blob: f90faa08d35c62b4bfa58f75b667e105d0a8c74a [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/tiles/tile_manager.h"
#include <algorithm>
#include <limits>
#include <string>
#include "base/bind.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/numerics/safe_conversions.h"
#include "base/trace_event/trace_event_argument.h"
#include "cc/base/histograms.h"
#include "cc/debug/devtools_instrumentation.h"
#include "cc/debug/frame_viewer_instrumentation.h"
#include "cc/debug/traced_value.h"
#include "cc/layers/picture_layer_impl.h"
#include "cc/raster/raster_buffer.h"
#include "cc/raster/tile_task_runner.h"
#include "cc/tiles/tile.h"
#include "ui/gfx/geometry/rect_conversions.h"
namespace cc {
namespace {
// Flag to indicate whether we should try and detect that
// a tile is of solid color.
const bool kUseColorEstimator = true;
DEFINE_SCOPED_UMA_HISTOGRAM_AREA_TIMER(
ScopedRasterTaskTimer,
"Compositing.RasterTask.RasterUs",
"Compositing.RasterTask.RasterPixelsPerMs");
class RasterTaskImpl : public RasterTask {
public:
RasterTaskImpl(
const Resource* resource,
RasterSource* raster_source,
const gfx::Rect& content_rect,
const gfx::Rect& invalid_content_rect,
float contents_scale,
TileResolution tile_resolution,
int layer_id,
uint64_t source_prepare_tiles_id,
const void* tile,
uint64_t new_content_id,
uint64_t previous_content_id,
uint64_t resource_content_id,
int source_frame_number,
bool analyze_picture,
const base::Callback<void(const RasterSource::SolidColorAnalysis&, bool)>&
reply,
ImageDecodeTask::Vector* dependencies)
: RasterTask(resource, dependencies),
raster_source_(raster_source),
content_rect_(content_rect),
invalid_content_rect_(invalid_content_rect),
contents_scale_(contents_scale),
tile_resolution_(tile_resolution),
layer_id_(layer_id),
source_prepare_tiles_id_(source_prepare_tiles_id),
tile_(tile),
new_content_id_(new_content_id),
previous_content_id_(previous_content_id),
resource_content_id_(resource_content_id),
source_frame_number_(source_frame_number),
analyze_picture_(analyze_picture),
reply_(reply) {}
// Overridden from Task:
void RunOnWorkerThread() override {
TRACE_EVENT1("cc", "RasterizerTaskImpl::RunOnWorkerThread",
"source_prepare_tiles_id", source_prepare_tiles_id_);
DCHECK(raster_source_.get());
DCHECK(raster_buffer_);
if (analyze_picture_) {
Analyze(raster_source_.get());
if (analysis_.is_solid_color)
return;
}
Raster(raster_source_.get());
}
// Overridden from TileTask:
void ScheduleOnOriginThread(TileTaskClient* client) override {
DCHECK(!raster_buffer_);
raster_buffer_ = client->AcquireBufferForRaster(
resource(), resource_content_id_, previous_content_id_);
}
void CompleteOnOriginThread(TileTaskClient* client) override {
client->ReleaseBufferForRaster(raster_buffer_.Pass());
}
void RunReplyOnOriginThread() override {
DCHECK(!raster_buffer_);
reply_.Run(analysis_, !HasFinishedRunning());
}
protected:
~RasterTaskImpl() override { DCHECK(!raster_buffer_); }
private:
void Analyze(const RasterSource* raster_source) {
frame_viewer_instrumentation::ScopedAnalyzeTask analyze_task(
tile_, tile_resolution_, source_frame_number_, layer_id_);
DCHECK(raster_source);
raster_source->PerformSolidColorAnalysis(content_rect_, contents_scale_,
&analysis_);
// Clear the flag if we're not using the estimator.
