl/algorithm/algorithm.h"
#include "absl/base/internal/throw_delegate.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/container/internal/inlined_vector.h"
#include "absl/memory/memory.h"
namespace absl {
// -----------------------------------------------------------------------------
// InlinedVector
// -----------------------------------------------------------------------------
//
// An `absl::InlinedVector` is designed to be a drop-in replacement for
// `std::vector` for use cases where the vector's size is sufficiently small
// that it can be inlined. If the inlined vector does grow beyond its estimated
// capacity, it will trigger an initial allocation on the heap, and will behave
// as a `std:vector`. The API of the `absl::InlinedVector` within this file is
// designed to cover the same API footprint as covered by `std::vector`.
template <typename T, size_t N, typename A = std::allocator<T>>
class InlinedVector {
static_assert(
N > 0, "InlinedVector cannot be instantiated with `0` inlined elements.");
using Storage = inlined_vector_internal::Storage<T, N, A>;
using AllocatorTraits = typename Storage::AllocatorTraits;
template <typename Iterator>
using EnableIfAtLeastForwardIterator = absl::enable_if_t<
inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
template <typename Iterator>
using DisableIfAtLeastForwardIterator = absl::enable_if_t<
!inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
using rvalue_reference = typename Storage::rvalue_reference;
public:
using allocator_type = typename Storage::allocator_type;
using value_type = typename Storage::value_type;
using pointer = typename Storage::pointer;
using const_pointer = typename Storage::const_pointer;
using reference = typename Storage::reference;
using const_reference = typename Storage::const_reference;
using size_type = typename Storage::size_type;
using difference_type = typename Storage::difference_type;
using iterator = typename Storage::iterator;
using const_iterator = typename Storage::const_iterator;
using reverse_iterator = typename Storage::reverse_iterator;
using const_reverse_iterator = typename Storage::const_reverse_iterator;
// ---------------------------------------------------------------------------
// InlinedVector Constructors and Destructor
// ---------------------------------------------------------------------------
// Creates an empty inlined vector with a default initialized allocator.
InlinedVector() noexcept(noexcept(allocator_type()))
: storage_(allocator_type()) {}
// Creates an empty inlined vector with a specified allocator.
explicit InlinedVector(const allocator_type& alloc) noexcept
: storage_(alloc) {}
// Creates an inlined vector with `n` copies of `value_type()`.
explicit InlinedVector(size_type n,
const allocator_type& alloc = allocator_type())
: storage_(alloc) {
InitAssign(n);
}
// Creates an inlined vector with `n` copies of `v`.
InlinedVector(size_type n, const_reference v,
const allocator_type& alloc = allocator_type())
: storage_(alloc) {
InitAssign(n, v);
}
// Creates an inlined vector of copies of the values in `list`.
InlinedVector(std::initializer_list<value_type> list,
const allocator_type& alloc = allocator_type())
: storage_(alloc) {
AppendForwardRange(list.begin(), list.end());
}
// Creates an inlined vector with elements constructed from the provided
// forward iterator range [`first`, `last`).
//
// NOTE: The `enable_if` prevents ambiguous interpretation between a call to
// this constructor with two integral arguments and a call to the above
// `InlinedVector(size_type, const_reference)` constructor.
template <typename ForwardIterator,
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
InlinedVector(ForwardIterator first, ForwardIterator last,
const allocator_type& alloc = allocator_type())
: storage_(alloc) {
AppendForwardRange(first, last);
}
// Creates an inlined vector with elements constructed from the provided input
// iterator range [`first`, `last`).
template <typename InputIterator,
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
InlinedVector(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type())
: storage_(alloc) {
std::copy(first, last, std::back_inserter(*this));
}
// Creates a copy of an `other` inlined vector using `other`'s allocator.
InlinedVector(const InlinedVector& other)
: InlinedVector(other, *other.storage_.GetAllocPtr()) {}
// Creates a copy of an `other` inlined vector using a specified allocator.
InlinedVector(const InlinedVector& other, const allocator_type& alloc)
: storage_(alloc) {
reserve(other.size());
if (storage_.GetIsAllocated()) {
UninitializedCopy(other.begin(), other.end(),
storage_.GetAllocatedData());
storage_.SetAllocatedSize(other.size());
} else {
UninitializedCopy(other.begin(), other.end(), storage_.GetInlinedData());
storage_.SetInlinedSize(other.size());
}
}
// Creates an inlined vector by moving in the contents of an `other` inlined
// vector without performing any allocations. If `other` contains allocated
// memory, the newly-created instance will take ownership of that memory
// (leaving `other` empty). However, if `other` does not contain allocated
// memory (i.e. is inlined), the new inlined vector will perform element-wise
// move construction of `other`'s elements.
//
// NOTE: since no allocation is performed for the inlined vector in either
// case, the `noexcept(...)` specification depends on whether moving the
// underlying objects can throw. We assume:
// a) Move constructors should only throw due to allocation failure.
