blob: f10de0658917595c4835206dd198295abb238759 [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/keygen_handler.h"
#include <openssl/bytestring.h>
#include <openssl/evp.h>
#include <stdint.h>
#include <string>
#include <utility>
#include "base/base64.h"
#include "base/bind.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/strings/string_piece.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/thread_restrictions.h"
#include "base/threading/worker_pool.h"
#include "build/build_config.h"
#include "crypto/scoped_openssl_types.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(USE_NSS_CERTS)
#include <private/pprthred.h> // PR_DetachThread
#include "crypto/nss_crypto_module_delegate.h"
#include "crypto/scoped_test_nss_db.h"
#endif
namespace net {
namespace {
#if defined(USE_NSS_CERTS)
class StubCryptoModuleDelegate : public crypto::NSSCryptoModuleDelegate {
public:
explicit StubCryptoModuleDelegate(crypto::ScopedPK11Slot slot)
: slot_(std::move(slot)) {}
std::string RequestPassword(const std::string& slot_name,
bool retry,
bool* cancelled) override {
return std::string();
}
crypto::ScopedPK11Slot RequestSlot() override {
return crypto::ScopedPK11Slot(PK11_ReferenceSlot(slot_.get()));
}
private:
crypto::ScopedPK11Slot slot_;
};
#endif
const char kChallenge[] = "some challenge";
class KeygenHandlerTest : public ::testing::Test {
public:
KeygenHandlerTest() {}
~KeygenHandlerTest() override {}
std::unique_ptr<KeygenHandler> CreateKeygenHandler() {
std::unique_ptr<KeygenHandler> handler(
new KeygenHandler(768, kChallenge, GURL("http://www.example.com")));
#if defined(USE_NSS_CERTS)
handler->set_crypto_module_delegate(
std::unique_ptr<crypto::NSSCryptoModuleDelegate>(
new StubCryptoModuleDelegate(crypto::ScopedPK11Slot(
PK11_ReferenceSlot(test_nss_db_.slot())))));
#endif
return handler;
}
private:
#if defined(USE_NSS_CERTS)
crypto::ScopedTestNSSDB test_nss_db_;
#endif
};
base::StringPiece StringPieceFromCBS(const CBS& cbs) {
return base::StringPiece(reinterpret_cast<const char*>(CBS_data(&cbs)),
CBS_len(&cbs));
}
// Assert that |result| is a valid output for KeygenHandler given challenge
// string of |challenge|.
void AssertValidSignedPublicKeyAndChallenge(const std::string& result,
const std::string& challenge) {
// Verify it's valid base64:
std::string spkac;
ASSERT_TRUE(base::Base64Decode(result, &spkac));
// Parse the following structure:
//
// PublicKeyAndChallenge ::= SEQUENCE {
// spki SubjectPublicKeyInfo,
// challenge IA5STRING
// }
// SignedPublicKeyAndChallenge ::= SEQUENCE {
// publicKeyAndChallenge PublicKeyAndChallenge,
// signatureAlgorithm AlgorithmIdentifier,
// signature BIT STRING
// }
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(spkac.data()), spkac.size());
// The input should consist of a SEQUENCE.
CBS child;
ASSERT_TRUE(CBS_get_asn1(&cbs, &child, CBS_ASN1_SEQUENCE));
ASSERT_EQ(0u, CBS_len(&cbs));
// Extract the raw PublicKeyAndChallenge.
CBS public_key_and_challenge_raw;
ASSERT_TRUE(CBS_get_asn1_element(&child, &public_key_and_challenge_raw,
CBS_ASN1_SEQUENCE));
// Parse out the PublicKeyAndChallenge.
CBS copy = public_key_and_challenge_raw;
CBS public_key_and_challenge;
ASSERT_TRUE(
CBS_get_asn1(&copy, &public_key_and_challenge, CBS_ASN1_SEQUENCE));
ASSERT_EQ(0u, CBS_len(&copy));
crypto::ScopedEVP_PKEY key(EVP_parse_public_key(&public_key_and_challenge));
ASSERT_TRUE(key);
CBS challenge_spkac;
ASSERT_TRUE(CBS_get_asn1(&public_key_and_challenge, &challenge_spkac,
CBS_ASN1_IA5STRING));
ASSERT_EQ(0u, CBS_len(&public_key_and_challenge));
// The challenge must match.
