blob: b2624602a17c9bd1e14f999b68e88c2fa16d73ad [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file includes code SSLClientSocketNSS::DoVerifyCertComplete() derived
// from AuthCertificateCallback() in
// mozilla/security/manager/ssl/src/nsNSSCallbacks.cpp.
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Ian McGreer <mcgreer@netscape.com>
* Javier Delgadillo <javi@netscape.com>
* Kai Engert <kengert@redhat.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "net/socket/ssl_client_socket_nss.h"
#include <certdb.h>
#include <hasht.h>
#include <keyhi.h>
#include <nspr.h>
#include <nss.h>
#include <ocsp.h>
#include <pk11pub.h>
#include <secerr.h>
#include <sechash.h>
#include <ssl.h>
#include <sslerr.h>
#include <sslproto.h>
#include <algorithm>
#include <limits>
#include <map>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/callback_helpers.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/metrics/histogram_macros.h"
#include "base/single_thread_task_runner.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/thread_task_runner_handle.h"
#include "base/threading/thread_restrictions.h"
#include "base/values.h"
#include "crypto/ec_private_key.h"
#include "crypto/nss_util.h"
#include "crypto/nss_util_internal.h"
#include "crypto/rsa_private_key.h"
#include "crypto/scoped_nss_types.h"
#include "net/base/address_list.h"
#include "net/base/dns_util.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/cert/asn1_util.h"
#include "net/cert/cert_policy_enforcer.h"
#include "net/cert/cert_status_flags.h"
#include "net/cert/cert_verifier.h"
#include "net/cert/ct_ev_whitelist.h"
#include "net/cert/ct_verifier.h"
#include "net/cert/ct_verify_result.h"
#include "net/cert/scoped_nss_types.h"
#include "net/cert/sct_status_flags.h"
#include "net/cert/x509_certificate_net_log_param.h"
#include "net/cert/x509_util.h"
#include "net/cert_net/nss_ocsp.h"
#include "net/http/transport_security_state.h"
#include "net/log/net_log.h"
#include "net/socket/client_socket_handle.h"
#include "net/socket/nss_ssl_util.h"
#include "net/ssl/ssl_cert_request_info.h"
#include "net/ssl/ssl_cipher_suite_names.h"
#include "net/ssl/ssl_connection_status_flags.h"
#include "net/ssl/ssl_failure_state.h"
#include "net/ssl/ssl_info.h"
#if defined(USE_NSS_CERTS)
#include <dlfcn.h>
#endif
namespace net {
// State machines are easier to debug if you log state transitions.
// Enable these if you want to see what's going on.
#if 1
#define EnterFunction(x)
#define LeaveFunction(x)
#define GotoState(s) next_handshake_state_ = s
#else
#define EnterFunction(x)\
VLOG(1) << (void *)this << " " << __FUNCTION__ << " enter " << x\
<< "; next_handshake_state " << next_handshake_state_
#define LeaveFunction(x)\
VLOG(1) << (void *)this << " " << __FUNCTION__ << " leave " << x\
<< "; next_handshake_state " << next_handshake_state_
#define GotoState(s)\
do {\
VLOG(1) << (void *)this << " " << __FUNCTION__ << " jump to state " << s;\
next_handshake_state_ = s;\
} while (0)
#endif
#if !defined(CKM_AES_GCM)
#define CKM_AES_GCM 0x00001087
#endif
#if !defined(CKM_NSS_CHACHA20_POLY1305)
#define CKM_NSS_CHACHA20_POLY1305 (CKM_NSS + 26)
#endif
namespace {
// SSL plaintext fragments are shorter than 16KB. Although the record layer
// overhead is allowed to be 2K + 5 bytes, in practice the overhead is much
// smaller than 1KB. So a 17KB buffer should be large enough to hold an
// entire SSL record.
const int kRecvBufferSize = 17 * 1024;
const int kSendBufferSize = 17 * 1024;
// Used by SSLClientSocketNSS::Core to indicate there is no read result
// obtained by a previous operation waiting to be returned to the caller.
// This constant can be any non-negative/non-zero value (eg: it does not
// overlap with any value of the net::Error range, including net::OK).
const int kNoPendingReadResult = 1;
// Helper functions to make it possible to log events from within the
// SSLClientSocketNSS::Core.
void AddLogEvent(const base::WeakPtr<BoundNetLog>& net_log,
NetLog::EventType event_type) {
if (!net_log)
return;
net_log->AddEvent(event_type);
}
// Helper function to make it possible to log events from within the
// SSLClientSocketNSS::Core.
void AddLogEventWithCallback(const base::WeakPtr<BoundNetLog>& net_log,
NetLog::EventType event_type,
const NetLog::ParametersCallback& callback) {
if (!net_log)
return;
net_log->AddEvent(event_type, callback);
}
// Helper function to make it easier to call BoundNetLog::AddByteTransferEvent
// from within the SSLClientSocketNSS::Core.
// AddByteTransferEvent expects to receive a const char*, which within the
// Core is backed by an IOBuffer. If the "const char*" is bound via
// base::Bind and posted to another thread, and the IOBuffer that backs that
// pointer then goes out of scope on the origin thread, this would result in
// an invalid read of a stale pointer.
// Instead, provide a signature that accepts an IOBuffer*, so that a reference
// to the owning IOBuffer can be bound to the Callback. This ensures that the
// IOBuffer will stay alive long enough to cross threads if needed.
void LogByteTransferEvent(
const base::WeakPtr<BoundNetLog>& net_log, NetLog::EventType event_type,
int len, IOBuffer* buffer) {
if (!net_log)
return;
net_log->AddByteTransferEvent(event_type, len, buffer->data());
}
// PeerCertificateChain is a helper object which extracts the certificate
// chain, as given by the server, from an NSS socket and performs the needed
// resource management. The first element of the chain is the leaf certificate
// and the other elements are in the order given by the server.
class PeerCertificateChain {
public:
PeerCertificateChain() {}
PeerCertificateChain(const PeerCertificateChain& other);
~PeerCertificateChain();
PeerCertificateChain& operator=(const PeerCertificateChain& other);
// Resets the current chain, freeing any resources, and updates the current
// chain to be a copy of the chain stored in |nss_fd|.
// If |nss_fd| is NULL, then the current certificate chain will be freed.
void Reset(PRFileDesc* nss_fd);
// Returns the current certificate chain as a vector of DER-encoded
// base::StringPieces. The returned vector remains valid until Reset is
// called.
std::vector<base::StringPiece> AsStringPieceVector() const;
bool empty() const { return certs_.empty(); }
CERTCertificate* operator[](size_t index) const {
DCHECK_LT(index, certs_.size());
return certs_[index];
}
private:
std::vector<CERTCertificate*> certs_;
};
PeerCertificateChain::PeerCertificateChain(
const PeerCertificateChain& other) {
*this = other;
}
PeerCertificateChain::~PeerCertificateChain() {
Reset(NULL);
}
PeerCertificateChain& PeerCertificateChain::operator=(
const PeerCertificateChain& other) {
if (this == &other)
return *this;
Reset(NULL);
certs_.reserve(other.certs_.size());
for (size_t i = 0; i < other.certs_.size(); ++i)
certs_.push_back(CERT_DupCertificate(other.certs_[i]));
return *this;
}
void PeerCertificateChain::Reset(PRFileDesc* nss_fd) {
for (size_t i = 0; i < certs_.size(); ++i)
CERT_DestroyCertificate(certs_[i]);
certs_.clear();
if (nss_fd == NULL)
return;
CERTCertList* list = SSL_PeerCertificateChain(nss_fd);
// The handshake on |nss_fd| may not have completed.
if (list == NULL)
return;
for (CERTCertListNode* node = CERT_LIST_HEAD(list);
!CERT_LIST_END(node, list); node = CERT_LIST_NEXT(node)) {
certs_.push_back(CERT_DupCertificate(node->cert));
}
CERT_DestroyCertList(list);
}
std::vector<base::StringPiece>
PeerCertificateChain::AsStringPieceVector() const {
std::vector<base::StringPiece> v(certs_.size());
for (unsigned i = 0; i < certs_.size(); i++) {
v[i] = base::StringPiece(
reinterpret_cast<const char*>(certs_[i]->derCert.data),
certs_[i]->derCert.len);
}
return v;
}
// HandshakeState is a helper struct used to pass handshake state between
// the NSS task runner and the network task runner.
//
// It contains members that may be read or written on the NSS task runner,
// but which also need to be read from the network task runner. The NSS task
// runner will notify the network task runner whenever this state changes, so
// that the network task runner can safely make a copy, which avoids the need
// for locking.
struct HandshakeState {
HandshakeState() { Reset(); }
void Reset() {
next_proto_status = SSLClientSocket::kNextProtoUnsupported;
next_proto.clear();
negotiation_extension_ = SSLClientSocket::kExtensionUnknown;
channel_id_sent = false;
server_cert_chain.Reset(NULL);
server_cert = NULL;
sct_list_from_tls_extension.clear();
stapled_ocsp_response.clear();
resumed_handshake = false;
ssl_connection_status = 0;
}
// Set to kNextProtoNegotiated if NPN was successfully negotiated, with the
// negotiated protocol stored in |next_proto|.
SSLClientSocket::NextProtoStatus next_proto_status;
std::string next_proto;
// TLS extension used for protocol negotiation.
SSLClientSocket::SSLNegotiationExtension negotiation_extension_;
// True if a channel ID was sent.
bool channel_id_sent;
// List of DER-encoded X.509 DistinguishedName of certificate authorities
// allowed by the server.
std::vector<std::string> cert_authorities;
// Set when the handshake fully completes.
//
// The server certificate is first received from NSS as an NSS certificate
// chain (|server_cert_chain|) and then converted into a platform-specific
// X509Certificate object (|server_cert|). It's possible for some
// certificates to be successfully parsed by NSS, and not by the platform
// libraries (i.e.: when running within a sandbox, different parsing
// algorithms, etc), so it's not safe to assume that |server_cert| will
// always be non-NULL.
PeerCertificateChain server_cert_chain;
scoped_refptr<X509Certificate> server_cert;
// SignedCertificateTimestampList received via TLS extension (RFC 6962).
std::string sct_list_from_tls_extension;
// Stapled OCSP response received.
std::string stapled_ocsp_response;
// True if the current handshake was the result of TLS session resumption.
bool resumed_handshake;
// The negotiated security parameters (TLS version, cipher, extensions) of
// the SSL connection.
int ssl_connection_status;
};
// Client-side error mapping functions.
// Map NSS error code to network error code.
int MapNSSClientError(PRErrorCode err) {
switch (err) {
case SSL_ERROR_BAD_CERT_ALERT:
case SSL_ERROR_UNSUPPORTED_CERT_ALERT:
case SSL_ERROR_REVOKED_CERT_ALERT:
case SSL_ERROR_EXPIRED_CERT_ALERT:
case SSL_ERROR_CERTIFICATE_UNKNOWN_ALERT:
case SSL_ERROR_UNKNOWN_CA_ALERT:
case SSL_ERROR_ACCESS_DENIED_ALERT:
return ERR_BAD_SSL_CLIENT_AUTH_CERT;
default:
return MapNSSError(err);
}
}
} // namespace
// SSLClientSocketNSS::Core provides a thread-safe, ref-counted core that is
// able to marshal data between NSS functions and an underlying transport
// socket.
//
// All public functions are meant to be called from the network task runner,
// and any callbacks supplied will be invoked there as well, provided that
// Detach() has not been called yet.
