blob: 8cb46d4d47977c3826b1d783787ea2680b953d47 [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashMap_h
#define WTF_HashMap_h
#include "wtf/HashTable.h"
#include "wtf/PartitionAllocator.h"
namespace WTF {
template <typename KeyTraits, typename MappedTraits> struct HashMapValueTraits;
template <typename T> struct ReferenceTypeMaker {
typedef T& ReferenceType;
};
template <typename T> struct ReferenceTypeMaker<T&> {
typedef T& ReferenceType;
};
struct KeyValuePairKeyExtractor {
template <typename T>
static const typename T::KeyType& extract(const T& p) { return p.key; }
};
// Note: empty or deleted key values are not allowed, using them may lead to
// undefined behavior. For pointer keys this means that null pointers are not
// allowed unless you supply custom key traits.
template <
typename KeyArg,
typename MappedArg,
typename HashArg = typename DefaultHash<KeyArg>::Hash,
typename KeyTraitsArg = HashTraits<KeyArg>,
typename MappedTraitsArg = HashTraits<MappedArg>,
typename Allocator = PartitionAllocator>
class HashMap {
WTF_USE_ALLOCATOR(HashMap, Allocator);
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
typedef HashMapValueTraits<KeyTraits, MappedTraits> ValueTraits;
public:
typedef typename KeyTraits::TraitType KeyType;
typedef const typename KeyTraits::PeekInType& KeyPeekInType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename ValueTraits::TraitType ValueType;
private:
typedef typename MappedTraits::PassInType MappedPassInType;
typedef typename MappedTraits::PassOutType MappedPassOutType;
typedef typename MappedTraits::PeekOutType MappedPeekType;
typedef typename ReferenceTypeMaker<MappedPassInType>::ReferenceType MappedPassInReferenceType;
typedef HashArg HashFunctions;
typedef HashTable<KeyType, ValueType, KeyValuePairKeyExtractor,
HashFunctions, ValueTraits, KeyTraits, Allocator> HashTableType;
class HashMapKeysProxy;
class HashMapValuesProxy;
public:
typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, ValueType> const_iterator;
typedef typename HashTableType::AddResult AddResult;
public:
void swap(HashMap& ref)
{
m_impl.swap(ref.m_impl);
}
void swap(typename Allocator::template OtherType<HashMap>::Type other)
{
HashMap& ref = Allocator::getOther(other);
m_impl.swap(ref.m_impl);
}
unsigned size() const;
unsigned capacity() const;
void reserveCapacityForSize(unsigned size)
{
m_impl.reserveCapacityForSize(size);
}
bool isEmpty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
HashMapKeysProxy& keys() { return static_cast<HashMapKeysProxy&>(*this); }
const HashMapKeysProxy& keys() const { return static_cast<const HashMapKeysProxy&>(*this); }
HashMapValuesProxy& values() { return static_cast<HashMapValuesProxy&>(*this); }
const HashMapValuesProxy& values() const { return static_cast<const HashMapValuesProxy&>(*this); }
iterator find(KeyPeekInType);
const_iterator find(KeyPeekInType) const;
bool contains(KeyPeekInType) const;
MappedPeekType get(KeyPeekInType) const;
// replaces value but not key if key is already present return value is a
// pair of the iterator to the key location, and a boolean that's true if a
// new value was actually added
AddResult set(KeyPeekInType, MappedPassInType);
// does nothing if key is already present return value is a pair of the
// iterator to the key location, and a boolean that's true if a new value
// was actually added
AddResult add(KeyPeekInType, MappedPassInType);
void remove(KeyPeekInType);
void remove(iterator);
void clear();
template <typename Collection>
void removeAll(const Collection& toBeRemoved) { WTF::removeAll(*this, toBeRemoved); }
MappedPassOutType take(KeyPeekInType); // efficient combination of get with remove
// An alternate version of find() that finds the object by hashing and
// comparing with some other type, to avoid the cost of type
// conversion. HashTranslator must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
template <typename HashTranslator, typename T> iterator find(const T&);
template <typename HashTranslator, typename T> const_iterator find(const T&) const;
template <typename HashTranslator, typename T> bool contains(const T&) const;
// An alternate version of add() that finds the object by hashing and
// comparing with some other type, to avoid the cost of type conversion if
// the object is already in the table. HashTranslator must have the
// following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
// static translate(ValueType&, const T&, unsigned hashCode);
template <typename HashTranslator, typename T> AddResult add(const T&, MappedPassInType);
static bool isValidKey(KeyPeekInType);
template <typename VisitorDispatcher>
void trace(VisitorDispatcher visitor) { m_impl.trace(visitor); }
private:
AddResult inlineAdd(KeyPeekInType, MappedPassInReferenceType);
HashTableType m_impl;
};
template <typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg, typename Allocator>
class HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg, Allocator>::HashMapKeysProxy :
private HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg, Allocator> {
public:
typedef HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg, Allocator> HashMapType;
typedef typename HashMapType::iterator::Keys iterator;
typedef typename HashMapType::const_iterator::Keys const_iterator;
iterator begin()
{
return HashMapType::begin().keys();
}
iterator end()
{
return HashMapType::end().keys();
}
const_iterator begin() const
{
return HashMapType::begin().keys();
}
const_iterator end() const
{
return HashMapType::end().keys();
}
private:
friend class HashMap;
// These are intentionally not implemented.