analysis_.is_solid_color &= kUseColorEstimator;
}
void Raster(const RasterSource* raster_source) {
frame_viewer_instrumentation::ScopedRasterTask raster_task(
tile_, tile_resolution_, source_frame_number_, layer_id_);
ScopedRasterTaskTimer timer;
timer.SetArea(content_rect_.size().GetArea());
DCHECK(raster_source);
bool include_images = tile_resolution_ != LOW_RESOLUTION;
raster_buffer_->Playback(raster_source_.get(), content_rect_,
invalid_content_rect_, new_content_id_,
contents_scale_, include_images);
}
RasterSource::SolidColorAnalysis analysis_;
scoped_refptr<RasterSource> raster_source_;
gfx::Rect content_rect_;
gfx::Rect invalid_content_rect_;
float contents_scale_;
TileResolution tile_resolution_;
int layer_id_;
uint64_t source_prepare_tiles_id_;
const void* tile_;
uint64_t new_content_id_;
uint64_t previous_content_id_;
uint64_t resource_content_id_;
int source_frame_number_;
bool analyze_picture_;
const base::Callback<void(const RasterSource::SolidColorAnalysis&, bool)>
reply_;
scoped_ptr<RasterBuffer> raster_buffer_;
DISALLOW_COPY_AND_ASSIGN(RasterTaskImpl);
};
const char* TaskSetName(TaskSet task_set) {
switch (task_set) {
case TileManager::ALL:
return "ALL";
case TileManager::REQUIRED_FOR_ACTIVATION:
return "REQUIRED_FOR_ACTIVATION";
case TileManager::REQUIRED_FOR_DRAW:
return "REQUIRED_FOR_DRAW";
}
NOTREACHED();
return "Invalid TaskSet";
}
} // namespace
RasterTaskCompletionStats::RasterTaskCompletionStats()
: completed_count(0u), canceled_count(0u) {}
scoped_refptr<base::trace_event::ConvertableToTraceFormat>
RasterTaskCompletionStatsAsValue(const RasterTaskCompletionStats& stats) {
scoped_refptr<base::trace_event::TracedValue> state =
new base::trace_event::TracedValue();
state->SetInteger("completed_count",
base::saturated_cast<int>(stats.completed_count));
state->SetInteger("canceled_count",
base::saturated_cast<int>(stats.canceled_count));
return state;
}
// static
scoped_ptr<TileManager> TileManager::Create(
TileManagerClient* client,
base::SequencedTaskRunner* task_runner,
size_t scheduled_raster_task_limit) {
return make_scoped_ptr(
new TileManager(client, task_runner, scheduled_raster_task_limit));
}
TileManager::TileManager(
TileManagerClient* client,
const scoped_refptr<base::SequencedTaskRunner>& task_runner,
size_t scheduled_raster_task_limit)
: client_(client),
task_runner_(task_runner),
resource_pool_(nullptr),
tile_task_runner_(nullptr),
scheduled_raster_task_limit_(scheduled_raster_task_limit),
all_tiles_that_need_to_be_rasterized_are_scheduled_(true),
did_check_for_completed_tasks_since_last_schedule_tasks_(true),
did_oom_on_last_assign_(false),
more_tiles_need_prepare_check_notifier_(
task_runner_.get(),
base::Bind(&TileManager::CheckIfMoreTilesNeedToBePrepared,
base::Unretained(this))),
signals_check_notifier_(task_runner_.get(),
base::Bind(&TileManager::CheckAndIssueSignals,
base::Unretained(this))),
has_scheduled_tile_tasks_(false),
prepare_tiles_count_(0u) {
}
TileManager::~TileManager() {
FinishTasksAndCleanUp();
}
void TileManager::FinishTasksAndCleanUp() {
if (!tile_task_runner_)
return;
global_state_ = GlobalStateThatImpactsTilePriority();
TileTaskQueue empty;
tile_task_runner_->ScheduleTasks(&empty);
orphan_raster_tasks_.clear();
// This should finish all pending tasks and release any uninitialized
// resources.
tile_task_runner_->Shutdown();
tile_task_runner_->CheckForCompletedTasks();
FreeResourcesForReleasedTiles();
CleanUpReleasedTiles();
tile_task_runner_ = nullptr;
resource_pool_ = nullptr;
more_tiles_need_prepare_check_notifier_.Cancel();
signals_check_notifier_.Cancel();
}
void TileManager::SetResources(ResourcePool* resource_pool,
TileTaskRunner* tile_task_runner,
size_t scheduled_raster_task_limit) {
DCHECK(!tile_task_runner_);
DCHECK(tile_task_runner);
scheduled_raster_task_limit_ = scheduled_raster_task_limit;
resource_pool_ = resource_pool;
tile_task_runner_ = tile_task_runner;
tile_task_runner_->SetClient(this);
}
void TileManager::Release(Tile* tile) {
released_tiles_.push_back(tile);
}
TaskSetCollection TileManager::TasksThatShouldBeForcedToComplete() const {
TaskSetCollection tasks_that_should_be_forced_to_complete;
if (global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY)
tasks_that_should_be_forced_to_complete[REQUIRED_FOR_ACTIVATION] = true;
return tasks_that_should_be_forced_to_complete;
}
void TileManager::FreeResourcesForReleasedTiles() {
for (auto* tile : released_tiles_)
FreeResourcesForTile(tile);
}
void TileManager::CleanUpReleasedTiles() {
std::vector<Tile*> tiles_to_retain;
for (auto* tile : released_tiles_) {
if (tile->HasRasterTask()) {
tiles_to_retain.push_back(tile);
continue;
}
DCHECK(!tile->draw_info().has_resource());
DCHECK(tiles_.find(tile->id()) != tiles_.end());
tiles_.erase(tile->id());
image_decode_controller_.SubtractLayerUsedCount(tile->layer_id());
delete tile;
}
released_tiles_.swap(tiles_to_retain);
}
void TileManager::DidFinishRunningTileTasks(TaskSet task_set) {
TRACE_EVENT1("cc", "TileManager::DidFinishRunningTileTasks", "task_set",
TaskSetName(task_set));
DCHECK(resource_pool_);
DCHECK(tile_task_runner_);
switch (task_set) {
case ALL: {
has_scheduled_tile_tasks_ = false;
bool memory_usage_above_limit =
resource_pool_->total_memory_usage_bytes() >
global_state_.soft_memory_limit_in_bytes;
if (all_tiles_that_need_to_be_rasterized_are_scheduled_ &&
!memory_usage_above_limit) {
// TODO(ericrk): We should find a better way to safely handle re-entrant
// notifications than always having to schedule a new task.