ASSERT_EQ(challenge, StringPieceFromCBS(challenge_spkac));
// The next element must be the AlgorithmIdentifier for MD5 with RSA.
static const uint8_t kMd5WithRsaEncryption[] = {
0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x04, 0x05, 0x00,
};
CBS algorithm;
ASSERT_TRUE(CBS_get_bytes(&child, &algorithm, sizeof(kMd5WithRsaEncryption)));
ASSERT_EQ(
base::StringPiece(reinterpret_cast<const char*>(kMd5WithRsaEncryption),
sizeof(kMd5WithRsaEncryption)),
StringPieceFromCBS(algorithm));
// Finally, parse the signature.
CBS signature;
ASSERT_TRUE(CBS_get_asn1(&child, &signature, CBS_ASN1_BITSTRING));
ASSERT_EQ(0u, CBS_len(&child));
uint8_t pad;
ASSERT_TRUE(CBS_get_u8(&signature, &pad));
ASSERT_EQ(0u, pad);
// Check the signature.
crypto::ScopedEVP_MD_CTX ctx(EVP_MD_CTX_create());
ASSERT_TRUE(
EVP_DigestVerifyInit(ctx.get(), nullptr, EVP_md5(), nullptr, key.get()));
ASSERT_TRUE(EVP_DigestVerifyUpdate(ctx.get(),
CBS_data(&public_key_and_challenge_raw),
CBS_len(&public_key_and_challenge_raw)));
ASSERT_TRUE(EVP_DigestVerifyFinal(ctx.get(), CBS_data(&signature),
CBS_len(&signature)));
}
TEST_F(KeygenHandlerTest, SmokeTest) {
std::unique_ptr<KeygenHandler> handler(CreateKeygenHandler());
handler->set_stores_key(false); // Don't leave the key-pair behind
std::string result = handler->GenKeyAndSignChallenge();
VLOG(1) << "KeygenHandler produced: " << result;
AssertValidSignedPublicKeyAndChallenge(result, kChallenge);
}
void ConcurrencyTestCallback(const std::string& challenge,
base::WaitableEvent* event,
std::unique_ptr<KeygenHandler> handler,
std::string* result) {
// We allow Singleton use on the worker thread here since we use a
// WaitableEvent to synchronize, so it's safe.
base::ThreadRestrictions::ScopedAllowSingleton scoped_allow_singleton;
handler->set_stores_key(false); // Don't leave the key-pair behind.
*result = handler->GenKeyAndSignChallenge();
event->Signal();
#if defined(USE_NSS_CERTS)
// Detach the thread from NSPR.
// Calling NSS functions attaches the thread to NSPR, which stores
// the NSPR thread ID in thread-specific data.
// The threads in our thread pool terminate after we have called
// PR_Cleanup. Unless we detach them from NSPR, net_unittests gets
// segfaults on shutdown when the threads' thread-specific data
// destructors run.
PR_DetachThread();
#endif
}
// We asynchronously generate the keys so as not to hang up the IO thread. This
// test tries to catch concurrency problems in the keygen implementation.
TEST_F(KeygenHandlerTest, ConcurrencyTest) {
const int NUM_HANDLERS = 5;
base::WaitableEvent* events[NUM_HANDLERS] = { NULL };
std::string results[NUM_HANDLERS];
for (int i = 0; i < NUM_HANDLERS; i++) {
std::unique_ptr<KeygenHandler> handler(CreateKeygenHandler());
events[i] = new base::WaitableEvent(
base::WaitableEvent::ResetPolicy::AUTOMATIC,
base::WaitableEvent::InitialState::NOT_SIGNALED);
base::WorkerPool::PostTask(FROM_HERE,
base::Bind(ConcurrencyTestCallback,
"some challenge",
events[i],
base::Passed(&handler),
&results[i]),
true);
}
for (int i = 0; i < NUM_HANDLERS; i++) {
// Make sure the job completed
events[i]->Wait();
delete events[i];
events[i] = NULL;
VLOG(1) << "KeygenHandler " << i << " produced: " << results[i];
AssertValidSignedPublicKeyAndChallenge(results[i], "some challenge");
}
}
} // namespace
} // namespace net