HashMapKeysProxy();
HashMapKeysProxy(const HashMapKeysProxy&);
HashMapKeysProxy& operator=(const HashMapKeysProxy&);
~HashMapKeysProxy();
};
template <typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg, typename Allocator>
class HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg, Allocator>::HashMapValuesProxy :
private HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg, Allocator> {
public:
typedef HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg, Allocator> HashMapType;
typedef typename HashMapType::iterator::Values iterator;
typedef typename HashMapType::const_iterator::Values const_iterator;
iterator begin()
{
return HashMapType::begin().values();
}
iterator end()
{
return HashMapType::end().values();
}
const_iterator begin() const
{
return HashMapType::begin().values();
}
const_iterator end() const
{
return HashMapType::end().values();
}
private:
friend class HashMap;
// These are intentionally not implemented.
HashMapValuesProxy();
HashMapValuesProxy(const HashMapValuesProxy&);
HashMapValuesProxy& operator=(const HashMapValuesProxy&);
~HashMapValuesProxy();
};
template <typename KeyTraits, typename MappedTraits>
struct HashMapValueTraits : KeyValuePairHashTraits<KeyTraits, MappedTraits> {
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const typename KeyValuePairHashTraits<KeyTraits, MappedTraits>::TraitType& value)
{
return isHashTraitsEmptyValue<KeyTraits>(value.key);
}
};
template <typename ValueTraits, typename HashFunctions>
struct HashMapTranslator {
template <typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); }
template <typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a, b); }
template <typename T, typename U, typename V> static void translate(T& location, const U& key, const V& mapped)
{
location.key = key;
ValueTraits::ValueTraits::store(mapped, location.value);
}
};
template <typename ValueTraits, typename Translator>
struct HashMapTranslatorAdapter {
template <typename T> static unsigned hash(const T& key) { return Translator::hash(key); }
template <typename T, typename U> static bool equal(const T& a, const U& b) { return Translator::equal(a, b); }
template <typename T, typename U, typename V> static void translate(T& location, const U& key, const V& mapped, unsigned hashCode)
{
Translator::translate(location.key, key, hashCode);
ValueTraits::ValueTraits::store(mapped, location.value);
}
};
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline unsigned HashMap<T, U, V, W, X, Y>::size() const
{
return m_impl.size();
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline unsigned HashMap<T, U, V, W, X, Y>::capacity() const
{
return m_impl.capacity();
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline bool HashMap<T, U, V, W, X, Y>::isEmpty() const
{
return m_impl.isEmpty();
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator HashMap<T, U, V, W, X, Y>::begin()
{
return m_impl.begin();
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator HashMap<T, U, V, W, X, Y>::end()
{
return m_impl.end();
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator HashMap<T, U, V, W, X, Y>::begin() const
{
return m_impl.begin();
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator HashMap<T, U, V, W, X, Y>::end() const
{
return m_impl.end();
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator HashMap<T, U, V, W, X, Y>::find(KeyPeekInType key)
{
return m_impl.find(key);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator HashMap<T, U, V, W, X, Y>::find(KeyPeekInType key) const
{
return m_impl.find(key);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline bool HashMap<T, U, V, W, X, Y>::contains(KeyPeekInType key) const
{
return m_impl.contains(key);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::find(const TYPE& value)
{
return m_impl.template find<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(value);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::find(const TYPE& value) const
{
return m_impl.template find<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(value);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
template <typename HashTranslator, typename TYPE>
inline bool
HashMap<T, U, V, W, X, Y>::contains(const TYPE& value) const
{
return m_impl.template contains<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(value);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
typename HashMap<T, U, V, W, X, Y>::AddResult
HashMap<T, U, V, W, X, Y>::inlineAdd(KeyPeekInType key, MappedPassInReferenceType mapped)
{
return m_impl.template add<HashMapTranslator<ValueTraits, HashFunctions>>(key, mapped);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
typename HashMap<T, U, V, W, X, Y>::AddResult
HashMap<T, U, V, W, X, Y>::set(KeyPeekInType key, MappedPassInType mapped)
{
AddResult result = inlineAdd(key, mapped);
if (!result.isNewEntry) {
// The inlineAdd call above found an existing hash table entry; we need
// to set the mapped value.