//
/////////////////////////////////////////////////////////////////////////////
//
// Threading within SSLClientSocketNSS and SSLClientSocketNSS::Core:
//
// Because NSS may block on either hardware or user input during operations
// such as signing, creating certificates, or locating private keys, the Core
// handles all of the interactions with the underlying NSS SSL socket, so
// that these blocking calls can be executed on a dedicated task runner.
//
// Note that the network task runner and the NSS task runner may be executing
// on the same thread. If that happens, then it's more performant to try to
// complete as much work as possible synchronously, even if it might block,
// rather than continually PostTask-ing to the same thread.
//
// Because NSS functions should only be called on the NSS task runner, while
// I/O resources should only be accessed on the network task runner, most
// public functions are implemented via three methods, each with different
// task runner affinities.
//
// In the single-threaded mode (where the network and NSS task runners run on
// the same thread), these are all attempted synchronously, while in the
// multi-threaded mode, message passing is used.
//
// 1) NSS Task Runner: Execute NSS function (DoPayloadRead, DoPayloadWrite,
// DoHandshake)
// 2) NSS Task Runner: Prepare data to go from NSS to an IO function:
// (BufferRecv, BufferSend)
// 3) Network Task Runner: Perform IO on that data (DoBufferRecv,
// DoBufferSend, DoGetChannelID, OnGetChannelIDComplete)
// 4) Both Task Runners: Callback for asynchronous completion or to marshal
// data from the network task runner back to NSS (BufferRecvComplete,
// BufferSendComplete, OnHandshakeIOComplete)
//
/////////////////////////////////////////////////////////////////////////////
// Single-threaded example
//
// |--------------------------Network Task Runner--------------------------|
// SSLClientSocketNSS Core (Transport Socket)
// Read()
// |-------------------------V
// Read()
// |
// DoPayloadRead()
// |
// BufferRecv()
// |
// DoBufferRecv()
// |-------------------------V
// Read()
// V-------------------------|
// BufferRecvComplete()
// |
// PostOrRunCallback()
// V-------------------------|
// (Read Callback)
//
/////////////////////////////////////////////////////////////////////////////
// Multi-threaded example:
//
// |--------------------Network Task Runner-------------|--NSS Task Runner--|
// SSLClientSocketNSS Core Socket Core
// Read()
// |---------------------V
// Read()
// |-------------------------------V
// Read()
// |
// DoPayloadRead()
// |
// BufferRecv
// V-------------------------------|
// DoBufferRecv
// |----------------V
// Read()
// V----------------|
// BufferRecvComplete()
// |-------------------------------V
// BufferRecvComplete()
// |
// PostOrRunCallback()
// V-------------------------------|
// PostOrRunCallback()
// V---------------------|
// (Read Callback)
//
/////////////////////////////////////////////////////////////////////////////
class SSLClientSocketNSS::Core : public base::RefCountedThreadSafe<Core> {
public:
// Creates a new Core.
//
// Any calls to NSS are executed on the |nss_task_runner|, while any calls
// that need to operate on the underlying transport, net log, or server
// bound certificate fetching will happen on the |network_task_runner|, so
// that their lifetimes match that of the owning SSLClientSocketNSS.
//
// The caller retains ownership of |transport|, |net_log|, and
// |channel_id_service|, and they will not be accessed once Detach()
// has been called.
Core(base::SequencedTaskRunner* network_task_runner,
base::SequencedTaskRunner* nss_task_runner,
ClientSocketHandle* transport,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config,
BoundNetLog* net_log,
ChannelIDService* channel_id_service);
// Called on the network task runner.
// Transfers ownership of |socket|, an NSS SSL socket, and |buffers|, the
// underlying memio implementation, to the Core. Returns true if the Core
// was successfully registered with the socket.
bool Init(PRFileDesc* socket, memio_Private* buffers);
// Called on the network task runner.
//
// Attempts to perform an SSL handshake. If the handshake cannot be
// completed synchronously, returns ERR_IO_PENDING, invoking |callback| on
// the network task runner once the handshake has completed. Otherwise,
// returns OK on success or a network error code on failure.
int Connect(const CompletionCallback& callback);
// Called on the network task runner.
// Signals that the resources owned by the network task runner are going
// away. No further callbacks will be invoked on the network task runner.
// May be called at any time.
void Detach();
// Called on the network task runner.
// Returns the current state of the underlying SSL socket. May be called at
// any time.
const HandshakeState& state() const { return network_handshake_state_; }
// Called on the network task runner.
// Read() and Write() mirror the net::Socket functions of the same name.
// If ERR_IO_PENDING is returned, |callback| will be invoked on the network
// task runner at a later point, unless the caller calls Detach().
int Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback);
int Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback);
// Called on the network task runner.
bool IsConnected() const;
bool HasPendingAsyncOperation() const;
bool HasUnhandledReceivedData() const;
bool WasEverUsed() const;
// Called on the network task runner.
// Causes the associated SSL/TLS session ID to be added to NSS's session
// cache, but only if the connection has not been False Started.
//
// This should only be called after the server's certificate has been
// verified, and may not be called within an NSS callback.
void CacheSessionIfNecessary();
private:
friend class base::RefCountedThreadSafe<Core>;
~Core();
enum State {
STATE_NONE,
STATE_HANDSHAKE,
STATE_GET_DOMAIN_BOUND_CERT_COMPLETE,
};
bool OnNSSTaskRunner() const;
bool OnNetworkTaskRunner() const;
////////////////////////////////////////////////////////////////////////////
// Methods that are ONLY called on the NSS task runner:
////////////////////////////////////////////////////////////////////////////
// Called by NSS during full handshakes to allow the application to
// verify the certificate. Instead of verifying the certificate in the midst
// of the handshake, SECSuccess is always returned and the peer's certificate
// is verified afterwards.
// This behaviour is an artifact of the original SSLClientSocketWin
// implementation, which could not verify the peer's certificate until after
// the handshake had completed, as well as bugs in NSS that prevent
// SSL_RestartHandshakeAfterCertReq from working.
static SECStatus OwnAuthCertHandler(void* arg,
PRFileDesc* socket,
PRBool checksig,
PRBool is_server);
// Callbacks called by NSS when the peer requests client certificate
// authentication.
// See the documentation in third_party/nss/ssl/ssl.h for the meanings of
// the arguments.
static SECStatus ClientAuthHandler(void* arg,
PRFileDesc* socket,
CERTDistNames* ca_names,
CERTCertificate** result_certificate,
SECKEYPrivateKey** result_private_key);
// Called by NSS to determine if we can False Start.
// |arg| contains a pointer to the current SSLClientSocketNSS::Core.
static SECStatus CanFalseStartCallback(PRFileDesc* socket,
void* arg,
PRBool* can_false_start);
// Called by NSS each time a handshake completely finishes.
// |arg| contains a pointer to the current SSLClientSocketNSS::Core.
static void HandshakeCallback(PRFileDesc* socket, void* arg);
// Called once for each successful handshake. If the initial handshake false
// starts, it is called when it false starts and not when it completely
// finishes. is_initial is true if this is the initial handshake.
void HandshakeSucceeded(bool is_initial);
// Handles an NSS error generated while handshaking or performing IO.
// Returns a network error code mapped from the original NSS error.
int HandleNSSError(PRErrorCode error);
int DoHandshakeLoop(int last_io_result);
int DoReadLoop(int result);
int DoWriteLoop(int result);
int DoHandshake();
int DoGetDBCertComplete(int result);
int DoPayloadRead();
int DoPayloadWrite();
bool DoTransportIO();
int BufferRecv();
int BufferSend();
void OnRecvComplete(int result);
void OnSendComplete(int result);
void DoConnectCallback(int result);
void DoReadCallback(int result);
void DoWriteCallback(int result);
// Client channel ID handler.
static SECStatus ClientChannelIDHandler(
void* arg,
PRFileDesc* socket,
SECKEYPublicKey **out_public_key,
SECKEYPrivateKey **out_private_key);
// ImportChannelIDKeys is a helper function for turning a DER-encoded cert and
// key into a SECKEYPublicKey and SECKEYPrivateKey. Returns OK upon success
// and an error code otherwise.
// Requires |domain_bound_private_key_| and |domain_bound_cert_| to have been
// set by a call to ChannelIDService->GetChannelID. The caller
// takes ownership of the |*cert| and |*key|.
int ImportChannelIDKeys(SECKEYPublicKey** public_key, SECKEYPrivateKey** key);
// Updates the NSS and platform specific certificates.
void UpdateServerCert();
// Update the nss_handshake_state_ with the SignedCertificateTimestampList
// received in the handshake via a TLS extension.
void UpdateSignedCertTimestamps();
// Update the OCSP response cache with the stapled response received in the
// handshake, and update nss_handshake_state_ with
// the SignedCertificateTimestampList received in the stapled OCSP response.
void UpdateStapledOCSPResponse();
// Updates the nss_handshake_state_ with the negotiated security parameters.
void UpdateConnectionStatus();
// Record histograms for channel id support during full handshakes - resumed
// handshakes are ignored.
void RecordChannelIDSupportOnNSSTaskRunner();
// UpdateNextProto gets any application-layer protocol that may have been
// negotiated by the TLS connection.
void UpdateNextProto();
// Record TLS extension used for protocol negotiation (NPN or ALPN).
void UpdateExtensionUsed();
// Returns true if renegotiations are allowed.
bool IsRenegotiationAllowed() const;
////////////////////////////////////////////////////////////////////////////
// Methods that are ONLY called on the network task runner:
////////////////////////////////////////////////////////////////////////////
int DoBufferRecv(IOBuffer* buffer, int len);
int DoBufferSend(IOBuffer* buffer, int len);
int DoGetChannelID(const std::string& host);
void OnGetChannelIDComplete(int result);
void OnHandshakeStateUpdated(const HandshakeState& state);
void OnNSSBufferUpdated(int amount_in_read_buffer);
void DidNSSRead(int result);
void DidNSSWrite(int result);
void RecordChannelIDSupportOnNetworkTaskRunner(
bool negotiated_channel_id,
bool channel_id_enabled,
bool supports_ecc) const;
////////////////////////////////////////////////////////////////////////////
// Methods that are called on both the network task runner and the NSS
// task runner.
////////////////////////////////////////////////////////////////////////////
void OnHandshakeIOComplete(int result);
void BufferRecvComplete(IOBuffer* buffer, int result);
void BufferSendComplete(int result);
// PostOrRunCallback is a helper function to ensure that |callback| is
// invoked on the network task runner, but only if Detach() has not yet
// been called.
void PostOrRunCallback(const tracked_objects::Location& location,
const base::Closure& callback);
// Uses PostOrRunCallback and |weak_net_log_| to try and log a
// SSL_CLIENT_CERT_PROVIDED event, with the indicated count.
void AddCertProvidedEvent(int cert_count);
// Sets the handshake state |channel_id_sent| flag and logs the
// SSL_CHANNEL_ID_PROVIDED event.
void SetChannelIDProvided();
////////////////////////////////////////////////////////////////////////////
// Members that are ONLY accessed on the network task runner:
////////////////////////////////////////////////////////////////////////////
// True if the owning SSLClientSocketNSS has called Detach(). No further
// callbacks will be invoked nor access to members owned by the network
// task runner.
bool detached_;
// The underlying transport to use for network IO.