// b) If `value_type`'s move constructor allocates, it uses the same
// allocation function as the `InlinedVector`'s allocator. Thus, the move
// constructor is non-throwing if the allocator is non-throwing or
// `value_type`'s move constructor is specified as `noexcept`.
InlinedVector(InlinedVector&& other) noexcept(
absl::allocator_is_nothrow<allocator_type>::value ||
std::is_nothrow_move_constructible<value_type>::value)
: storage_(*other.storage_.GetAllocPtr()) {
if (other.storage_.GetIsAllocated()) {
// We can just steal the underlying buffer from the source.
// That leaves the source empty, so we clear its size.
storage_.SetAllocatedData(other.storage_.GetAllocatedData());
storage_.SetAllocatedCapacity(other.storage_.GetAllocatedCapacity());
storage_.SetAllocatedSize(other.size());
other.storage_.SetInlinedSize(0);
} else {
UninitializedCopy(
std::make_move_iterator(other.storage_.GetInlinedData()),
std::make_move_iterator(other.storage_.GetInlinedData() +
other.size()),
storage_.GetInlinedData());
storage_.SetInlinedSize(other.size());
}
}
// Creates an inlined vector by moving in the contents of an `other` inlined
// vector, performing allocations with the specified `alloc` allocator. If
// `other`'s allocator is not equal to `alloc` and `other` contains allocated
// memory, this move constructor will create a new allocation.
//
// NOTE: since allocation is performed in this case, this constructor can
// only be `noexcept` if the specified allocator is also `noexcept`. If this
// is the case, or if `other` contains allocated memory, this constructor
// performs element-wise move construction of its contents.
//
// Only in the case where `other`'s allocator is equal to `alloc` and `other`
// contains allocated memory will the newly created inlined vector take
// ownership of `other`'s allocated memory.
InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
absl::allocator_is_nothrow<allocator_type>::value)
: storage_(alloc) {
if (other.storage_.GetIsAllocated()) {
if (*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) {
// We can just steal the allocation from the source.
storage_.SetAllocatedSize(other.size());
storage_.SetAllocatedData(other.storage_.GetAllocatedData());
storage_.SetAllocatedCapacity(other.storage_.GetAllocatedCapacity());
other.storage_.SetInlinedSize(0);
} else {
// We need to use our own allocator
reserve(other.size());
UninitializedCopy(std::make_move_iterator(other.begin()),
std::make_move_iterator(other.end()),
storage_.GetAllocatedData());
storage_.SetAllocatedSize(other.size());
}
} else {
UninitializedCopy(
std::make_move_iterator(other.storage_.GetInlinedData()),
std::make_move_iterator(other.storage_.GetInlinedData() +
other.size()),
storage_.GetInlinedData());
storage_.SetInlinedSize(other.size());
}
}
~InlinedVector() { clear(); }
// ---------------------------------------------------------------------------
// InlinedVector Member Accessors
// ---------------------------------------------------------------------------
// `InlinedVector::empty()`
//
// Checks if the inlined vector has no elements.
bool empty() const noexcept { return !size(); }
// `InlinedVector::size()`
//
// Returns the number of elements in the inlined vector.
size_type size() const noexcept { return storage_.GetSize(); }
// `InlinedVector::max_size()`
//
// Returns the maximum number of elements the vector can hold.
size_type max_size() const noexcept {
// One bit of the size storage is used to indicate whether the inlined
// vector is allocated. As a result, the maximum size of the container that
// we can express is half of the max for `size_type`.
return (std::numeric_limits<size_type>::max)() / 2;
}
// `InlinedVector::capacity()`
//
// Returns the number of elements that can be stored in the inlined vector
// without requiring a reallocation of underlying memory.
//
// NOTE: For most inlined vectors, `capacity()` should equal the template
// parameter `N`. For inlined vectors which exceed this capacity, they
// will no longer be inlined and `capacity()` will equal its capacity on the
// allocated heap.
size_type capacity() const noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
: static_cast<size_type>(N);
}
// `InlinedVector::data()`
//
// Returns a `pointer` to elements of the inlined vector. This pointer can be
// used to access and modify the contained elements.
// Only results within the range [`0`, `size()`) are defined.
pointer data() noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
// Overload of `InlinedVector::data()` to return a `const_pointer` to elements
// of the inlined vector. This pointer can be used to access (but not modify)
// the contained elements.
const_pointer data() const noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
// `InlinedVector::operator[]()`
//
// Returns a `reference` to the `i`th element of the inlined vector using the
// array operator.
reference operator[](size_type i) {
assert(i < size());
return data()[i];
}
// Overload of `InlinedVector::operator[]()` to return a `const_reference` to
// the `i`th element of the inlined vector.
const_reference operator[](size_type i) const {
assert(i < size());
return data()[i];
}
// `InlinedVector::at()`
//
// Returns a `reference` to the `i`th element of the inlined vector.
reference at(size_type i) {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
"`InlinedVector::at(size_type)` failed bounds check");
}
return data()[i];
}
// Overload of `InlinedVector::at()` to return a `const_reference` to the
// `i`th element of the inlined vector.