MappedTraits::store(mapped, result.storedValue->value);
}
return result;
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
template <typename HashTranslator, typename TYPE>
typename HashMap<T, U, V, W, X, Y>::AddResult
HashMap<T, U, V, W, X, Y>::add(const TYPE& key, MappedPassInType value)
{
return m_impl.template addPassingHashCode<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(key, value);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
typename HashMap<T, U, V, W, X, Y>::AddResult
HashMap<T, U, V, W, X, Y>::add(KeyPeekInType key, MappedPassInType mapped)
{
return inlineAdd(key, mapped);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
typename HashMap<T, U, V, W, X, Y>::MappedPeekType
HashMap<T, U, V, W, X, Y>::get(KeyPeekInType key) const
{
ValueType* entry = const_cast<HashTableType&>(m_impl).lookup(key);
if (!entry)
return MappedTraits::peek(MappedTraits::emptyValue());
return MappedTraits::peek(entry->value);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline void HashMap<T, U, V, W, X, Y>::remove(iterator it)
{
m_impl.remove(it.m_impl);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline void HashMap<T, U, V, W, X, Y>::remove(KeyPeekInType key)
{
remove(find(key));
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline void HashMap<T, U, V, W, X, Y>::clear()
{
m_impl.clear();
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
typename HashMap<T, U, V, W, X, Y>::MappedPassOutType
HashMap<T, U, V, W, X, Y>::take(KeyPeekInType key)
{
iterator it = find(key);
if (it == end())
return MappedTraits::passOut(MappedTraits::emptyValue());
MappedPassOutType result = MappedTraits::passOut(it->value);
remove(it);
return result;
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline bool HashMap<T, U, V, W, X, Y>::isValidKey(KeyPeekInType key)
{
if (KeyTraits::isDeletedValue(key))
return false;
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (key == KeyTraits::emptyValue())
return false;
} else {
if (isHashTraitsEmptyValue<KeyTraits>(key))
return false;
}
return true;
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
bool operator==(const HashMap<T, U, V, W, X, Y>& a, const HashMap<T, U, V, W, X, Y>& b)
{
if (a.size() != b.size())
return false;
typedef typename HashMap<T, U, V, W, X, Y>::const_iterator const_iterator;
const_iterator aEnd = a.end();
const_iterator bEnd = b.end();
for (const_iterator it = a.begin(); it != aEnd; ++it) {
const_iterator bPos = b.find(it->key);
if (bPos == bEnd || it->value != bPos->value)
return false;
}
return true;
}
template <typename T, typename U, typename V, typename W, typename X, typename Y>
inline bool operator!=(const HashMap<T, U, V, W, X, Y>& a, const HashMap<T, U, V, W, X, Y>& b)
{
return !(a == b);
}
template <typename T, typename U, typename V, typename W, typename X, typename Y, typename Z>
inline void copyKeysToVector(const HashMap<T, U, V, W, X, Y>& collection, Z& vector)
{
typedef typename HashMap<T, U, V, W, X, Y>::const_iterator::Keys iterator;
vector.resize(collection.size());
iterator it = collection.begin().keys();
iterator end = collection.end().keys();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
template <typename T, typename U, typename V, typename W, typename X, typename Y, typename Z>
inline void copyValuesToVector(const HashMap<T, U, V, W, X, Y>& collection, Z& vector)
{
typedef typename HashMap<T, U, V, W, X, Y>::const_iterator::Values iterator;
vector.resize(collection.size());
iterator it = collection.begin().values();
iterator end = collection.end().values();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
#if !ENABLE(OILPAN)
template <typename T, typename U, typename V, typename W, typename X>
struct NeedsTracing<HashMap<T, U, V, W, X>> {
static const bool value = false;
};
#endif
} // namespace WTF
using WTF::HashMap;
#endif // WTF_HashMap_h