// http://crbug.com/498439
signals_.all_tile_tasks_completed = true;
signals_check_notifier_.Schedule();
return;
}
more_tiles_need_prepare_check_notifier_.Schedule();
return;
}
case REQUIRED_FOR_ACTIVATION:
signals_.ready_to_activate = true;
signals_check_notifier_.Schedule();
return;
case REQUIRED_FOR_DRAW:
signals_.ready_to_draw = true;
signals_check_notifier_.Schedule();
return;
}
NOTREACHED();
}
bool TileManager::PrepareTiles(
const GlobalStateThatImpactsTilePriority& state) {
++prepare_tiles_count_;
TRACE_EVENT1("cc", "TileManager::PrepareTiles", "prepare_tiles_id",
prepare_tiles_count_);
if (!tile_task_runner_) {
TRACE_EVENT_INSTANT0("cc", "PrepareTiles aborted",
TRACE_EVENT_SCOPE_THREAD);
return false;
}
signals_.reset();
global_state_ = state;
// We need to call CheckForCompletedTasks() once in-between each call
// to ScheduleTasks() to prevent canceled tasks from being scheduled.
if (!did_check_for_completed_tasks_since_last_schedule_tasks_) {
tile_task_runner_->CheckForCompletedTasks();
did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
}
FreeResourcesForReleasedTiles();
CleanUpReleasedTiles();
PrioritizedTileVector tiles_that_need_to_be_rasterized;
scoped_ptr<RasterTilePriorityQueue> raster_priority_queue(
client_->BuildRasterQueue(global_state_.tree_priority,
RasterTilePriorityQueue::Type::ALL));
AssignGpuMemoryToTiles(raster_priority_queue.get(),
scheduled_raster_task_limit_,
&tiles_that_need_to_be_rasterized);
// Inform the client that will likely require a draw if the highest priority
// tile that will be rasterized is required for draw.
client_->SetIsLikelyToRequireADraw(
!tiles_that_need_to_be_rasterized.empty() &&
tiles_that_need_to_be_rasterized.front().tile()->required_for_draw());
// Schedule tile tasks.
ScheduleTasks(tiles_that_need_to_be_rasterized);
TRACE_EVENT_INSTANT1("cc", "DidPrepareTiles", TRACE_EVENT_SCOPE_THREAD,
"state", BasicStateAsValue());
TRACE_COUNTER_ID1("cc", "unused_memory_bytes", this,
resource_pool_->total_memory_usage_bytes() -
resource_pool_->acquired_memory_usage_bytes());
return true;
}
void TileManager::Flush() {
TRACE_EVENT0("cc", "TileManager::Flush");
if (!tile_task_runner_) {
TRACE_EVENT_INSTANT0("cc", "Flush aborted", TRACE_EVENT_SCOPE_THREAD);
return;
}
tile_task_runner_->CheckForCompletedTasks();
did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
TRACE_EVENT_INSTANT1("cc", "DidFlush", TRACE_EVENT_SCOPE_THREAD, "stats",
RasterTaskCompletionStatsAsValue(flush_stats_));
flush_stats_ = RasterTaskCompletionStats();
}
scoped_refptr<base::trace_event::ConvertableToTraceFormat>
TileManager::BasicStateAsValue() const {
scoped_refptr<base::trace_event::TracedValue> value =
new base::trace_event::TracedValue();
BasicStateAsValueInto(value.get());
return value;
}
void TileManager::BasicStateAsValueInto(
base::trace_event::TracedValue* state) const {
state->SetInteger("tile_count", base::saturated_cast<int>(tiles_.size()));
state->SetBoolean("did_oom_on_last_assign", did_oom_on_last_assign_);
state->BeginDictionary("global_state");
global_state_.AsValueInto(state);
state->EndDictionary();
}
scoped_ptr<EvictionTilePriorityQueue>
TileManager::FreeTileResourcesUntilUsageIsWithinLimit(
scoped_ptr<EvictionTilePriorityQueue> eviction_priority_queue,
const MemoryUsage& limit,
MemoryUsage* usage) {
while (usage->Exceeds(limit)) {
if (!eviction_priority_queue) {
eviction_priority_queue =
client_->BuildEvictionQueue(global_state_.tree_priority);
}
if (eviction_priority_queue->IsEmpty())
break;
Tile* tile = eviction_priority_queue->Top().tile();
*usage -= MemoryUsage::FromTile(tile);
FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
eviction_priority_queue->Pop();
}
return eviction_priority_queue;
}
scoped_ptr<EvictionTilePriorityQueue>
TileManager::FreeTileResourcesWithLowerPriorityUntilUsageIsWithinLimit(
scoped_ptr<EvictionTilePriorityQueue> eviction_priority_queue,
const MemoryUsage& limit,
const TilePriority& other_priority,
MemoryUsage* usage) {
while (usage->Exceeds(limit)) {
if (!eviction_priority_queue) {
eviction_priority_queue =
client_->BuildEvictionQueue(global_state_.tree_priority);
}
if (eviction_priority_queue->IsEmpty())
break;
const PrioritizedTile& prioritized_tile = eviction_priority_queue->Top();
if (!other_priority.IsHigherPriorityThan(prioritized_tile.priority()))
break;
Tile* tile = prioritized_tile.tile();
*usage -= MemoryUsage::FromTile(tile);
FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
eviction_priority_queue->Pop();
}
return eviction_priority_queue;
}
bool TileManager::TilePriorityViolatesMemoryPolicy(
const TilePriority& priority) {
switch (global_state_.memory_limit_policy) {
case ALLOW_NOTHING:
return true;
case ALLOW_ABSOLUTE_MINIMUM:
return priority.priority_bin > TilePriority::NOW;
case ALLOW_PREPAINT_ONLY:
return priority.priority_bin > TilePriority::SOON;
case ALLOW_ANYTHING:
return priority.distance_to_visible ==
std::numeric_limits<float>::infinity();
}
NOTREACHED();
return true;
}
void TileManager::AssignGpuMemoryToTiles(
RasterTilePriorityQueue* raster_priority_queue,
size_t scheduled_raster_task_limit,
PrioritizedTileVector* tiles_that_need_to_be_rasterized) {
TRACE_EVENT_BEGIN0("cc", "TileManager::AssignGpuMemoryToTiles");
DCHECK(resource_pool_);
DCHECK(tile_task_runner_);
// Maintain the list of released resources that can potentially be re-used
// or deleted. If this operation becomes expensive too, only do this after
// some resource(s) was returned. Note that in that case, one also need to
// invalidate when releasing some resource from the pool.
resource_pool_->CheckBusyResources(false);
// Now give memory out to the tiles until we're out, and build
// the needs-to-be-rasterized queue.
unsigned schedule_priority = 1u;
all_tiles_that_need_to_be_rasterized_are_scheduled_ = true;
bool had_enough_memory_to_schedule_tiles_needed_now = true;
MemoryUsage hard_memory_limit(global_state_.hard_memory_limit_in_bytes,
global_state_.num_resources_limit);
MemoryUsage soft_memory_limit(global_state_.soft_memory_limit_in_bytes,
global_state_.num_resources_limit);
MemoryUsage memory_usage(resource_pool_->acquired_memory_usage_bytes(),
resource_pool_->acquired_resource_count());
scoped_ptr<EvictionTilePriorityQueue> eviction_priority_queue;
for (; !raster_priority_queue->IsEmpty(); raster_priority_queue->Pop()) {
const PrioritizedTile& prioritized_tile = raster_priority_queue->Top();
Tile* tile = prioritized_tile.tile();
TilePriority priority = prioritized_tile.priority();
if (TilePriorityViolatesMemoryPolicy(priority)) {
TRACE_EVENT_INSTANT0(
"cc", "TileManager::AssignGpuMemory tile violates memory policy",
TRACE_EVENT_SCOPE_THREAD);
break;
}
// We won't be able to schedule this tile, so break out early.
if (tiles_that_need_to_be_rasterized->size() >=
scheduled_raster_task_limit) {
all_tiles_that_need_to_be_rasterized_are_scheduled_ = false;
break;
}
tile->scheduled_priority_ = schedule_priority++;
DCHECK_IMPLIES(tile->draw_info().mode() != TileDrawInfo::OOM_MODE,
!tile->draw_info().IsReadyToDraw());
// If the tile already has a raster_task, then the memory used by it is
// already accounted for in memory_usage. Otherwise, we'll have to acquire
// more memory to create a raster task.