ClientSocketHandle* transport_;
base::WeakPtrFactory<BoundNetLog> weak_net_log_factory_;
// The current handshake state. Mirrors |nss_handshake_state_|.
HandshakeState network_handshake_state_;
// The service for retrieving Channel ID keys. May be NULL.
ChannelIDService* channel_id_service_;
ChannelIDService::Request channel_id_request_;
// The information about NSS task runner.
int unhandled_buffer_size_;
bool nss_waiting_read_;
bool nss_waiting_write_;
bool nss_is_closed_;
// Set when Read() or Write() successfully reads or writes data to or from the
// network.
bool was_ever_used_;
////////////////////////////////////////////////////////////////////////////
// Members that are ONLY accessed on the NSS task runner:
////////////////////////////////////////////////////////////////////////////
HostPortPair host_and_port_;
SSLConfig ssl_config_;
// NSS SSL socket.
PRFileDesc* nss_fd_;
// Buffers for the network end of the SSL state machine
memio_Private* nss_bufs_;
// Used by DoPayloadRead() when attempting to fill the caller's buffer with
// as much data as possible, without blocking.
// If DoPayloadRead() encounters an error after having read some data, stores
// the results to return on the *next* call to DoPayloadRead(). A value of
// kNoPendingReadResult indicates there is no pending result, otherwise 0
// indicates EOF and < 0 indicates an error.
int pending_read_result_;
// Contains the previously observed NSS error. Only valid when
// pending_read_result_ != kNoPendingReadResult.
PRErrorCode pending_read_nss_error_;
// The certificate chain, in DER form, that is expected to be received from
// the server.
std::vector<std::string> predicted_certs_;
State next_handshake_state_;
// True if channel ID extension was negotiated.
bool channel_id_xtn_negotiated_;
// True if the handshake state machine was interrupted for channel ID.
bool channel_id_needed_;
// True if the handshake state machine was interrupted for client auth.
bool client_auth_cert_needed_;
// True if NSS has False Started in the initial handshake, but the initial
// handshake has not yet completely finished..
bool false_started_;
// True if NSS has called HandshakeCallback.
bool handshake_callback_called_;
HandshakeState nss_handshake_state_;
bool transport_recv_busy_;
bool transport_recv_eof_;
bool transport_send_busy_;
// Used by Read function.
scoped_refptr<IOBuffer> user_read_buf_;
int user_read_buf_len_;
// Used by Write function.
scoped_refptr<IOBuffer> user_write_buf_;
int user_write_buf_len_;
CompletionCallback user_connect_callback_;
CompletionCallback user_read_callback_;
CompletionCallback user_write_callback_;
////////////////////////////////////////////////////////////////////////////
// Members that are accessed on both the network task runner and the NSS
// task runner.
////////////////////////////////////////////////////////////////////////////
scoped_refptr<base::SequencedTaskRunner> network_task_runner_;
scoped_refptr<base::SequencedTaskRunner> nss_task_runner_;
// Dereferenced only on the network task runner, but bound to tasks destined
// for the network task runner from the NSS task runner.
base::WeakPtr<BoundNetLog> weak_net_log_;
// Written on the network task runner by the |channel_id_service_|,
// prior to invoking OnHandshakeIOComplete.
// Read on the NSS task runner when once OnHandshakeIOComplete is invoked
// on the NSS task runner.
scoped_ptr<crypto::ECPrivateKey> channel_id_key_;
DISALLOW_COPY_AND_ASSIGN(Core);
};
SSLClientSocketNSS::Core::Core(
base::SequencedTaskRunner* network_task_runner,
base::SequencedTaskRunner* nss_task_runner,
ClientSocketHandle* transport,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config,
BoundNetLog* net_log,
ChannelIDService* channel_id_service)
: detached_(false),
transport_(transport),
weak_net_log_factory_(net_log),
channel_id_service_(channel_id_service),
unhandled_buffer_size_(0),
nss_waiting_read_(false),
nss_waiting_write_(false),
nss_is_closed_(false),
was_ever_used_(false),
host_and_port_(host_and_port),
ssl_config_(ssl_config),
nss_fd_(NULL),
nss_bufs_(NULL),
pending_read_result_(kNoPendingReadResult),
pending_read_nss_error_(0),
next_handshake_state_(STATE_NONE),
channel_id_xtn_negotiated_(false),
channel_id_needed_(false),
client_auth_cert_needed_(false),
false_started_(false),
handshake_callback_called_(false),
transport_recv_busy_(false),
transport_recv_eof_(false),
transport_send_busy_(false),
user_read_buf_len_(0),
user_write_buf_len_(0),
network_task_runner_(network_task_runner),
nss_task_runner_(nss_task_runner),
weak_net_log_(weak_net_log_factory_.GetWeakPtr()) {
}
SSLClientSocketNSS::Core::~Core() {
// TODO(wtc): Send SSL close_notify alert.
if (nss_fd_ != NULL) {
PR_Close(nss_fd_);
nss_fd_ = NULL;
}
nss_bufs_ = NULL;
}
bool SSLClientSocketNSS::Core::Init(PRFileDesc* socket,
memio_Private* buffers) {
DCHECK(OnNetworkTaskRunner());
DCHECK(!nss_fd_);
DCHECK(!nss_bufs_);
nss_fd_ = socket;
nss_bufs_ = buffers;
SECStatus rv = SECSuccess;
if (!ssl_config_.next_protos.empty()) {
// TODO(bnc): Check ssl_config_.disabled_cipher_suites.
const bool adequate_encryption =
PK11_TokenExists(CKM_AES_GCM) ||
PK11_TokenExists(CKM_NSS_CHACHA20_POLY1305);
const bool adequate_key_agreement = PK11_TokenExists(CKM_DH_PKCS_DERIVE) ||
PK11_TokenExists(CKM_ECDH1_DERIVE);
std::vector<uint8_t> wire_protos =
SerializeNextProtos(ssl_config_.next_protos,
adequate_encryption && adequate_key_agreement &&
IsTLSVersionAdequateForHTTP2(ssl_config_));
rv = SSL_SetNextProtoNego(
nss_fd_, wire_protos.empty() ? NULL : &wire_protos[0],
wire_protos.size());
if (rv != SECSuccess)
LogFailedNSSFunction(*weak_net_log_, "SSL_SetNextProtoNego", "");
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_ALPN, PR_TRUE);
if (rv != SECSuccess)
LogFailedNSSFunction(*weak_net_log_, "SSL_OptionSet", "SSL_ENABLE_ALPN");
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_NPN, PR_TRUE);
if (rv != SECSuccess)
LogFailedNSSFunction(*weak_net_log_, "SSL_OptionSet", "SSL_ENABLE_NPN");
}
rv = SSL_AuthCertificateHook(
nss_fd_, SSLClientSocketNSS::Core::OwnAuthCertHandler, this);
if (rv != SECSuccess) {
LogFailedNSSFunction(*weak_net_log_, "SSL_AuthCertificateHook", "");
return false;
}
rv = SSL_GetClientAuthDataHook(
nss_fd_, SSLClientSocketNSS::Core::ClientAuthHandler, this);
if (rv != SECSuccess) {
LogFailedNSSFunction(*weak_net_log_, "SSL_GetClientAuthDataHook", "");
return false;
}
if (IsChannelIDEnabled(ssl_config_, channel_id_service_)) {
rv = SSL_SetClientChannelIDCallback(
nss_fd_, SSLClientSocketNSS::Core::ClientChannelIDHandler, this);
if (rv != SECSuccess) {
LogFailedNSSFunction(
*weak_net_log_, "SSL_SetClientChannelIDCallback", "");
}
}
rv = SSL_SetCanFalseStartCallback(
nss_fd_, SSLClientSocketNSS::Core::CanFalseStartCallback, this);
if (rv != SECSuccess) {
LogFailedNSSFunction(*weak_net_log_, "SSL_SetCanFalseStartCallback", "");
return false;
}
rv = SSL_HandshakeCallback(
nss_fd_, SSLClientSocketNSS::Core::HandshakeCallback, this);
if (rv != SECSuccess) {
LogFailedNSSFunction(*weak_net_log_, "SSL_HandshakeCallback", "");
return false;
}
return true;
}
int SSLClientSocketNSS::Core::Connect(const CompletionCallback& callback) {
if (!OnNSSTaskRunner()) {
DCHECK(!detached_);
bool posted = nss_task_runner_->PostTask(
FROM_HERE,
base::Bind(IgnoreResult(&Core::Connect), this, callback));
return posted ? ERR_IO_PENDING : ERR_ABORTED;
}
DCHECK(OnNSSTaskRunner());
DCHECK_EQ(STATE_NONE, next_handshake_state_);
DCHECK(user_read_callback_.is_null());
DCHECK(user_write_callback_.is_null());
DCHECK(user_connect_callback_.is_null());
DCHECK(!user_read_buf_.get());
DCHECK(!user_write_buf_.get());
next_handshake_state_ = STATE_HANDSHAKE;
int rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
user_connect_callback_ = callback;
} else if (rv > OK) {
rv = OK;
}
if (rv != ERR_IO_PENDING && !OnNetworkTaskRunner()) {
PostOrRunCallback(FROM_HERE, base::Bind(callback, rv));
return ERR_IO_PENDING;
}
return rv;
}
void SSLClientSocketNSS::Core::Detach() {
DCHECK(OnNetworkTaskRunner());
detached_ = true;
transport_ = NULL;
weak_net_log_factory_.InvalidateWeakPtrs();
network_handshake_state_.Reset();
channel_id_request_.Cancel();
}
int SSLClientSocketNSS::Core::Read(IOBuffer* buf, int buf_len,
const CompletionCallback& callback) {
if (!OnNSSTaskRunner()) {
DCHECK(OnNetworkTaskRunner());
DCHECK(!detached_);
DCHECK(transport_);
DCHECK(!nss_waiting_read_);
nss_waiting_read_ = true;
bool posted = nss_task_runner_->PostTask(
FROM_HERE,
base::Bind(IgnoreResult(&Core::Read), this, make_scoped_refptr(buf),
buf_len, callback));
if (!posted) {
nss_is_closed_ = true;
nss_waiting_read_ = false;
}
return posted ? ERR_IO_PENDING : ERR_ABORTED;
}
DCHECK(OnNSSTaskRunner());
DCHECK(false_started_ || handshake_callback_called_);
DCHECK_EQ(STATE_NONE, next_handshake_state_);
DCHECK(user_read_callback_.is_null());
DCHECK(user_connect_callback_.is_null());
DCHECK(!user_read_buf_.get());
DCHECK(nss_bufs_);
user_read_buf_ = buf;
user_read_buf_len_ = buf_len;
int rv = DoReadLoop(OK);
if (rv == ERR_IO_PENDING) {
if (OnNetworkTaskRunner())
nss_waiting_read_ = true;
user_read_callback_ = callback;
} else {
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
if (!OnNetworkTaskRunner()) {
PostOrRunCallback(FROM_HERE, base::Bind(&Core::DidNSSRead, this, rv));
PostOrRunCallback(FROM_HERE, base::Bind(callback, rv));
return ERR_IO_PENDING;
} else {
DCHECK(!nss_waiting_read_);
if (rv <= 0) {
nss_is_closed_ = true;
} else {
was_ever_used_ = true;
}
}
}
return rv;
}
int SSLClientSocketNSS::Core::Write(IOBuffer* buf, int buf_len,
const CompletionCallback& callback) {
if (!OnNSSTaskRunner()) {
DCHECK(OnNetworkTaskRunner());
DCHECK(!detached_);
DCHECK(transport_);
DCHECK(!nss_waiting_write_);
nss_waiting_write_ = true;
bool posted = nss_task_runner_->PostTask(
FROM_HERE,
base::Bind(IgnoreResult(&Core::Write), this, make_scoped_refptr(buf),
buf_len, callback));
if (!posted) {
nss_is_closed_ = true;
nss_waiting_write_ = false;
}
return posted ? ERR_IO_PENDING : ERR_ABORTED;
}
DCHECK(OnNSSTaskRunner());
DCHECK(false_started_ || handshake_callback_called_);
DCHECK_EQ(STATE_NONE, next_handshake_state_);
DCHECK(user_write_callback_.is_null());
DCHECK(user_connect_callback_.is_null());
DCHECK(!user_write_buf_.get());
DCHECK(nss_bufs_);
user_write_buf_ = buf;
user_write_buf_len_ = buf_len;
int rv = DoWriteLoop(OK);
if (rv == ERR_IO_PENDING) {
if (OnNetworkTaskRunner())
nss_waiting_write_ = true;
user_write_callback_ = callback;
} else {
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
if (!OnNetworkTaskRunner()) {
PostOrRunCallback(FROM_HERE, base::Bind(&Core::DidNSSWrite, this, rv));
PostOrRunCallback(FROM_HERE, base::Bind(callback, rv));
return ERR_IO_PENDING;
} else {
DCHECK(!nss_waiting_write_);
if (rv < 0) {
nss_is_closed_ = true;
} else if (rv > 0) {
was_ever_used_ = true;
}
}
}
return rv;
}
bool SSLClientSocketNSS::Core::IsConnected() const {
DCHECK(OnNetworkTaskRunner());
return !nss_is_closed_;
}
bool SSLClientSocketNSS::Core::HasPendingAsyncOperation() const {
DCHECK(OnNetworkTaskRunner());
return nss_waiting_read_ || nss_waiting_write_;
}
bool SSLClientSocketNSS::Core::HasUnhandledReceivedData() const {
DCHECK(OnNetworkTaskRunner());
return unhandled_buffer_size_ != 0;
}
bool SSLClientSocketNSS::Core::WasEverUsed() const {
DCHECK(OnNetworkTaskRunner());
return was_ever_used_;
}
void SSLClientSocketNSS::Core::CacheSessionIfNecessary() {
// TODO(rsleevi): This should occur on the NSS task runner, due to the use of
// nss_fd_. However, it happens on the network task runner in order to match
// the buggy behavior of ExportKeyingMaterial.