const_reference at(size_type i) const {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
"`InlinedVector::at(size_type) const` failed bounds check");
}
return data()[i];
}
// `InlinedVector::front()`
//
// Returns a `reference` to the first element of the inlined vector.
reference front() {
assert(!empty());
return at(0);
}
// Overload of `InlinedVector::front()` returns a `const_reference` to the
// first element of the inlined vector.
const_reference front() const {
assert(!empty());
return at(0);
}
// `InlinedVector::back()`
//
// Returns a `reference` to the last element of the inlined vector.
reference back() {
assert(!empty());
return at(size() - 1);
}
// Overload of `InlinedVector::back()` to return a `const_reference` to the
// last element of the inlined vector.
const_reference back() const {
assert(!empty());
return at(size() - 1);
}
// `InlinedVector::begin()`
//
// Returns an `iterator` to the beginning of the inlined vector.
iterator begin() noexcept { return data(); }
// Overload of `InlinedVector::begin()` to return a `const_iterator` to
// the beginning of the inlined vector.
const_iterator begin() const noexcept { return data(); }
// `InlinedVector::end()`
//
// Returns an `iterator` to the end of the inlined vector.
iterator end() noexcept { return data() + size(); }
// Overload of `InlinedVector::end()` to return a `const_iterator` to the
// end of the inlined vector.
const_iterator end() const noexcept { return data() + size(); }
// `InlinedVector::cbegin()`
//
// Returns a `const_iterator` to the beginning of the inlined vector.
const_iterator cbegin() const noexcept { return begin(); }
// `InlinedVector::cend()`
//
// Returns a `const_iterator` to the end of the inlined vector.
const_iterator cend() const noexcept { return end(); }
// `InlinedVector::rbegin()`
//
// Returns a `reverse_iterator` from the end of the inlined vector.
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
// Overload of `InlinedVector::rbegin()` to return a
// `const_reverse_iterator` from the end of the inlined vector.
const_reverse_iterator rbegin() const noexcept {
return const_reverse_iterator(end());
}
// `InlinedVector::rend()`
//
// Returns a `reverse_iterator` from the beginning of the inlined vector.
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
// Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`
// from the beginning of the inlined vector.
const_reverse_iterator rend() const noexcept {
return const_reverse_iterator(begin());
}
// `InlinedVector::crbegin()`
//
// Returns a `const_reverse_iterator` from the end of the inlined vector.
const_reverse_iterator crbegin() const noexcept { return rbegin(); }
// `InlinedVector::crend()`
//
// Returns a `const_reverse_iterator` from the beginning of the inlined
// vector.
const_reverse_iterator crend() const noexcept { return rend(); }
// `InlinedVector::get_allocator()`
//
// Returns a copy of the allocator of the inlined vector.
allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
// ---------------------------------------------------------------------------
// InlinedVector Member Mutators
// ---------------------------------------------------------------------------
// `InlinedVector::operator=()`
//
// Replaces the contents of the inlined vector with copies of the elements in
// the provided `std::initializer_list`.
InlinedVector& operator=(std::initializer_list<value_type> list) {
assign(list.begin(), list.end());
return *this;
}
// Overload of `InlinedVector::operator=()` to replace the contents of the
// inlined vector with the contents of `other`.
InlinedVector& operator=(const InlinedVector& other) {
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
const_pointer other_data = other.data();
assign(other_data, other_data + other.size());
}
return *this;
}
// Overload of `InlinedVector::operator=()` to replace the contents of the
// inlined vector with the contents of `other`.
//
// NOTE: As a result of calling this overload, `other` may be empty or it's
// contents may be left in a moved-from state.
InlinedVector& operator=(InlinedVector&& other) {
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this;
if (other.storage_.GetIsAllocated()) {
clear();
storage_.SetAllocatedSize(other.size());
storage_.SetAllocatedData(other.storage_.GetAllocatedData());
storage_.SetAllocatedCapacity(other.storage_.GetAllocatedCapacity());
other.storage_.SetInlinedSize(0);
} else {
if (storage_.GetIsAllocated()) clear();
// Both are inlined now.
if (size() < other.size()) {
auto mid = std::make_move_iterator(other.begin() + size());
std::copy(std::make_move_iterator(other.begin()), mid, begin());
UninitializedCopy(mid, std::make_move_iterator(other.end()), end());
} else {
auto new_end = std::copy(std::make_move_iterator(other.begin()),
std::make_move_iterator(other.end()), begin());
Destroy(new_end, end());
}
storage_.SetInlinedSize(other.size());
}
return *this;
}
// `InlinedVector::assign()`
//
// Replaces the contents of the inlined vector with `n` copies of `v`.