MemoryUsage memory_required_by_tile_to_be_scheduled;
if (!tile->raster_task_.get()) {
memory_required_by_tile_to_be_scheduled = MemoryUsage::FromConfig(
tile->desired_texture_size(), tile_task_runner_->GetResourceFormat());
}
bool tile_is_needed_now = priority.priority_bin == TilePriority::NOW;
// This is the memory limit that will be used by this tile. Depending on
// the tile priority, it will be one of hard_memory_limit or
// soft_memory_limit.
MemoryUsage& tile_memory_limit =
tile_is_needed_now ? hard_memory_limit : soft_memory_limit;
const MemoryUsage& scheduled_tile_memory_limit =
tile_memory_limit - memory_required_by_tile_to_be_scheduled;
eviction_priority_queue =
FreeTileResourcesWithLowerPriorityUntilUsageIsWithinLimit(
eviction_priority_queue.Pass(), scheduled_tile_memory_limit,
priority, &memory_usage);
bool memory_usage_is_within_limit =
!memory_usage.Exceeds(scheduled_tile_memory_limit);
// If we couldn't fit the tile into our current memory limit, then we're
// done.
if (!memory_usage_is_within_limit) {
if (tile_is_needed_now)
had_enough_memory_to_schedule_tiles_needed_now = false;
all_tiles_that_need_to_be_rasterized_are_scheduled_ = false;
break;
}
memory_usage += memory_required_by_tile_to_be_scheduled;
tiles_that_need_to_be_rasterized->push_back(prioritized_tile);
}
// Note that we should try and further reduce memory in case the above loop
// didn't reduce memory. This ensures that we always release as many resources
// as possible to stay within the memory limit.
eviction_priority_queue = FreeTileResourcesUntilUsageIsWithinLimit(
eviction_priority_queue.Pass(), hard_memory_limit, &memory_usage);
UMA_HISTOGRAM_BOOLEAN("TileManager.ExceededMemoryBudget",
!had_enough_memory_to_schedule_tiles_needed_now);
did_oom_on_last_assign_ = !had_enough_memory_to_schedule_tiles_needed_now;
memory_stats_from_last_assign_.total_budget_in_bytes =
global_state_.hard_memory_limit_in_bytes;
memory_stats_from_last_assign_.total_bytes_used = memory_usage.memory_bytes();
DCHECK_GE(memory_stats_from_last_assign_.total_bytes_used, 0);
memory_stats_from_last_assign_.had_enough_memory =
had_enough_memory_to_schedule_tiles_needed_now;
TRACE_EVENT_END2("cc", "TileManager::AssignGpuMemoryToTiles",
"all_tiles_that_need_to_be_rasterized_are_scheduled",
all_tiles_that_need_to_be_rasterized_are_scheduled_,
"had_enough_memory_to_schedule_tiles_needed_now",
had_enough_memory_to_schedule_tiles_needed_now);
}
void TileManager::FreeResourcesForTile(Tile* tile) {
TileDrawInfo& draw_info = tile->draw_info();
if (draw_info.resource_)
resource_pool_->ReleaseResource(draw_info.resource_.Pass(), tile->id());
}
void TileManager::FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(
Tile* tile) {
bool was_ready_to_draw = tile->draw_info().IsReadyToDraw();
FreeResourcesForTile(tile);
if (was_ready_to_draw)
client_->NotifyTileStateChanged(tile);
}
void TileManager::ScheduleTasks(
const PrioritizedTileVector& tiles_that_need_to_be_rasterized) {
TRACE_EVENT1("cc",
"TileManager::ScheduleTasks",
"count",
tiles_that_need_to_be_rasterized.size());
DCHECK(did_check_for_completed_tasks_since_last_schedule_tasks_);
raster_queue_.Reset();
// Even when scheduling an empty set of tiles, the TTWP does some work, and
// will always trigger a DidFinishRunningTileTasks notification. Because of
// this we unconditionally set |has_scheduled_tile_tasks_| to true.
has_scheduled_tile_tasks_ = true;
// Build a new task queue containing all task currently needed. Tasks
// are added in order of priority, highest priority task first.
for (auto& prioritized_tile : tiles_that_need_to_be_rasterized) {
Tile* tile = prioritized_tile.tile();
DCHECK(tile->draw_info().requires_resource());
DCHECK(!tile->draw_info().resource_);
if (!tile->raster_task_.get())
tile->raster_task_ = CreateRasterTask(prioritized_tile);
TaskSetCollection task_sets;
if (tile->required_for_activation())
task_sets.set(REQUIRED_FOR_ACTIVATION);
if (tile->required_for_draw())
task_sets.set(REQUIRED_FOR_DRAW);
task_sets.set(ALL);
raster_queue_.items.push_back(
TileTaskQueue::Item(tile->raster_task_.get(), task_sets));
}
// We must reduce the amount of unused resoruces before calling
// ScheduleTasks to prevent usage from rising above limits.