//
// Once http://crbug.com/330360 is fixed, this should be moved to an
// implementation that exclusively does this work on the NSS TaskRunner. This
// is "safe" because it is only called during the certificate verification
// state machine of the main socket, which is safe because no underlying
// transport IO will be occuring in that state, and NSS will not be blocking
// on any PKCS#11 related locks that might block the Network TaskRunner.
DCHECK(OnNetworkTaskRunner());
// Only cache the session if the connection was not False Started, because
// sessions should only be cached *after* the peer's Finished message is
// processed.
// In the case of False Start, the session will be cached once the
// HandshakeCallback is called, which signals the receipt and processing of
// the Finished message, and which will happen during a call to
// PR_Read/PR_Write.
if (!false_started_)
SSL_CacheSession(nss_fd_);
}
bool SSLClientSocketNSS::Core::OnNSSTaskRunner() const {
return nss_task_runner_->RunsTasksOnCurrentThread();
}
bool SSLClientSocketNSS::Core::OnNetworkTaskRunner() const {
return network_task_runner_->RunsTasksOnCurrentThread();
}
// static
SECStatus SSLClientSocketNSS::Core::OwnAuthCertHandler(
void* arg,
PRFileDesc* socket,
PRBool checksig,
PRBool is_server) {
Core* core = reinterpret_cast<Core*>(arg);
if (core->handshake_callback_called_) {
// Disallow the server certificate to change in a renegotiation.
CERTCertificate* old_cert = core->nss_handshake_state_.server_cert_chain[0];
ScopedCERTCertificate new_cert(SSL_PeerCertificate(socket));
if (new_cert->derCert.len != old_cert->derCert.len ||
memcmp(new_cert->derCert.data, old_cert->derCert.data,
new_cert->derCert.len) != 0) {
// NSS doesn't have an error code that indicates the server certificate
// changed. Borrow SSL_ERROR_WRONG_CERTIFICATE (which NSS isn't using)
// for this purpose.
PORT_SetError(SSL_ERROR_WRONG_CERTIFICATE);
return SECFailure;
}
}
// Tell NSS to not verify the certificate.
return SECSuccess;
}
#if defined(OS_IOS)
// static
SECStatus SSLClientSocketNSS::Core::ClientAuthHandler(
void* arg,
PRFileDesc* socket,
CERTDistNames* ca_names,
CERTCertificate** result_certificate,
SECKEYPrivateKey** result_private_key) {
Core* core = reinterpret_cast<Core*>(arg);
DCHECK(core->OnNSSTaskRunner());
core->PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEvent, core->weak_net_log_,
NetLog::TYPE_SSL_CLIENT_CERT_REQUESTED));
// TODO(droger): Support client auth on iOS. See http://crbug.com/145954).
LOG(WARNING) << "Client auth is not supported";
// Never send a certificate.
core->AddCertProvidedEvent(0);
return SECFailure;
}
#else // !OS_IOS
// static
// Based on Mozilla's NSS_GetClientAuthData.
SECStatus SSLClientSocketNSS::Core::ClientAuthHandler(
void* arg,
PRFileDesc* socket,
CERTDistNames* ca_names,
CERTCertificate** result_certificate,
SECKEYPrivateKey** result_private_key) {
Core* core = reinterpret_cast<Core*>(arg);
DCHECK(core->OnNSSTaskRunner());
core->PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEvent, core->weak_net_log_,
NetLog::TYPE_SSL_CLIENT_CERT_REQUESTED));
// Regular client certificate requested.
core->client_auth_cert_needed_ = !core->ssl_config_.send_client_cert;
void* wincx = SSL_RevealPinArg(socket);
if (core->ssl_config_.send_client_cert) {
// Second pass: a client certificate should have been selected.
if (core->ssl_config_.client_cert.get()) {
CERTCertificate* cert =
CERT_DupCertificate(core->ssl_config_.client_cert->os_cert_handle());
SECKEYPrivateKey* privkey = PK11_FindKeyByAnyCert(cert, wincx);
if (privkey) {
// TODO(jsorianopastor): We should wait for server certificate
// verification before sending our credentials. See
// http://crbug.com/13934.
*result_certificate = cert;
*result_private_key = privkey;
// A cert_count of -1 means the number of certificates is unknown.
// NSS will construct the certificate chain.
core->AddCertProvidedEvent(-1);
return SECSuccess;
}
LOG(WARNING) << "Client cert found without private key";
}
// Send no client certificate.
core->AddCertProvidedEvent(0);
return SECFailure;
}
// First pass: client certificate is needed.
core->nss_handshake_state_.cert_authorities.clear();
// Retrieve the DER-encoded DistinguishedName of the cert issuers accepted by
// the server and save them in |cert_authorities|.
for (int i = 0; i < ca_names->nnames; i++) {
core->nss_handshake_state_.cert_authorities.push_back(std::string(
reinterpret_cast<const char*>(ca_names->names[i].data),
static_cast<size_t>(ca_names->names[i].len)));
}
// Update the network task runner's view of the handshake state now that
// server certificate request has been recorded.
core->PostOrRunCallback(
FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, core,
core->nss_handshake_state_));
// Tell NSS to suspend the client authentication. We will then abort the
// handshake by returning ERR_SSL_CLIENT_AUTH_CERT_NEEDED.
return SECWouldBlock;
}
#endif // OS_IOS
// static
SECStatus SSLClientSocketNSS::Core::CanFalseStartCallback(
PRFileDesc* socket,
void* arg,
PRBool* can_false_start) {
// If the server doesn't support NPN or ALPN, then we don't do False
// Start with it.
PRBool negotiated_extension;
SECStatus rv = SSL_HandshakeNegotiatedExtension(socket,
ssl_app_layer_protocol_xtn,
&negotiated_extension);
if (rv != SECSuccess || !negotiated_extension) {
rv = SSL_HandshakeNegotiatedExtension(socket,
ssl_next_proto_nego_xtn,
&negotiated_extension);
}
if (rv != SECSuccess || !negotiated_extension) {
*can_false_start = PR_FALSE;
return SECSuccess;
}
SSLChannelInfo channel_info;
SECStatus ok =
SSL_GetChannelInfo(socket, &channel_info, sizeof(channel_info));
if (ok != SECSuccess || channel_info.length != sizeof(channel_info) ||
channel_info.protocolVersion < SSL_LIBRARY_VERSION_TLS_1_2 ||
!IsFalseStartableTLSCipherSuite(channel_info.cipherSuite)) {
*can_false_start = PR_FALSE;
return SECSuccess;
}
return SSL_RecommendedCanFalseStart(socket, can_false_start);
}
// static
void SSLClientSocketNSS::Core::HandshakeCallback(
PRFileDesc* socket,
void* arg) {
Core* core = reinterpret_cast<Core*>(arg);
DCHECK(core->OnNSSTaskRunner());
bool is_initial = !core->handshake_callback_called_;
core->handshake_callback_called_ = true;
if (core->false_started_) {
core->false_started_ = false;
// If the connection was False Started, then at the time of this callback,
// the peer's certificate will have been verified or the caller will have
// accepted the error.
// This is guaranteed when using False Start because this callback will
// not be invoked until processing the peer's Finished message, which
// will only happen in a PR_Read/PR_Write call, which can only happen
// after the peer's certificate is verified.
SSL_CacheSessionUnlocked(socket);
// Additionally, when False Starting, DoHandshake() will have already
// called HandshakeSucceeded(), so return now.
return;
}
core->HandshakeSucceeded(is_initial);
}
void SSLClientSocketNSS::Core::HandshakeSucceeded(bool is_initial) {
DCHECK(OnNSSTaskRunner());
PRBool last_handshake_resumed;
SECStatus rv = SSL_HandshakeResumedSession(nss_fd_, &last_handshake_resumed);
if (rv == SECSuccess && last_handshake_resumed) {
nss_handshake_state_.resumed_handshake = true;
} else {
nss_handshake_state_.resumed_handshake = false;
}
RecordChannelIDSupportOnNSSTaskRunner();
UpdateServerCert();
UpdateSignedCertTimestamps();
UpdateStapledOCSPResponse();
UpdateConnectionStatus();
UpdateNextProto();
UpdateExtensionUsed();
if (is_initial && IsRenegotiationAllowed()) {
// For compatibility, do not enforce RFC 5746 support. Per section 4.1,
// enforcement falls largely on the server.
//
// This is done in a callback rather than after SSL_ForceHandshake returns
// because SSL_ForceHandshake will otherwise greedly consume renegotiations
// before returning if Finished and HelloRequest are in the same
// record.
//
// Note that SSL_OptionSet should only be called for an initial
// handshake. See https://crbug.com/125299.
SECStatus rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_RENEGOTIATION,
SSL_RENEGOTIATE_TRANSITIONAL);
DCHECK_EQ(SECSuccess, rv);
}
// Update the network task runners view of the handshake state whenever
// a handshake has completed.