void assign(size_type n, const_reference v) {
if (n <= size()) { // Possibly shrink
std::fill_n(begin(), n, v);
erase(begin() + n, end());
return;
}
// Grow
reserve(n);
std::fill_n(begin(), size(), v);
if (storage_.GetIsAllocated()) {
UninitializedFill(storage_.GetAllocatedData() + size(),
storage_.GetAllocatedData() + n, v);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(storage_.GetInlinedData() + size(),
storage_.GetInlinedData() + n, v);
storage_.SetInlinedSize(n);
}
}
// Overload of `InlinedVector::assign()` to replace the contents of the
// inlined vector with copies of the values in the provided
// `std::initializer_list`.
void assign(std::initializer_list<value_type> list) {
assign(list.begin(), list.end());
}
// Overload of `InlinedVector::assign()` to replace the contents of the
// inlined vector with the forward iterator range [`first`, `last`).
template <typename ForwardIterator,
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
void assign(ForwardIterator first, ForwardIterator last) {
auto length = std::distance(first, last);
// Prefer reassignment to copy construction for elements.
if (static_cast<size_type>(length) <= size()) {
erase(std::copy(first, last, begin()), end());
return;
}
reserve(length);
iterator out = begin();
for (; out != end(); ++first, ++out) *out = *first;
if (storage_.GetIsAllocated()) {
UninitializedCopy(first, last, out);
storage_.SetAllocatedSize(length);
} else {
UninitializedCopy(first, last, out);
storage_.SetInlinedSize(length);
}
}
// Overload of `InlinedVector::assign()` to replace the contents of the
// inlined vector with the input iterator range [`first`, `last`).
template <typename InputIterator,
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
void assign(InputIterator first, InputIterator last) {
size_type assign_index = 0;
for (; (assign_index < size()) && (first != last);
static_cast<void>(++assign_index), static_cast<void>(++first)) {
*(data() + assign_index) = *first;
}
erase(data() + assign_index, data() + size());
std::copy(first, last, std::back_inserter(*this));
}
// `InlinedVector::resize()`
//
// Resizes the inlined vector to contain `n` elements. If `n` is smaller than
// the inlined vector's current size, extra elements are destroyed. If `n` is
// larger than the initial size, new elements are value-initialized.
void resize(size_type n) {
size_type s = size();
if (n < s) {
erase(begin() + n, end());
return;
}
reserve(n);
assert(capacity() >= n);
// Fill new space with elements constructed in-place.
if (storage_.GetIsAllocated()) {
UninitializedFill(storage_.GetAllocatedData() + s,
storage_.GetAllocatedData() + n);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(storage_.GetInlinedData() + s,
storage_.GetInlinedData() + n);
storage_.SetInlinedSize(n);
}
}
// Overload of `InlinedVector::resize()` to resize the inlined vector to
// contain `n` elements where, if `n` is larger than `size()`, the new values
// will be copy-constructed from `v`.
void resize(size_type n, const_reference v) {
size_type s = size();
if (n < s) {
erase(begin() + n, end());
return;
}
reserve(n);
assert(capacity() >= n);
// Fill new space with copies of `v`.
if (storage_.GetIsAllocated()) {
UninitializedFill(storage_.GetAllocatedData() + s,
storage_.GetAllocatedData() + n, v);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(storage_.GetInlinedData() + s,
storage_.GetInlinedData() + n, v);
storage_.SetInlinedSize(n);
}
}
// `InlinedVector::insert()`
//
// Copies `v` into `pos`, returning an `iterator` pointing to the newly
// inserted element.
iterator insert(const_iterator pos, const_reference v) {
return emplace(pos, v);
}
// Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning
// an iterator pointing to the newly inserted element.
iterator insert(const_iterator pos, rvalue_reference v) {
return emplace(pos, std::move(v));
}
// Overload of `InlinedVector::insert()` for inserting `n` contiguous copies
// of `v` starting at `pos`. Returns an `iterator` pointing to the first of
// the newly inserted elements.
iterator insert(const_iterator pos, size_type n, const_reference v) {
return InsertWithCount(pos, n, v);
}
// Overload of `InlinedVector::insert()` for copying the contents of the
// `std::initializer_list` into the vector starting at `pos`. Returns an
// `iterator` pointing to the first of the newly inserted elements.
iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
return insert(pos, list.begin(), list.end());
}
// Overload of `InlinedVector::insert()` for inserting elements constructed
// from the forward iterator range [`first`, `last`). Returns an `iterator`
// pointing to the first of the newly inserted elements.
//
// NOTE: The `enable_if` is intended to disambiguate the two three-argument
// overloads of `insert()`.
template <typename ForwardIterator,
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
iterator insert(const_iterator pos, ForwardIterator first,
ForwardIterator last) {
return InsertWithForwardRange(pos, first, last);
}
// Overload of `InlinedVector::insert()` for inserting elements constructed
// from the input iterator range [`first`, `last`). Returns an `iterator`
// pointing to the first of the newly inserted elements.
template <typename InputIterator,
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
size_type initial_insert_index = std::distance(cbegin(), pos);
for (size_type insert_index = initial_insert_index; first != last;
static_cast<void>(++insert_index), static_cast<void>(++first)) {
insert(data() + insert_index, *first);
}
return iterator(data() + initial_insert_index);
}
// `InlinedVector::emplace()`
//
// Constructs and inserts an object in the inlined vector at the given `pos`,
// returning an `iterator` pointing to the newly emplaced element.