resource_pool_->ReduceResourceUsage();
// Schedule running of |raster_queue_|. This replaces any previously
// scheduled tasks and effectively cancels all tasks not present
// in |raster_queue_|.
tile_task_runner_->ScheduleTasks(&raster_queue_);
// It's now safe to clean up orphan tasks as raster worker pool is not
// allowed to keep around unreferenced raster tasks after ScheduleTasks() has
// been called.
orphan_raster_tasks_.clear();
did_check_for_completed_tasks_since_last_schedule_tasks_ = false;
}
scoped_refptr<RasterTask> TileManager::CreateRasterTask(
const PrioritizedTile& prioritized_tile) {
Tile* tile = prioritized_tile.tile();
uint64_t resource_content_id = 0;
scoped_ptr<ScopedResource> resource;
if (tile->invalidated_id()) {
// TODO(danakj): For resources that are in use, we should still grab them
// and copy from them instead of rastering everything. crbug.com/492754
resource =
resource_pool_->TryAcquireResourceWithContentId(tile->invalidated_id());
}
if (resource) {
resource_content_id = tile->invalidated_id();
DCHECK_EQ(tile_task_runner_->GetResourceFormat(), resource->format());
DCHECK_EQ(tile->desired_texture_size().ToString(),
resource->size().ToString());
} else {
resource = resource_pool_->AcquireResource(
tile->desired_texture_size(), tile_task_runner_->GetResourceFormat());
}
const ScopedResource* const_resource = resource.get();
// Create and queue all image decode tasks that this tile depends on.
ImageDecodeTask::Vector decode_tasks;
std::vector<skia::PositionPixelRef> pixel_refs;
prioritized_tile.raster_source()->GatherPixelRefs(
tile->content_rect(), tile->contents_scale(), &pixel_refs);
for (const skia::PositionPixelRef& pixel_ref : pixel_refs) {
decode_tasks.push_back(image_decode_controller_.GetTaskForPixelRef(
pixel_ref, tile->layer_id(), prepare_tiles_count_));
}
return make_scoped_refptr(new RasterTaskImpl(
const_resource, prioritized_tile.raster_source(), tile->content_rect(),
tile->invalidated_content_rect(), tile->contents_scale(),
prioritized_tile.priority().resolution, tile->layer_id(),
prepare_tiles_count_, static_cast<const void*>(tile), tile->id(),
tile->invalidated_id(), resource_content_id, tile->source_frame_number(),
tile->use_picture_analysis(),
base::Bind(&TileManager::OnRasterTaskCompleted, base::Unretained(this),
tile->id(), base::Passed(&resource)),
&decode_tasks));
}
void TileManager::OnRasterTaskCompleted(
Tile::Id tile_id,
scoped_ptr<ScopedResource> resource,
const RasterSource::SolidColorAnalysis& analysis,
bool was_canceled) {
DCHECK(tiles_.find(tile_id) != tiles_.end());
Tile* tile = tiles_[tile_id];
DCHECK(tile->raster_task_.get());
orphan_raster_tasks_.push_back(tile->raster_task_);
tile->raster_task_ = nullptr;
if (was_canceled) {
++flush_stats_.canceled_count;
resource_pool_->ReleaseResource(resource.Pass(), tile->invalidated_id());
return;
}
UpdateTileDrawInfo(tile, resource.Pass(), analysis);
}
void TileManager::UpdateTileDrawInfo(
Tile* tile,
scoped_ptr<ScopedResource> resource,
const RasterSource::SolidColorAnalysis& analysis) {
TileDrawInfo& draw_info = tile->draw_info();
++flush_stats_.completed_count;
if (analysis.is_solid_color) {
draw_info.set_solid_color(analysis.solid_color);
if (resource) {
// Pass the old tile id here because the tile is solid color so we did not
// raster anything into the tile resource.
resource_pool_->ReleaseResource(resource.Pass(), tile->invalidated_id());
}
} else {
DCHECK(resource);
draw_info.set_use_resource();
draw_info.resource_ = resource.Pass();
draw_info.contents_swizzled_ =
tile_task_runner_->GetResourceRequiresSwizzle();
}
DCHECK(draw_info.IsReadyToDraw());
draw_info.set_was_ever_ready_to_draw();
client_->NotifyTileStateChanged(tile);
}
ScopedTilePtr TileManager::CreateTile(const gfx::Size& desired_texture_size,
const gfx::Rect& content_rect,
float contents_scale,
int layer_id,
int source_frame_number,
int flags) {
// We need to have a tile task worker pool to do anything meaningful with
// tiles.