PostOrRunCallback(
FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, this,
nss_handshake_state_));
}
int SSLClientSocketNSS::Core::HandleNSSError(PRErrorCode nss_error) {
DCHECK(OnNSSTaskRunner());
return MapNSSClientError(nss_error);
}
int SSLClientSocketNSS::Core::DoHandshakeLoop(int last_io_result) {
DCHECK(OnNSSTaskRunner());
int rv = last_io_result;
do {
// Default to STATE_NONE for next state.
State state = next_handshake_state_;
GotoState(STATE_NONE);
switch (state) {
case STATE_HANDSHAKE:
rv = DoHandshake();
break;
case STATE_GET_DOMAIN_BOUND_CERT_COMPLETE:
rv = DoGetDBCertComplete(rv);
break;
case STATE_NONE:
default:
rv = ERR_UNEXPECTED;
LOG(DFATAL) << "unexpected state " << state;
break;
}
// Do the actual network I/O
bool network_moved = DoTransportIO();
if (network_moved && next_handshake_state_ == STATE_HANDSHAKE) {
// In general we exit the loop if rv is ERR_IO_PENDING. In this
// special case we keep looping even if rv is ERR_IO_PENDING because
// the transport IO may allow DoHandshake to make progress.
DCHECK(rv == OK || rv == ERR_IO_PENDING);
rv = OK; // This causes us to stay in the loop.
}
} while (rv != ERR_IO_PENDING && next_handshake_state_ != STATE_NONE);
return rv;
}
int SSLClientSocketNSS::Core::DoReadLoop(int result) {
DCHECK(OnNSSTaskRunner());
DCHECK(false_started_ || handshake_callback_called_);
DCHECK_EQ(STATE_NONE, next_handshake_state_);
if (result < 0)
return result;
if (!nss_bufs_) {
LOG(DFATAL) << "!nss_bufs_";
int rv = ERR_UNEXPECTED;
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_READ_ERROR,
CreateNetLogSSLErrorCallback(rv, 0)));
return rv;
}
bool network_moved;
int rv;
do {
rv = DoPayloadRead();
network_moved = DoTransportIO();
} while (rv == ERR_IO_PENDING && network_moved);
return rv;
}
int SSLClientSocketNSS::Core::DoWriteLoop(int result) {
DCHECK(OnNSSTaskRunner());
DCHECK(false_started_ || handshake_callback_called_);
DCHECK_EQ(STATE_NONE, next_handshake_state_);
if (result < 0)
return result;
if (!nss_bufs_) {
LOG(DFATAL) << "!nss_bufs_";
int rv = ERR_UNEXPECTED;
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_READ_ERROR,
CreateNetLogSSLErrorCallback(rv, 0)));
return rv;
}
bool network_moved;
int rv;
do {
rv = DoPayloadWrite();
network_moved = DoTransportIO();
} while (rv == ERR_IO_PENDING && network_moved);
LeaveFunction(rv);
return rv;
}
int SSLClientSocketNSS::Core::DoHandshake() {
DCHECK(OnNSSTaskRunner());
int net_error = OK;
SECStatus rv = SSL_ForceHandshake(nss_fd_);
// Note: this function may be called multiple times during the handshake, so
// even though channel id and client auth are separate else cases, they can
// both be used during a single SSL handshake.
if (channel_id_needed_) {
GotoState(STATE_GET_DOMAIN_BOUND_CERT_COMPLETE);
net_error = ERR_IO_PENDING;
} else if (client_auth_cert_needed_) {
net_error = ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_HANDSHAKE_ERROR,
CreateNetLogSSLErrorCallback(net_error, 0)));
} else if (rv == SECSuccess) {
if (!handshake_callback_called_) {
false_started_ = true;
HandshakeSucceeded(true);
}
} else {
PRErrorCode prerr = PR_GetError();
net_error = HandleNSSError(prerr);
// If not done, stay in this state
if (net_error == ERR_IO_PENDING) {
GotoState(STATE_HANDSHAKE);
} else {
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_HANDSHAKE_ERROR,
CreateNetLogSSLErrorCallback(net_error, prerr)));
}
}
return net_error;
}
int SSLClientSocketNSS::Core::DoGetDBCertComplete(int result) {
SECStatus rv;
PostOrRunCallback(
FROM_HERE,
base::Bind(&BoundNetLog::EndEventWithNetErrorCode, weak_net_log_,
NetLog::TYPE_SSL_GET_DOMAIN_BOUND_CERT, result));
channel_id_needed_ = false;
if (result != OK)
return result;
SECKEYPublicKey* public_key;
SECKEYPrivateKey* private_key;
int error = ImportChannelIDKeys(&public_key, &private_key);
if (error != OK)
return error;
rv = SSL_RestartHandshakeAfterChannelIDReq(nss_fd_, public_key, private_key);
if (rv != SECSuccess)
return MapNSSError(PORT_GetError());
SetChannelIDProvided();
GotoState(STATE_HANDSHAKE);
return OK;
}
int SSLClientSocketNSS::Core::DoPayloadRead() {
DCHECK(OnNSSTaskRunner());
DCHECK(user_read_buf_.get());
DCHECK_GT(user_read_buf_len_, 0);
int rv;
// If a previous greedy read resulted in an error that was not consumed (eg:
// due to the caller having read some data successfully), then return that
// pending error now.
if (pending_read_result_ != kNoPendingReadResult) {
rv = pending_read_result_;
PRErrorCode prerr = pending_read_nss_error_;
pending_read_result_ = kNoPendingReadResult;
pending_read_nss_error_ = 0;
if (rv == 0) {
PostOrRunCallback(
FROM_HERE,
base::Bind(&LogByteTransferEvent, weak_net_log_,
NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED, rv,
scoped_refptr<IOBuffer>(user_read_buf_)));
} else {
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_READ_ERROR,
CreateNetLogSSLErrorCallback(rv, prerr)));
}
return rv;
}
// Perform a greedy read, attempting to read as much as the caller has
// requested. In the current NSS implementation, PR_Read will return
// exactly one SSL application data record's worth of data per invocation.
// The record size is dictated by the server, and may be noticeably smaller
// than the caller's buffer. This may be as little as a single byte, if the
// server is performing 1/n-1 record splitting.
//
// However, this greedy read may result in renegotiations/re-handshakes
// happening or may lead to some data being read, followed by an EOF (such as
// a TLS close-notify). If at least some data was read, then that result
// should be deferred until the next call to DoPayloadRead(). Otherwise, if no
// data was read, it's safe to return the error or EOF immediately.
int total_bytes_read = 0;
do {
rv = PR_Read(nss_fd_, user_read_buf_->data() + total_bytes_read,
user_read_buf_len_ - total_bytes_read);
if (rv > 0)
total_bytes_read += rv;
} while (total_bytes_read < user_read_buf_len_ && rv > 0);
int amount_in_read_buffer = memio_GetReadableBufferSize(nss_bufs_);
PostOrRunCallback(FROM_HERE, base::Bind(&Core::OnNSSBufferUpdated, this,
amount_in_read_buffer));
if (total_bytes_read == user_read_buf_len_) {
// The caller's entire request was satisfied without error. No further
// processing needed.
rv = total_bytes_read;
} else {
// Otherwise, an error occurred (rv <= 0). The error needs to be handled
// immediately, while the NSPR/NSS errors are still available in
// thread-local storage. However, the handled/remapped error code should
// only be returned if no application data was already read; if it was, the
// error code should be deferred until the next call of DoPayloadRead.
//
// If no data was read, |*next_result| will point to the return value of
// this function. If at least some data was read, |*next_result| will point
// to |pending_read_error_|, to be returned in a future call to
// DoPayloadRead() (e.g.: after the current data is handled).
int* next_result = &rv;
if (total_bytes_read > 0) {
pending_read_result_ = rv;
rv = total_bytes_read;
next_result = &pending_read_result_;
}
if (client_auth_cert_needed_) {
*next_result = ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
pending_read_nss_error_ = 0;
} else if (*next_result < 0) {
// If *next_result == 0, then that indicates EOF, and no special error
// handling is needed.
pending_read_nss_error_ = PR_GetError();
*next_result = HandleNSSError(pending_read_nss_error_);
if (rv > 0 && *next_result == ERR_IO_PENDING) {
// If at least some data was read from PR_Read(), do not treat
// insufficient data as an error to return in the next call to
// DoPayloadRead() - instead, let the call fall through to check
// PR_Read() again. This is because DoTransportIO() may complete
// in between the next call to DoPayloadRead(), and thus it is
// important to check PR_Read() on subsequent invocations to see
// if a complete record may now be read.
pending_read_nss_error_ = 0;
pending_read_result_ = kNoPendingReadResult;
}
}
}
DCHECK_NE(ERR_IO_PENDING, pending_read_result_);
if (rv >= 0) {
PostOrRunCallback(
FROM_HERE,
base::Bind(&LogByteTransferEvent, weak_net_log_,
NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED, rv,
scoped_refptr<IOBuffer>(user_read_buf_)));
} else if (rv != ERR_IO_PENDING) {
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_READ_ERROR,
CreateNetLogSSLErrorCallback(rv, pending_read_nss_error_)));
pending_read_nss_error_ = 0;
}
return rv;
}
int SSLClientSocketNSS::Core::DoPayloadWrite() {
DCHECK(OnNSSTaskRunner());
DCHECK(user_write_buf_.get());
int old_amount_in_read_buffer = memio_GetReadableBufferSize(nss_bufs_);
int rv = PR_Write(nss_fd_, user_write_buf_->data(), user_write_buf_len_);
int new_amount_in_read_buffer = memio_GetReadableBufferSize(nss_bufs_);
// PR_Write could potentially consume the unhandled data in the memio read
// buffer if a renegotiation is in progress. If the buffer is consumed,
// notify the latest buffer size to NetworkRunner.
if (old_amount_in_read_buffer != new_amount_in_read_buffer) {
PostOrRunCallback(
FROM_HERE,
base::Bind(&Core::OnNSSBufferUpdated, this, new_amount_in_read_buffer));
}
if (rv >= 0) {
PostOrRunCallback(
FROM_HERE,
base::Bind(&LogByteTransferEvent, weak_net_log_,
NetLog::TYPE_SSL_SOCKET_BYTES_SENT, rv,
scoped_refptr<IOBuffer>(user_write_buf_)));
return rv;
}
PRErrorCode prerr = PR_GetError();
if (prerr == PR_WOULD_BLOCK_ERROR)
return ERR_IO_PENDING;
rv = HandleNSSError(prerr);
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_WRITE_ERROR,
CreateNetLogSSLErrorCallback(rv, prerr)));
return rv;
}
// Do as much network I/O as possible between the buffer and the
// transport socket. Return true if some I/O performed, false
// otherwise (error or ERR_IO_PENDING).
bool SSLClientSocketNSS::Core::DoTransportIO() {
DCHECK(OnNSSTaskRunner());
bool network_moved = false;
if (nss_bufs_ != NULL) {
int rv;
// Read and write as much data as we can. The loop is neccessary
// because Write() may return synchronously.
do {
rv = BufferSend();
if (rv != ERR_IO_PENDING && rv != 0)
network_moved = true;
} while (rv > 0);
if (!transport_recv_eof_ && BufferRecv() != ERR_IO_PENDING)
network_moved = true;
}
return network_moved;
}
int SSLClientSocketNSS::Core::BufferRecv() {
DCHECK(OnNSSTaskRunner());
if (transport_recv_busy_)
return ERR_IO_PENDING;
// If NSS is blocked on reading from |nss_bufs_|, because it is empty,
// determine how much data NSS wants to read. If NSS was not blocked,
// this will return 0.