template <typename... Args>
iterator emplace(const_iterator pos, Args&&... args) {
assert(pos >= begin());
assert(pos <= end());
if (ABSL_PREDICT_FALSE(pos == end())) {
emplace_back(std::forward<Args>(args)...);
return end() - 1;
}
T new_t = T(std::forward<Args>(args)...);
auto range = ShiftRight(pos, 1);
if (range.first == range.second) {
// constructing into uninitialized memory
Construct(range.first, std::move(new_t));
} else {
// assigning into moved-from object
*range.first = T(std::move(new_t));
}
return range.first;
}
// `InlinedVector::emplace_back()`
//
// Constructs and appends a new element to the end of the inlined vector,
// returning a `reference` to the emplaced element.
template <typename... Args>
reference emplace_back(Args&&... args) {
size_type s = size();
if (ABSL_PREDICT_FALSE(s == capacity())) {
return GrowAndEmplaceBack(std::forward<Args>(args)...);
}
pointer space;
if (storage_.GetIsAllocated()) {
storage_.SetAllocatedSize(s + 1);
space = storage_.GetAllocatedData();
} else {
storage_.SetInlinedSize(s + 1);
space = storage_.GetInlinedData();
}
return Construct(space + s, std::forward<Args>(args)...);
}
// `InlinedVector::push_back()`
//
// Appends a copy of `v` to the end of the inlined vector.
void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
// Overload of `InlinedVector::push_back()` for moving `v` into a newly
// appended element.
void push_back(rvalue_reference v) {
static_cast<void>(emplace_back(std::move(v)));
}
// `InlinedVector::pop_back()`
//
// Destroys the element at the end of the inlined vector and shrinks the size
// by `1` (unless the inlined vector is empty, in which case this is a no-op).
void pop_back() noexcept {
assert(!empty());
size_type s = size();
if (storage_.GetIsAllocated()) {
Destroy(storage_.GetAllocatedData() + s - 1,
storage_.GetAllocatedData() + s);
storage_.SetAllocatedSize(s - 1);
} else {
Destroy(storage_.GetInlinedData() + s - 1, storage_.GetInlinedData() + s);
storage_.SetInlinedSize(s - 1);
}
}
// `InlinedVector::erase()`
//
// Erases the element at `pos` of the inlined vector, returning an `iterator`
// pointing to the first element following the erased element.
//
// NOTE: May return the end iterator, which is not dereferencable.
iterator erase(const_iterator pos) {
assert(pos >= begin());
assert(pos < end());
iterator position = const_cast<iterator>(pos);
std::move(position + 1, end(), position);
pop_back();
return position;
}
// Overload of `InlinedVector::erase()` for erasing all elements in the
// range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing
// to the first element following the range erased or the end iterator if `to`
// was the end iterator.
iterator erase(const_iterator from, const_iterator to) {
assert(begin() <= from);
assert(from <= to);
assert(to <= end());
iterator range_start = const_cast<iterator>(from);
iterator range_end = const_cast<iterator>(to);
size_type s = size();
ptrdiff_t erase_gap = std::distance(range_start, range_end);
if (erase_gap > 0) {
pointer space;
if (storage_.GetIsAllocated()) {
space = storage_.GetAllocatedData();
storage_.SetAllocatedSize(s - erase_gap);
} else {
space = storage_.GetInlinedData();
storage_.SetInlinedSize(s - erase_gap);
}
std::move(range_end, space + s, range_start);
Destroy(space + s - erase_gap, space + s);
}
return range_start;
}
// `InlinedVector::clear()`
//
// Destroys all elements in the inlined vector, sets the size of `0` and
// deallocates the heap allocation if the inlined vector was allocated.
void clear() noexcept {
const bool is_allocated = storage_.GetIsAllocated();
pointer the_data =
is_allocated ? storage_.GetAllocatedData() : storage_.GetInlinedData();
inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), the_data,
storage_.GetSize());
storage_.SetInlinedSize(0);
if (is_allocated) {
AllocatorTraits::deallocate(*storage_.GetAllocPtr(), the_data,
storage_.GetAllocatedCapacity());
}
}
// `InlinedVector::reserve()`
//
// Enlarges the underlying representation of the inlined vector so it can hold
// at least `n` elements. This method does not change `size()` or the actual
// contents of the vector.
//
// NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no
// effects. Otherwise, `reserve()` will reallocate, performing an n-time
// element-wise move of everything contained.
void reserve(size_type n) {
if (n > capacity()) {
// Make room for new elements
EnlargeBy(n - size());
}
}
// `InlinedVector::shrink_to_fit()`
//
// Reduces memory usage by freeing unused memory. After this call, calls to
// `capacity()` will be equal to `max(N, size())`.
//
// If `size() <= N` and the elements are currently stored on the heap, they
// will be moved to the inlined storage and the heap memory will be
// deallocated.