DCHECK(tile_task_runner_);
ScopedTilePtr tile(new Tile(this, desired_texture_size, content_rect,
contents_scale, layer_id, source_frame_number,
flags));
DCHECK(tiles_.find(tile->id()) == tiles_.end());
tiles_[tile->id()] = tile.get();
image_decode_controller_.AddLayerUsedCount(tile->layer_id());
return tile;
}
void TileManager::SetTileTaskRunnerForTesting(
TileTaskRunner* tile_task_runner) {
tile_task_runner_ = tile_task_runner;
tile_task_runner_->SetClient(this);
}
bool TileManager::AreRequiredTilesReadyToDraw(
RasterTilePriorityQueue::Type type) const {
scoped_ptr<RasterTilePriorityQueue> raster_priority_queue(
client_->BuildRasterQueue(global_state_.tree_priority, type));
// It is insufficient to check whether the raster queue we constructed is
// empty. The reason for this is that there are situations (rasterize on
// demand) when the tile both needs raster and it's ready to draw. Hence, we
// have to iterate the queue to check whether the required tiles are ready to
// draw.
for (; !raster_priority_queue->IsEmpty(); raster_priority_queue->Pop()) {
if (!raster_priority_queue->Top().tile()->draw_info().IsReadyToDraw())
return false;
}
#if DCHECK_IS_ON()
scoped_ptr<RasterTilePriorityQueue> all_queue(
client_->BuildRasterQueue(global_state_.tree_priority, type));
for (; !all_queue->IsEmpty(); all_queue->Pop()) {
Tile* tile = all_queue->Top().tile();
DCHECK_IMPLIES(tile->required_for_activation(),
tile->draw_info().IsReadyToDraw());
}
#endif
return true;
}
bool TileManager::IsReadyToActivate() const {
TRACE_EVENT0("cc", "TileManager::IsReadyToActivate");
return AreRequiredTilesReadyToDraw(
RasterTilePriorityQueue::Type::REQUIRED_FOR_ACTIVATION);
}
bool TileManager::IsReadyToDraw() const {
TRACE_EVENT0("cc", "TileManager::IsReadyToDraw");
return AreRequiredTilesReadyToDraw(
RasterTilePriorityQueue::Type::REQUIRED_FOR_DRAW);
}
void TileManager::CheckAndIssueSignals() {
TRACE_EVENT0("cc", "TileManager::CheckAndIssueSignals");
tile_task_runner_->CheckForCompletedTasks();
did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
// Ready to activate.
if (signals_.ready_to_activate && !signals_.did_notify_ready_to_activate) {
signals_.ready_to_activate = false;
if (IsReadyToActivate()) {
TRACE_EVENT0("cc",
"TileManager::CheckAndIssueSignals - ready to activate");
signals_.did_notify_ready_to_activate = true;
client_->NotifyReadyToActivate();
}
}
// Ready to draw.
if (signals_.ready_to_draw && !signals_.did_notify_ready_to_draw) {
signals_.ready_to_draw = false;
if (IsReadyToDraw()) {
TRACE_EVENT0("cc", "TileManager::CheckAndIssueSignals - ready to draw");
signals_.did_notify_ready_to_draw = true;
client_->NotifyReadyToDraw();
}
}
// All tile tasks completed.
if (signals_.all_tile_tasks_completed &&
!signals_.did_notify_all_tile_tasks_completed) {
signals_.all_tile_tasks_completed = false;
if (!has_scheduled_tile_tasks_) {
TRACE_EVENT0(
"cc", "TileManager::CheckAndIssueSignals - all tile tasks completed");
signals_.did_notify_all_tile_tasks_completed = true;
client_->NotifyAllTileTasksCompleted();
}
}
}
void TileManager::CheckIfMoreTilesNeedToBePrepared() {
tile_task_runner_->CheckForCompletedTasks();
did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
// When OOM, keep re-assigning memory until we reach a steady state
// where top-priority tiles are initialized.
PrioritizedTileVector tiles_that_need_to_be_rasterized;
scoped_ptr<RasterTilePriorityQueue> raster_priority_queue(
client_->BuildRasterQueue(global_state_.tree_priority,
RasterTilePriorityQueue::Type::ALL));
AssignGpuMemoryToTiles(raster_priority_queue.get(),
scheduled_raster_task_limit_,
&tiles_that_need_to_be_rasterized);
// Inform the client that will likely require a draw if the highest priority
// tile that will be rasterized is required for draw.
client_->SetIsLikelyToRequireADraw(
!tiles_that_need_to_be_rasterized.empty() &&
tiles_that_need_to_be_rasterized.front().tile()->required_for_draw());
// |tiles_that_need_to_be_rasterized| will be empty when we reach a
// steady memory state. Keep scheduling tasks until we reach this state.
if (!tiles_that_need_to_be_rasterized.empty()) {
ScheduleTasks(tiles_that_need_to_be_rasterized);
return;
}
FreeResourcesForReleasedTiles();
resource_pool_->ReduceResourceUsage();
signals_.all_tile_tasks_completed = true;
signals_check_notifier_.Schedule();
// We don't reserve memory for required-for-activation tiles during
// accelerated gestures, so we just postpone activation when we don't
// have these tiles, and activate after the accelerated gesture.