int requested = memio_GetReadRequest(nss_bufs_);
if (requested == 0) {
// This is not a perfect match of error codes, as no operation is
// actually pending. However, returning 0 would be interpreted as a
// possible sign of EOF, which is also an inappropriate match.
return ERR_IO_PENDING;
}
char* buf;
int nb = memio_GetReadParams(nss_bufs_, &buf);
int rv;
if (!nb) {
// buffer too full to read into, so no I/O possible at moment
rv = ERR_IO_PENDING;
} else {
scoped_refptr<IOBuffer> read_buffer(new IOBuffer(nb));
if (OnNetworkTaskRunner()) {
rv = DoBufferRecv(read_buffer.get(), nb);
} else {
bool posted = network_task_runner_->PostTask(
FROM_HERE,
base::Bind(IgnoreResult(&Core::DoBufferRecv), this, read_buffer,
nb));
rv = posted ? ERR_IO_PENDING : ERR_ABORTED;
}
if (rv == ERR_IO_PENDING) {
transport_recv_busy_ = true;
} else {
if (rv > 0) {
memcpy(buf, read_buffer->data(), rv);
} else if (rv == 0) {
transport_recv_eof_ = true;
}
memio_PutReadResult(nss_bufs_, MapErrorToNSS(rv));
}
}
return rv;
}
// Return 0 if nss_bufs_ was empty,
// > 0 for bytes transferred immediately,
// < 0 for error (or the non-error ERR_IO_PENDING).
int SSLClientSocketNSS::Core::BufferSend() {
DCHECK(OnNSSTaskRunner());
if (transport_send_busy_)
return ERR_IO_PENDING;
const char* buf1;
const char* buf2;
unsigned int len1, len2;
if (memio_GetWriteParams(nss_bufs_, &buf1, &len1, &buf2, &len2)) {
// It is important this return synchronously to prevent spinning infinitely
// in the off-thread NSS case. The error code itself is ignored, so just
// return ERR_ABORTED. See https://crbug.com/381160.
return ERR_ABORTED;
}
const size_t len = len1 + len2;
int rv = 0;
if (len) {
scoped_refptr<IOBuffer> send_buffer(new IOBuffer(len));
memcpy(send_buffer->data(), buf1, len1);
memcpy(send_buffer->data() + len1, buf2, len2);
if (OnNetworkTaskRunner()) {
rv = DoBufferSend(send_buffer.get(), len);
} else {
bool posted = network_task_runner_->PostTask(
FROM_HERE,
base::Bind(IgnoreResult(&Core::DoBufferSend), this, send_buffer,
len));
rv = posted ? ERR_IO_PENDING : ERR_ABORTED;
}
if (rv == ERR_IO_PENDING) {
transport_send_busy_ = true;
} else {
memio_PutWriteResult(nss_bufs_, MapErrorToNSS(rv));
}
}
return rv;
}
void SSLClientSocketNSS::Core::OnRecvComplete(int result) {
DCHECK(OnNSSTaskRunner());
if (next_handshake_state_ == STATE_HANDSHAKE) {
OnHandshakeIOComplete(result);
return;
}
// Network layer received some data, check if client requested to read
// decrypted data.
if (!user_read_buf_.get())
return;
int rv = DoReadLoop(result);
if (rv != ERR_IO_PENDING)
DoReadCallback(rv);
}
void SSLClientSocketNSS::Core::OnSendComplete(int result) {
DCHECK(OnNSSTaskRunner());
if (next_handshake_state_ == STATE_HANDSHAKE) {
OnHandshakeIOComplete(result);
return;
}
// OnSendComplete may need to call DoPayloadRead while the renegotiation
// handshake is in progress.
int rv_read = ERR_IO_PENDING;
int rv_write = ERR_IO_PENDING;
bool network_moved;
do {
if (user_read_buf_.get())
rv_read = DoPayloadRead();
if (user_write_buf_.get())
rv_write = DoPayloadWrite();
network_moved = DoTransportIO();
} while (rv_read == ERR_IO_PENDING && rv_write == ERR_IO_PENDING &&
(user_read_buf_.get() || user_write_buf_.get()) && network_moved);
// If the parent SSLClientSocketNSS is deleted during the processing of the
// Read callback and OnNSSTaskRunner() == OnNetworkTaskRunner(), then the Core
// will be detached (and possibly deleted). Guard against deletion by taking
// an extra reference, then check if the Core was detached before invoking the
// next callback.
scoped_refptr<Core> guard(this);
if (user_read_buf_.get() && rv_read != ERR_IO_PENDING)
DoReadCallback(rv_read);
if (OnNetworkTaskRunner() && detached_)
return;
if (user_write_buf_.get() && rv_write != ERR_IO_PENDING)
DoWriteCallback(rv_write);
}
// As part of Connect(), the SSLClientSocketNSS object performs an SSL
// handshake. This requires network IO, which in turn calls
// BufferRecvComplete() with a non-zero byte count. This byte count eventually
// winds its way through the state machine and ends up being passed to the
// callback. For Read() and Write(), that's what we want. But for Connect(),
// the caller expects OK (i.e. 0) for success.
void SSLClientSocketNSS::Core::DoConnectCallback(int rv) {
DCHECK(OnNSSTaskRunner());
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!user_connect_callback_.is_null());
base::Closure c = base::Bind(
base::ResetAndReturn(&user_connect_callback_),
rv > OK ? OK : rv);
PostOrRunCallback(FROM_HERE, c);
}
void SSLClientSocketNSS::Core::DoReadCallback(int rv) {
DCHECK(OnNSSTaskRunner());
DCHECK_NE(ERR_IO_PENDING, rv);
DCHECK(!user_read_callback_.is_null());
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
int amount_in_read_buffer = memio_GetReadableBufferSize(nss_bufs_);
// This is used to curry the |amount_int_read_buffer| and |user_cb| back to
// the network task runner.
PostOrRunCallback(
FROM_HERE,
base::Bind(&Core::OnNSSBufferUpdated, this, amount_in_read_buffer));
PostOrRunCallback(
FROM_HERE,
base::Bind(&Core::DidNSSRead, this, rv));
PostOrRunCallback(
FROM_HERE,
base::Bind(base::ResetAndReturn(&user_read_callback_), rv));
}
void SSLClientSocketNSS::Core::DoWriteCallback(int rv) {
DCHECK(OnNSSTaskRunner());
DCHECK_NE(ERR_IO_PENDING, rv);
DCHECK(!user_write_callback_.is_null());
// Since Run may result in Write being called, clear |user_write_callback_|
// up front.
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
// Update buffer status because DoWriteLoop called DoTransportIO which may
// perform read operations.
int amount_in_read_buffer = memio_GetReadableBufferSize(nss_bufs_);
// This is used to curry the |amount_int_read_buffer| and |user_cb| back to
// the network task runner.
PostOrRunCallback(
FROM_HERE,
base::Bind(&Core::OnNSSBufferUpdated, this, amount_in_read_buffer));
PostOrRunCallback(
FROM_HERE,
base::Bind(&Core::DidNSSWrite, this, rv));
PostOrRunCallback(
FROM_HERE,
base::Bind(base::ResetAndReturn(&user_write_callback_), rv));
}
SECStatus SSLClientSocketNSS::Core::ClientChannelIDHandler(
void* arg,
PRFileDesc* socket,
SECKEYPublicKey **out_public_key,
SECKEYPrivateKey **out_private_key) {
Core* core = reinterpret_cast<Core*>(arg);
DCHECK(core->OnNSSTaskRunner());
core->PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEvent, core->weak_net_log_,
NetLog::TYPE_SSL_CHANNEL_ID_REQUESTED));
// We have negotiated the TLS channel ID extension.
core->channel_id_xtn_negotiated_ = true;
std::string host = core->host_and_port_.host();
int error = ERR_UNEXPECTED;
if (core->OnNetworkTaskRunner()) {
error = core->DoGetChannelID(host);
} else {
bool posted = core->network_task_runner_->PostTask(
FROM_HERE,
base::Bind(
IgnoreResult(&Core::DoGetChannelID),
core, host));
error = posted ? ERR_IO_PENDING : ERR_ABORTED;
}
if (error == ERR_IO_PENDING) {
// Asynchronous case.
core->channel_id_needed_ = true;
return SECWouldBlock;
}
core->PostOrRunCallback(
FROM_HERE,
base::Bind(&BoundNetLog::EndEventWithNetErrorCode, core->weak_net_log_,
NetLog::TYPE_SSL_GET_DOMAIN_BOUND_CERT, error));
SECStatus rv = SECSuccess;
if (error == OK) {
// Synchronous success.
int result = core->ImportChannelIDKeys(out_public_key, out_private_key);
if (result == OK)
core->SetChannelIDProvided();
else
rv = SECFailure;
} else {
rv = SECFailure;
}
return rv;
}
int SSLClientSocketNSS::Core::ImportChannelIDKeys(SECKEYPublicKey** public_key,
SECKEYPrivateKey** key) {
if (!channel_id_key_)
return SECFailure;
*public_key = SECKEY_CopyPublicKey(channel_id_key_->public_key());
*key = SECKEY_CopyPrivateKey(channel_id_key_->key());
return OK;
}
void SSLClientSocketNSS::Core::UpdateServerCert() {
nss_handshake_state_.server_cert_chain.Reset(nss_fd_);
nss_handshake_state_.server_cert = X509Certificate::CreateFromDERCertChain(
nss_handshake_state_.server_cert_chain.AsStringPieceVector());
if (nss_handshake_state_.server_cert.get()) {
// Since this will be called asynchronously on another thread, it needs to
// own a reference to the certificate.