//
// If `size() > N` and `size() < capacity()` the elements will be moved to a
// smaller heap allocation.
void shrink_to_fit() {
const auto s = size();
if (ABSL_PREDICT_FALSE(!storage_.GetIsAllocated() || s == capacity()))
return;
if (s <= N) {
// Move the elements to the inlined storage.
// We have to do this using a temporary, because `inlined_storage` and
// `allocation_storage` are in a union field.
auto temp = std::move(*this);
assign(std::make_move_iterator(temp.begin()),
std::make_move_iterator(temp.end()));
return;
}
// Reallocate storage and move elements.
// We can't simply use the same approach as above, because `assign()` would
// call into `reserve()` internally and reserve larger capacity than we need
pointer new_data = AllocatorTraits::allocate(*storage_.GetAllocPtr(), s);
UninitializedCopy(std::make_move_iterator(storage_.GetAllocatedData()),
std::make_move_iterator(storage_.GetAllocatedData() + s),
new_data);
ResetAllocation(new_data, s, s);
}
// `InlinedVector::swap()`
//
// Swaps the contents of this inlined vector with the contents of `other`.
void swap(InlinedVector& other) {
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return;
SwapImpl(other);
}
private:
template <typename H, typename TheT, size_t TheN, typename TheA>
friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
void ResetAllocation(pointer new_data, size_type new_capacity,
size_type new_size) {
if (storage_.GetIsAllocated()) {
Destroy(storage_.GetAllocatedData(),
storage_.GetAllocatedData() + size());
assert(begin() == storage_.GetAllocatedData());
AllocatorTraits::deallocate(*storage_.GetAllocPtr(),
storage_.GetAllocatedData(),
storage_.GetAllocatedCapacity());
} else {
Destroy(storage_.GetInlinedData(), storage_.GetInlinedData() + size());
}
storage_.SetAllocatedData(new_data);
storage_.SetAllocatedCapacity(new_capacity);
storage_.SetAllocatedSize(new_size);
}
template <typename... Args>
reference Construct(pointer p, Args&&... args) {
std::allocator_traits<allocator_type>::construct(
*storage_.GetAllocPtr(), p, std::forward<Args>(args)...);
return *p;
}
template <typename Iterator>
void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) {
for (; src != src_last; ++dst, ++src) Construct(dst, *src);
}
template <typename... Args>
void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) {
for (; dst != dst_last; ++dst) Construct(dst, args...);
}
// Destroy [`from`, `to`) in place.
void Destroy(pointer from, pointer to) {
for (pointer cur = from; cur != to; ++cur) {
std::allocator_traits<allocator_type>::destroy(*storage_.GetAllocPtr(),
cur);
}
#if !defined(NDEBUG)
// Overwrite unused memory with `0xab` so we can catch uninitialized usage.
// Cast to `void*` to tell the compiler that we don't care that we might be
// scribbling on a vtable pointer.
if (from != to) {
auto len = sizeof(value_type) * std::distance(from, to);
std::memset(reinterpret_cast<void*>(from), 0xab, len);
}
#endif // !defined(NDEBUG)
}
// Enlarge the underlying representation so we can store `size_ + delta` elems
// in allocated space. The size is not changed, and any newly added memory is
// not initialized.
void EnlargeBy(size_type delta) {
const size_type s = size();
assert(s <= capacity());
size_type target = (std::max)(static_cast<size_type>(N), s + delta);
// Compute new capacity by repeatedly doubling current capacity
// TODO(psrc): Check and avoid overflow?
size_type new_capacity = capacity();
while (new_capacity < target) {
new_capacity <<= 1;
}
pointer new_data =
AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity);
UninitializedCopy(std::make_move_iterator(data()),
std::make_move_iterator(data() + s), new_data);
ResetAllocation(new_data, new_capacity, s);
}
// Shift all elements from `position` to `end()` by `n` places to the right.
// If the vector needs to be enlarged, memory will be allocated.
// Returns `iterator`s pointing to the start of the previously-initialized
// portion and the start of the uninitialized portion of the created gap.
// The number of initialized spots is `pair.second - pair.first`. The number
// of raw spots is `n - (pair.second - pair.first)`.
//
// Updates the size of the InlinedVector internally.
std::pair<iterator, iterator> ShiftRight(const_iterator position,
size_type n) {
iterator start_used = const_cast<iterator>(position);
iterator start_raw = const_cast<iterator>(position);
size_type s = size();
size_type required_size = s + n;
if (required_size > capacity()) {
// Compute new capacity by repeatedly doubling current capacity
size_type new_capacity = capacity();
while (new_capacity < required_size) {
new_capacity <<= 1;
}
// Move everyone into the new allocation, leaving a gap of `n` for the
// requested shift.
pointer new_data =
AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity);
size_type index = position - begin();
UninitializedCopy(std::make_move_iterator(data()),
std::make_move_iterator(data() + index), new_data);
UninitializedCopy(std::make_move_iterator(data() + index),
std::make_move_iterator(data() + s),
new_data + index + n);
ResetAllocation(new_data, new_capacity, s);
// New allocation means our iterator is invalid, so we'll recalculate.