// Likewise if we don't allow any tiles (as is the case when we're
// invisible), if we have tiles that aren't ready, then we shouldn't
// activate as activation can cause checkerboards.
bool wait_for_all_required_tiles =
global_state_.tree_priority == SMOOTHNESS_TAKES_PRIORITY ||
global_state_.memory_limit_policy == ALLOW_NOTHING;
// Mark any required-for-activation tiles that have not been been assigned
// memory after reaching a steady memory state as OOM. This ensures that we
// activate even when OOM. Note that we can't reuse the queue we used for
// AssignGpuMemoryToTiles, since the AssignGpuMemoryToTiles call could have
// evicted some tiles that would not be picked up by the old raster queue.
scoped_ptr<RasterTilePriorityQueue> required_for_activation_queue(
client_->BuildRasterQueue(
global_state_.tree_priority,
RasterTilePriorityQueue::Type::REQUIRED_FOR_ACTIVATION));
// If we have tiles left to raster for activation, and we don't allow
// activating without them, then skip activation and return early.
if (!required_for_activation_queue->IsEmpty() && wait_for_all_required_tiles)
return;
// Mark required tiles as OOM so that we can activate without them.
for (; !required_for_activation_queue->IsEmpty();
required_for_activation_queue->Pop()) {
Tile* tile = required_for_activation_queue->Top().tile();
tile->draw_info().set_oom();
client_->NotifyTileStateChanged(tile);
}
DCHECK(IsReadyToActivate());
// TODO(ericrk): Investigate why we need to schedule this (not just call it
// inline). http://crbug.com/498439
signals_.ready_to_activate = true;
signals_check_notifier_.Schedule();
}
TileManager::MemoryUsage::MemoryUsage() : memory_bytes_(0), resource_count_(0) {
}
TileManager::MemoryUsage::MemoryUsage(size_t memory_bytes,
size_t resource_count)
: memory_bytes_(static_cast<int64>(memory_bytes)),
resource_count_(static_cast<int>(resource_count)) {
// MemoryUsage is constructed using size_ts, since it deals with memory and
// the inputs are typically size_t. However, during the course of usage (in
// particular operator-=) can cause internal values to become negative. Thus,
// member variables are signed.
DCHECK_LE(memory_bytes,
static_cast<size_t>(std::numeric_limits<int64>::max()));
DCHECK_LE(resource_count,
static_cast<size_t>(std::numeric_limits<int>::max()));
}
// static
TileManager::MemoryUsage TileManager::MemoryUsage::FromConfig(
const gfx::Size& size,
ResourceFormat format) {
// We can use UncheckedSizeInBytes here since this is used with a tile
// size which is determined by the compositor (it's at most max texture size).
return MemoryUsage(ResourceUtil::UncheckedSizeInBytes<size_t>(size, format),
1);
}
// static
TileManager::MemoryUsage TileManager::MemoryUsage::FromTile(const Tile* tile) {
const TileDrawInfo& draw_info = tile->draw_info();
if (draw_info.resource_) {
return MemoryUsage::FromConfig(draw_info.resource_->size(),
draw_info.resource_->format());
}
return MemoryUsage();
}
TileManager::MemoryUsage& TileManager::MemoryUsage::operator+=(
const MemoryUsage& other) {
memory_bytes_ += other.memory_bytes_;
resource_count_ += other.resource_count_;
return *this;
}
TileManager::MemoryUsage& TileManager::MemoryUsage::operator-=(
const MemoryUsage& other) {
memory_bytes_ -= other.memory_bytes_;
resource_count_ -= other.resource_count_;
return *this;
}
TileManager::MemoryUsage TileManager::MemoryUsage::operator-(
const MemoryUsage& other) {
MemoryUsage result = *this;
result -= other;
return result;
}
bool TileManager::MemoryUsage::Exceeds(const MemoryUsage& limit) const {
return memory_bytes_ > limit.memory_bytes_ ||
resource_count_ > limit.resource_count_;
}
TileManager::Signals::Signals() {
reset();
}
void TileManager::Signals::reset() {
ready_to_activate = false;
did_notify_ready_to_activate = false;
ready_to_draw = false;
did_notify_ready_to_draw = false;
all_tile_tasks_completed = false;
did_notify_all_tile_tasks_completed = false;
}
} // namespace cc