NetLog::ParametersCallback net_log_callback =
base::Bind(&NetLogX509CertificateCallback,
nss_handshake_state_.server_cert);
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_CERTIFICATES_RECEIVED,
net_log_callback));
}
}
void SSLClientSocketNSS::Core::UpdateSignedCertTimestamps() {
const SECItem* signed_cert_timestamps =
SSL_PeerSignedCertTimestamps(nss_fd_);
if (!signed_cert_timestamps || !signed_cert_timestamps->len)
return;
nss_handshake_state_.sct_list_from_tls_extension = std::string(
reinterpret_cast<char*>(signed_cert_timestamps->data),
signed_cert_timestamps->len);
}
void SSLClientSocketNSS::Core::UpdateStapledOCSPResponse() {
PRBool ocsp_requested = PR_FALSE;
SSL_OptionGet(nss_fd_, SSL_ENABLE_OCSP_STAPLING, &ocsp_requested);
const SECItemArray* ocsp_responses =
SSL_PeerStapledOCSPResponses(nss_fd_);
bool ocsp_responses_present = ocsp_responses && ocsp_responses->len;
if (ocsp_requested)
UMA_HISTOGRAM_BOOLEAN("Net.OCSPResponseStapled", ocsp_responses_present);
if (!ocsp_responses_present)
return;
nss_handshake_state_.stapled_ocsp_response = std::string(
reinterpret_cast<char*>(ocsp_responses->items[0].data),
ocsp_responses->items[0].len);
}
void SSLClientSocketNSS::Core::UpdateConnectionStatus() {
// Note: This function may be called multiple times for a single connection
// if renegotiations occur.
nss_handshake_state_.ssl_connection_status = 0;
SSLChannelInfo channel_info;
SECStatus ok = SSL_GetChannelInfo(nss_fd_,
&channel_info, sizeof(channel_info));
if (ok == SECSuccess &&
channel_info.length == sizeof(channel_info) &&
channel_info.cipherSuite) {
nss_handshake_state_.ssl_connection_status |= channel_info.cipherSuite;
nss_handshake_state_.ssl_connection_status |=
(static_cast<int>(channel_info.compressionMethod) &
SSL_CONNECTION_COMPRESSION_MASK) <<
SSL_CONNECTION_COMPRESSION_SHIFT;
int version = SSL_CONNECTION_VERSION_UNKNOWN;
if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_TLS_1_0) {
version = SSL_CONNECTION_VERSION_TLS1;
} else if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_TLS_1_1) {
version = SSL_CONNECTION_VERSION_TLS1_1;
} else if (channel_info.protocolVersion == SSL_LIBRARY_VERSION_TLS_1_2) {
version = SSL_CONNECTION_VERSION_TLS1_2;
}
DCHECK_NE(SSL_CONNECTION_VERSION_UNKNOWN, version);
nss_handshake_state_.ssl_connection_status |=
(version & SSL_CONNECTION_VERSION_MASK) <<
SSL_CONNECTION_VERSION_SHIFT;
}
PRBool peer_supports_renego_ext;
ok = SSL_HandshakeNegotiatedExtension(nss_fd_, ssl_renegotiation_info_xtn,
&peer_supports_renego_ext);
if (ok == SECSuccess) {
if (!peer_supports_renego_ext) {
nss_handshake_state_.ssl_connection_status |=
SSL_CONNECTION_NO_RENEGOTIATION_EXTENSION;
// Log an informational message if the server does not support secure
// renegotiation (RFC 5746).
VLOG(1) << "The server " << host_and_port_.ToString()
<< " does not support the TLS renegotiation_info extension.";
}
}
if (ssl_config_.version_fallback) {
nss_handshake_state_.ssl_connection_status |=
SSL_CONNECTION_VERSION_FALLBACK;
}
}
void SSLClientSocketNSS::Core::UpdateNextProto() {
uint8 buf[256];
SSLNextProtoState state;
unsigned buf_len;
SECStatus rv = SSL_GetNextProto(nss_fd_, &state, buf, &buf_len, sizeof(buf));
if (rv != SECSuccess)
return;
nss_handshake_state_.next_proto =
std::string(reinterpret_cast<char*>(buf), buf_len);
switch (state) {
case SSL_NEXT_PROTO_NEGOTIATED:
case SSL_NEXT_PROTO_SELECTED:
nss_handshake_state_.next_proto_status = kNextProtoNegotiated;
break;
case SSL_NEXT_PROTO_NO_OVERLAP:
nss_handshake_state_.next_proto_status = kNextProtoNoOverlap;
break;
case SSL_NEXT_PROTO_NO_SUPPORT:
nss_handshake_state_.next_proto_status = kNextProtoUnsupported;
break;
default:
NOTREACHED();
break;
}
}
void SSLClientSocketNSS::Core::UpdateExtensionUsed() {
PRBool negotiated_extension;
SECStatus rv = SSL_HandshakeNegotiatedExtension(nss_fd_,
ssl_app_layer_protocol_xtn,
&negotiated_extension);
if (rv == SECSuccess && negotiated_extension) {
nss_handshake_state_.negotiation_extension_ = kExtensionALPN;
} else {
rv = SSL_HandshakeNegotiatedExtension(nss_fd_,
ssl_next_proto_nego_xtn,
&negotiated_extension);
if (rv == SECSuccess && negotiated_extension) {
nss_handshake_state_.negotiation_extension_ = kExtensionNPN;
}
}
}
bool SSLClientSocketNSS::Core::IsRenegotiationAllowed() const {
DCHECK(OnNSSTaskRunner());
if (nss_handshake_state_.next_proto_status == kNextProtoUnsupported)
return ssl_config_.renego_allowed_default;
NextProto next_proto = NextProtoFromString(nss_handshake_state_.next_proto);
for (NextProto allowed : ssl_config_.renego_allowed_for_protos) {
if (next_proto == allowed)
return true;
}
return false;
}
void SSLClientSocketNSS::Core::RecordChannelIDSupportOnNSSTaskRunner() {
DCHECK(OnNSSTaskRunner());
if (nss_handshake_state_.resumed_handshake)
return;
// Copy the NSS task runner-only state to the network task runner and
// log histograms from there, since the histograms also need access to the
// network task runner state.
PostOrRunCallback(
FROM_HERE,
base::Bind(&Core::RecordChannelIDSupportOnNetworkTaskRunner,
this,
channel_id_xtn_negotiated_,
ssl_config_.channel_id_enabled,
crypto::ECPrivateKey::IsSupported()));
}
void SSLClientSocketNSS::Core::RecordChannelIDSupportOnNetworkTaskRunner(
bool negotiated_channel_id,
bool channel_id_enabled,
bool supports_ecc) const {
DCHECK(OnNetworkTaskRunner());
RecordChannelIDSupport(channel_id_service_,
negotiated_channel_id,
channel_id_enabled,
supports_ecc);
}
int SSLClientSocketNSS::Core::DoBufferRecv(IOBuffer* read_buffer, int len) {
DCHECK(OnNetworkTaskRunner());
DCHECK_GT(len, 0);
if (detached_)
return ERR_ABORTED;
int rv = transport_->socket()->Read(
read_buffer, len,
base::Bind(&Core::BufferRecvComplete, base::Unretained(this),
scoped_refptr<IOBuffer>(read_buffer)));
if (!OnNSSTaskRunner() && rv != ERR_IO_PENDING) {
nss_task_runner_->PostTask(
FROM_HERE, base::Bind(&Core::BufferRecvComplete, this,
scoped_refptr<IOBuffer>(read_buffer), rv));
return rv;
}
return rv;
}
int SSLClientSocketNSS::Core::DoBufferSend(IOBuffer* send_buffer, int len) {
DCHECK(OnNetworkTaskRunner());
DCHECK_GT(len, 0);
if (detached_)
return ERR_ABORTED;
int rv = transport_->socket()->Write(
send_buffer, len,
base::Bind(&Core::BufferSendComplete,
base::Unretained(this)));
if (!OnNSSTaskRunner() && rv != ERR_IO_PENDING) {
nss_task_runner_->PostTask(
FROM_HERE,
base::Bind(&Core::BufferSendComplete, this, rv));
return rv;
}
return rv;
}
int SSLClientSocketNSS::Core::DoGetChannelID(const std::string& host) {
DCHECK(OnNetworkTaskRunner());
if (detached_)
return ERR_ABORTED;
weak_net_log_->BeginEvent(NetLog::TYPE_SSL_GET_DOMAIN_BOUND_CERT);
int rv = channel_id_service_->GetOrCreateChannelID(
host, &channel_id_key_,
base::Bind(&Core::OnGetChannelIDComplete, base::Unretained(this)),
&channel_id_request_);
if (rv != ERR_IO_PENDING && !OnNSSTaskRunner()) {
nss_task_runner_->PostTask(
FROM_HERE,
base::Bind(&Core::OnHandshakeIOComplete, this, rv));
return ERR_IO_PENDING;
}
return rv;
}
void SSLClientSocketNSS::Core::OnHandshakeStateUpdated(
const HandshakeState& state) {
DCHECK(OnNetworkTaskRunner());
network_handshake_state_ = state;
}
void SSLClientSocketNSS::Core::OnNSSBufferUpdated(int amount_in_read_buffer) {
DCHECK(OnNetworkTaskRunner());
unhandled_buffer_size_ = amount_in_read_buffer;
}
void SSLClientSocketNSS::Core::DidNSSRead(int result) {
DCHECK(OnNetworkTaskRunner());
DCHECK(nss_waiting_read_);
nss_waiting_read_ = false;
if (result <= 0) {
nss_is_closed_ = true;
} else {
was_ever_used_ = true;
}
}
void SSLClientSocketNSS::Core::DidNSSWrite(int result) {
DCHECK(OnNetworkTaskRunner());
DCHECK(nss_waiting_write_);
nss_waiting_write_ = false;
if (result < 0) {
nss_is_closed_ = true;
} else if (result > 0) {
was_ever_used_ = true;
}
}
void SSLClientSocketNSS::Core::BufferSendComplete(int result) {
if (!OnNSSTaskRunner()) {
if (detached_)
return;
nss_task_runner_->PostTask(
FROM_HERE, base::Bind(&Core::BufferSendComplete, this, result));
return;
}
DCHECK(OnNSSTaskRunner());
memio_PutWriteResult(nss_bufs_, MapErrorToNSS(result));
transport_send_busy_ = false;
OnSendComplete(result);
}
void SSLClientSocketNSS::Core::OnHandshakeIOComplete(int result) {
if (!OnNSSTaskRunner()) {
if (detached_)
return;
nss_task_runner_->PostTask(
FROM_HERE, base::Bind(&Core::OnHandshakeIOComplete, this, result));
return;
}
DCHECK(OnNSSTaskRunner());
int rv = DoHandshakeLoop(result);
if (rv != ERR_IO_PENDING)
DoConnectCallback(rv);
}
void SSLClientSocketNSS::Core::OnGetChannelIDComplete(int result) {
DVLOG(1) << __FUNCTION__ << " " << result;
DCHECK(OnNetworkTaskRunner());
OnHandshakeIOComplete(result);
}
void SSLClientSocketNSS::Core::BufferRecvComplete(
IOBuffer* read_buffer,
int result) {
DCHECK(read_buffer);
if (!OnNSSTaskRunner()) {
if (detached_)
return;
nss_task_runner_->PostTask(
FROM_HERE, base::Bind(&Core::BufferRecvComplete, this,
scoped_refptr<IOBuffer>(read_buffer), result));
return;
}
DCHECK(OnNSSTaskRunner());
if (result > 0) {
char* buf;
int nb = memio_GetReadParams(nss_bufs_, &buf);
CHECK_GE(nb, result);
memcpy(buf, read_buffer->data(), result);
} else if (result == 0) {
transport_recv_eof_ = true;
}
memio_PutReadResult(nss_bufs_, MapErrorToNSS(result));
transport_recv_busy_ = false;
OnRecvComplete(result);
}
void SSLClientSocketNSS::Core::PostOrRunCallback(
const tracked_objects::Location& location,
const base::Closure& task) {
if (!OnNetworkTaskRunner()) {
network_task_runner_->PostTask(
FROM_HERE,
base::Bind(&Core::PostOrRunCallback, this, location, task));
return;
}
if (detached_ || task.is_null())
return;
task.Run();
}
void SSLClientSocketNSS::Core::AddCertProvidedEvent(int cert_count) {
PostOrRunCallback(
FROM_HERE,
base::Bind(&AddLogEventWithCallback, weak_net_log_,
NetLog::TYPE_SSL_CLIENT_CERT_PROVIDED,
NetLog::IntegerCallback("cert_count", cert_count)));
}
void SSLClientSocketNSS::Core::SetChannelIDProvided() {
PostOrRunCallback(
FROM_HERE, base::Bind(&AddLogEvent, weak_net_log_,
NetLog::TYPE_SSL_CHANNEL_ID_PROVIDED));
nss_handshake_state_.channel_id_sent = true;
// Update the network task runner's view of the handshake state now that
// channel id has been sent.