// Since the entire gap is in new space, there's no used space to reuse.
start_raw = begin() + index;
start_used = start_raw;
} else {
// If we had enough space, it's a two-part move. Elements going into
// previously-unoccupied space need an `UninitializedCopy()`. Elements
// going into a previously-occupied space are just a `std::move()`.
iterator pos = const_cast<iterator>(position);
iterator raw_space = end();
size_type slots_in_used_space = raw_space - pos;
size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space);
size_type new_elements_in_raw_space = n - new_elements_in_used_space;
size_type old_elements_in_used_space =
slots_in_used_space - new_elements_in_used_space;
UninitializedCopy(
std::make_move_iterator(pos + old_elements_in_used_space),
std::make_move_iterator(raw_space),
raw_space + new_elements_in_raw_space);
std::move_backward(pos, pos + old_elements_in_used_space, raw_space);
// If the gap is entirely in raw space, the used space starts where the
// raw space starts, leaving no elements in used space. If the gap is
// entirely in used space, the raw space starts at the end of the gap,
// leaving all elements accounted for within the used space.
start_used = pos;
start_raw = pos + new_elements_in_used_space;
}
storage_.AddSize(n);
return std::make_pair(start_used, start_raw);
}
template <typename... Args>
reference GrowAndEmplaceBack(Args&&... args) {
assert(size() == capacity());
const size_type s = size();
size_type new_capacity = 2 * capacity();
pointer new_data =
AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity);
reference new_element =
Construct(new_data + s, std::forward<Args>(args)...);
UninitializedCopy(std::make_move_iterator(data()),
std::make_move_iterator(data() + s), new_data);
ResetAllocation(new_data, new_capacity, s + 1);
return new_element;
}
void InitAssign(size_type n) {
if (n > static_cast<size_type>(N)) {
pointer new_data = AllocatorTraits::allocate(*storage_.GetAllocPtr(), n);
storage_.SetAllocatedData(new_data);
storage_.SetAllocatedCapacity(n);
UninitializedFill(storage_.GetAllocatedData(),
storage_.GetAllocatedData() + n);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(storage_.GetInlinedData(),
storage_.GetInlinedData() + n);
storage_.SetInlinedSize(n);
}
}
void InitAssign(size_type n, const_reference v) {
if (n > static_cast<size_type>(N)) {
pointer new_data = AllocatorTraits::allocate(*storage_.GetAllocPtr(), n);
storage_.SetAllocatedData(new_data);
storage_.SetAllocatedCapacity(n);
UninitializedFill(storage_.GetAllocatedData(),
storage_.GetAllocatedData() + n, v);
storage_.SetAllocatedSize(n);
} else {
UninitializedFill(storage_.GetInlinedData(),
storage_.GetInlinedData() + n, v);
storage_.SetInlinedSize(n);
}
}
template <typename ForwardIt>
void AppendForwardRange(ForwardIt first, ForwardIt last) {
static_assert(absl::inlined_vector_internal::IsAtLeastForwardIterator<
ForwardIt>::value,
"");
auto length = std::distance(first, last);
reserve(size() + length);
if (storage_.GetIsAllocated()) {
UninitializedCopy(first, last, storage_.GetAllocatedData() + size());
storage_.SetAllocatedSize(size() + length);
} else {
UninitializedCopy(first, last, storage_.GetInlinedData() + size());
storage_.SetInlinedSize(size() + length);
}
}
iterator InsertWithCount(const_iterator position, size_type n,
const_reference v) {
assert(position >= begin() && position <= end());
if (ABSL_PREDICT_FALSE(n == 0)) return const_cast<iterator>(position);
value_type copy = v;
std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
std::fill(it_pair.first, it_pair.second, copy);
UninitializedFill(it_pair.second, it_pair.first + n, copy);
return it_pair.first;
}
template <typename ForwardIt>
iterator InsertWithForwardRange(const_iterator position, ForwardIt first,
ForwardIt last) {
static_assert(absl::inlined_vector_internal::IsAtLeastForwardIterator<
ForwardIt>::value,
"");
assert(position >= begin() && position <= end());
if (ABSL_PREDICT_FALSE(first == last))
return const_cast<iterator>(position);
auto n = std::distance(first, last);
std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
size_type used_spots = it_pair.second - it_pair.first;
auto open_spot = std::next(first, used_spots);
std::copy(first, open_spot, it_pair.first);
UninitializedCopy(open_spot, last, it_pair.second);
return it_pair.first;
}
void SwapImpl(InlinedVector& other) {
using std::swap;
bool is_allocated = storage_.GetIsAllocated();
bool other_is_allocated = other.storage_.GetIsAllocated();
if (is_allocated && other_is_allocated) {
// Both out of line, so just swap the tag, allocation, and allocator.
storage_.SwapSizeAndIsAllocated(std::addressof(other.storage_));
storage_.SwapAllocatedSizeAndCapacity(std::addressof(other.storage_));
swap(*storage_.GetAllocPtr(), *other.storage_.GetAllocPtr());
return;
}
if (!is_allocated && !other_is_allocated) {
// Both inlined: swap up to smaller size, then move remaining elements.
InlinedVector* a = this;
InlinedVector* b = std::addressof(other);
if (size() < other.size()) {
swap(a, b);
}
const size_type a_size = a->size();
const size_type b_size = b->size();
assert(a_size >= b_size);
// `a` is larger. Swap the elements up to the smaller array size.
std::swap_ranges(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + b_size,
b->storage_.GetInlinedData());
// Move the remaining elements:
// [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`
b->UninitializedCopy(a->storage_.GetInlinedData() + b_size,
a->storage_.GetInlinedData() + a_size,
b->storage_.GetInlinedData() + b_size);
a->Destroy(a->storage_.GetInlinedData() + b_size,
a->storage_.GetInlinedData() + a_size);
storage_.SwapSizeAndIsAllocated(std::addressof(other.storage_));
swap(*storage_.GetAllocPtr(), *other.storage_.GetAllocPtr());
assert(b->size() == a_size);
assert(a->size() == b_size);
return;
}
// One is out of line, one is inline.
// We first move the elements from the inlined vector into the
// inlined space in the other vector. We then put the other vector's
// pointer/capacity into the originally inlined vector and swap
// the tags.
InlinedVector* a = this;
InlinedVector* b = std::addressof(other);
if (a->storage_.GetIsAllocated()) {
swap(a, b);
}
assert(!a->storage_.GetIsAllocated());
assert(b->storage_.GetIsAllocated());
const size_type a_size = a->size();
const size_type b_size = b->size();
// In an optimized build, `b_size` would be unused.
static_cast<void>(b_size);
// Made Local copies of `size()`, these can now be swapped
a->storage_.SwapSizeAndIsAllocated(std::addressof(b->storage_));
// Copy out before `b`'s union gets clobbered by `inline_space`
pointer b_data = b->storage_.GetAllocatedData();
size_type b_capacity = b->storage_.GetAllocatedCapacity();
b->UninitializedCopy(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + a_size,
b->storage_.GetInlinedData());
a->Destroy(a->storage_.GetInlinedData(),
a->storage_.GetInlinedData() + a_size);
a->storage_.SetAllocatedData(b_data);
a->storage_.SetAllocatedCapacity(b_capacity);
if (*a->storage_.GetAllocPtr() != *b->storage_.GetAllocPtr()) {
swap(*a->storage_.GetAllocPtr(), *b->storage_.GetAllocPtr());
}
assert(b->size() == a_size);
assert(a->size() == b_size);
}
Storage storage_;
};
// -----------------------------------------------------------------------------
// InlinedVector Non-Member Functions
// -----------------------------------------------------------------------------
// `swap()`
//
// Swaps the contents of two inlined vectors. This convenience function
// simply calls `InlinedVector::swap()`.
template <typename T, size_t N, typename A>
void swap(absl::InlinedVector<T, N, A>& a,
absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
a.swap(b);
}
// `operator==()`
//
// Tests the equivalency of the contents of two inlined vectors.
template <typename T, size_t N, typename A>
bool operator==(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
auto a_data = a.data();
auto a_size = a.size();
auto b_data = b.data();
auto b_size = b.size();
return absl::equal(a_data, a_data + a_size, b_data, b_data + b_size);
}
// `operator!=()`
//
// Tests the inequality of the contents of two inlined vectors.
template <typename T, size_t N, typename A>
bool operator!=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(a == b);
}
// `operator<()`
//
// Tests whether the contents of one inlined vector are less than the contents
// of another through a lexicographical comparison operation.
template <typename T, size_t N, typename A>
bool operator<(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
auto a_data = a.data();
auto a_size = a.size();
auto b_data = b.data();
auto b_size = b.size();
return std::lexicographical_compare(a_data, a_data + a_size, b_data,
b_data + b_size);
}
// `operator>()`
//
// Tests whether the contents of one inlined vector are greater than the
// contents of another through a lexicographical comparison operation.
template <typename T, size_t N, typename A>
bool operator>(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return b < a;
}
// `operator<=()`
//
// Tests whether the contents of one inlined vector are less than or equal to
// the contents of another through a lexicographical comparison operation.
template <typename T, size_t N, typename A>
bool operator<=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(b < a);
}
// `operator>=()`
//
// Tests whether the contents of one inlined vector are greater than or equal to
// the contents of another through a lexicographical comparison operation.
template <typename T, size_t N, typename A>
bool operator>=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(a < b);
}
// `AbslHashValue()`
//
// Provides `absl::Hash` support for `absl::InlinedVector`. You do not normally
// call this function directly.
template <typename H, typename TheT, size_t TheN, typename TheA>
H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a) {
auto a_data = a.data();
auto a_size = a.size();
return H::combine(H::combine_contiguous(std::move(h), a_data, a_size),
a_size);
}
} // namespace absl
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_