PostOrRunCallback(
FROM_HERE, base::Bind(&Core::OnHandshakeStateUpdated, this,
nss_handshake_state_));
}
SSLClientSocketNSS::SSLClientSocketNSS(
base::SequencedTaskRunner* nss_task_runner,
scoped_ptr<ClientSocketHandle> transport_socket,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config,
const SSLClientSocketContext& context)
: nss_task_runner_(nss_task_runner),
transport_(transport_socket.Pass()),
host_and_port_(host_and_port),
ssl_config_(ssl_config),
cert_verifier_(context.cert_verifier),
cert_transparency_verifier_(context.cert_transparency_verifier),
channel_id_service_(context.channel_id_service),
ssl_session_cache_shard_(context.ssl_session_cache_shard),
completed_handshake_(false),
next_handshake_state_(STATE_NONE),
nss_fd_(NULL),
net_log_(transport_->socket()->NetLog()),
transport_security_state_(context.transport_security_state),
policy_enforcer_(context.cert_policy_enforcer),
valid_thread_id_(base::kInvalidThreadId) {
DCHECK(cert_verifier_);
EnterFunction("");
InitCore();
LeaveFunction("");
}
SSLClientSocketNSS::~SSLClientSocketNSS() {
EnterFunction("");
Disconnect();
LeaveFunction("");
}
// static
void SSLClientSocket::ClearSessionCache() {
// SSL_ClearSessionCache can't be called before NSS is initialized. Don't
// bother initializing NSS just to clear an empty SSL session cache.
if (!NSS_IsInitialized())
return;
SSL_ClearSessionCache();
}
#if !defined(CKM_NSS_TLS_MASTER_KEY_DERIVE_DH_SHA256)
#define CKM_NSS_TLS_MASTER_KEY_DERIVE_DH_SHA256 (CKM_NSS + 24)
#endif
// static
uint16 SSLClientSocket::GetMaxSupportedSSLVersion() {
crypto::EnsureNSSInit();
if (PK11_TokenExists(CKM_NSS_TLS_MASTER_KEY_DERIVE_DH_SHA256)) {
return SSL_PROTOCOL_VERSION_TLS1_2;
} else {
return SSL_PROTOCOL_VERSION_TLS1_1;
}
}
bool SSLClientSocketNSS::GetSSLInfo(SSLInfo* ssl_info) {
EnterFunction("");
ssl_info->Reset();
if (core_->state().server_cert_chain.empty() ||
!core_->state().server_cert_chain[0]) {
return false;
}
ssl_info->cert_status = server_cert_verify_result_.cert_status;
ssl_info->cert = server_cert_verify_result_.verified_cert;
ssl_info->unverified_cert = core_->state().server_cert;
AddSCTInfoToSSLInfo(ssl_info);
ssl_info->connection_status =
core_->state().ssl_connection_status;
ssl_info->public_key_hashes = server_cert_verify_result_.public_key_hashes;
ssl_info->is_issued_by_known_root =
server_cert_verify_result_.is_issued_by_known_root;
ssl_info->client_cert_sent =
ssl_config_.send_client_cert && ssl_config_.client_cert.get();
ssl_info->channel_id_sent = core_->state().channel_id_sent;
ssl_info->pinning_failure_log = pinning_failure_log_;
PRUint16 cipher_suite = SSLConnectionStatusToCipherSuite(
core_->state().ssl_connection_status);
SSLCipherSuiteInfo cipher_info;
SECStatus ok = SSL_GetCipherSuiteInfo(cipher_suite,
&cipher_info, sizeof(cipher_info));
if (ok == SECSuccess) {
ssl_info->security_bits = cipher_info.effectiveKeyBits;
} else {
ssl_info->security_bits = -1;
LOG(DFATAL) << "SSL_GetCipherSuiteInfo returned " << PR_GetError()
<< " for cipherSuite " << cipher_suite;
}
ssl_info->handshake_type = core_->state().resumed_handshake ?
SSLInfo::HANDSHAKE_RESUME : SSLInfo::HANDSHAKE_FULL;
LeaveFunction("");
return true;
}
void SSLClientSocketNSS::GetConnectionAttempts(ConnectionAttempts* out) const {
out->clear();
}
void SSLClientSocketNSS::GetSSLCertRequestInfo(
SSLCertRequestInfo* cert_request_info) {
EnterFunction("");
cert_request_info->host_and_port = host_and_port_;
cert_request_info->cert_authorities = core_->state().cert_authorities;
LeaveFunction("");
}
int SSLClientSocketNSS::ExportKeyingMaterial(const base::StringPiece& label,
bool has_context,
const base::StringPiece& context,
unsigned char* out,
unsigned int outlen) {
if (!IsConnected())
return ERR_SOCKET_NOT_CONNECTED;
// SSL_ExportKeyingMaterial may block the current thread if |core_| is in
// the midst of a handshake.
SECStatus result = SSL_ExportKeyingMaterial(
nss_fd_, label.data(), label.size(), has_context,
reinterpret_cast<const unsigned char*>(context.data()),
context.length(), out, outlen);
if (result != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_ExportKeyingMaterial", "");
return MapNSSError(PORT_GetError());
}
return OK;
}
int SSLClientSocketNSS::GetTLSUniqueChannelBinding(std::string* out) {
if (!IsConnected())
return ERR_SOCKET_NOT_CONNECTED;
unsigned char buf[64];
unsigned int len;
SECStatus result = SSL_GetChannelBinding(nss_fd_,
SSL_CHANNEL_BINDING_TLS_UNIQUE,
buf, &len, arraysize(buf));
if (result != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_GetChannelBinding", "");
return MapNSSError(PORT_GetError());
}
out->assign(reinterpret_cast<char*>(buf), len);
return OK;
}
SSLClientSocket::NextProtoStatus SSLClientSocketNSS::GetNextProto(
std::string* proto) const {
*proto = core_->state().next_proto;
return core_->state().next_proto_status;
}
int SSLClientSocketNSS::Connect(const CompletionCallback& callback) {
EnterFunction("");
DCHECK(transport_.get());
// It is an error to create an SSLClientSocket whose context has no
// TransportSecurityState.
DCHECK(transport_security_state_);
DCHECK_EQ(STATE_NONE, next_handshake_state_);
DCHECK(user_connect_callback_.is_null());
DCHECK(!callback.is_null());
EnsureThreadIdAssigned();
net_log_.BeginEvent(NetLog::TYPE_SSL_CONNECT);
int rv = Init();
if (rv != OK) {
net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv);
return rv;
}
rv = InitializeSSLOptions();
if (rv != OK) {
net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv);
return rv;
}
rv = InitializeSSLPeerName();
if (rv != OK) {
net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv);
return rv;
}
GotoState(STATE_HANDSHAKE);
rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
user_connect_callback_ = callback;
} else {
net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv);
}
LeaveFunction("");
return rv > OK ? OK : rv;
}
void SSLClientSocketNSS::Disconnect() {
EnterFunction("");
CHECK(CalledOnValidThread());
// Shut down anything that may call us back.
core_->Detach();
cert_verifier_request_.reset();
transport_->socket()->Disconnect();
// Reset object state.
user_connect_callback_.Reset();
server_cert_verify_result_.Reset();
completed_handshake_ = false;
start_cert_verification_time_ = base::TimeTicks();
InitCore();
LeaveFunction("");
}
bool SSLClientSocketNSS::IsConnected() const {
EnterFunction("");
bool ret = completed_handshake_ &&
(core_->HasPendingAsyncOperation() ||
(core_->IsConnected() && core_->HasUnhandledReceivedData()) ||
transport_->socket()->IsConnected());
LeaveFunction("");
return ret;
}
bool SSLClientSocketNSS::IsConnectedAndIdle() const {
EnterFunction("");
bool ret = completed_handshake_ &&
!core_->HasPendingAsyncOperation() &&
!(core_->IsConnected() && core_->HasUnhandledReceivedData()) &&
transport_->socket()->IsConnectedAndIdle();
LeaveFunction("");
return ret;
}
int SSLClientSocketNSS::GetPeerAddress(IPEndPoint* address) const {
return transport_->socket()->GetPeerAddress(address);
}
int SSLClientSocketNSS::GetLocalAddress(IPEndPoint* address) const {
return transport_->socket()->GetLocalAddress(address);
}
const BoundNetLog& SSLClientSocketNSS::NetLog() const {
return net_log_;
}
void SSLClientSocketNSS::SetSubresourceSpeculation() {
if (transport_.get() && transport_->socket()) {
transport_->socket()->SetSubresourceSpeculation();
} else {
NOTREACHED();
}
}
void SSLClientSocketNSS::SetOmniboxSpeculation() {
if (transport_.get() && transport_->socket()) {
transport_->socket()->SetOmniboxSpeculation();
} else {
NOTREACHED();
}
}
bool SSLClientSocketNSS::WasEverUsed() const {
DCHECK(core_.get());
return core_->WasEverUsed();
}
bool SSLClientSocketNSS::UsingTCPFastOpen() const {
if (transport_.get() && transport_->socket()) {
return transport_->socket()->UsingTCPFastOpen();
}
NOTREACHED();
return false;
}
int SSLClientSocketNSS::Read(IOBuffer* buf, int buf_len,
const CompletionCallback& callback) {
DCHECK(core_.get());
DCHECK(!callback.is_null());
EnterFunction(buf_len);
int rv = core_->Read(buf, buf_len, callback);
LeaveFunction(rv);
return rv;
}
int SSLClientSocketNSS::Write(IOBuffer* buf, int buf_len,
const CompletionCallback& callback) {
DCHECK(core_.get());
DCHECK(!callback.is_null());
EnterFunction(buf_len);
int rv = core_->Write(buf, buf_len, callback);
LeaveFunction(rv);
return rv;
}
int SSLClientSocketNSS::SetReceiveBufferSize(int32 size) {
return transport_->socket()->SetReceiveBufferSize(size);
}
int SSLClientSocketNSS::SetSendBufferSize(int32 size) {
return transport_->socket()->SetSendBufferSize(size);
}
int SSLClientSocketNSS::Init() {
EnterFunction("");
// Initialize the NSS SSL library in a threadsafe way. This also
// initializes the NSS base library.
EnsureNSSSSLInit();
if (!NSS_IsInitialized())
return ERR_UNEXPECTED;
#if defined(USE_NSS_CERTS) || defined(OS_IOS)
if (ssl_config_.cert_io_enabled) {
// We must call EnsureNSSHttpIOInit() here, on the IO thread, to get the IO
// loop by MessageLoopForIO::current().
// X509Certificate::Verify() runs on a worker thread of CertVerifier.
EnsureNSSHttpIOInit();
}
#endif
LeaveFunction("");
return OK;
}
void SSLClientSocketNSS::InitCore() {
core_ = new Core(base::ThreadTaskRunnerHandle::Get().get(),
nss_task_runner_.get(),
transport_.get(),
host_and_port_,
ssl_config_,
&net_log_,
channel_id_service_);
}
int SSLClientSocketNSS::InitializeSSLOptions() {
// Transport connected, now hook it up to nss
nss_fd_ = memio_CreateIOLayer(kRecvBufferSize, kSendBufferSize);
if (nss_fd_ == NULL) {
return ERR_OUT_OF_MEMORY; // TODO(port): map NSPR error code.
}
// Grab pointer to buffers
memio_Private* nss_bufs = memio_GetSecret(nss_fd_);
/* Create SSL state machine */
/* Push SSL onto our fake I/O socket */
if (SSL_ImportFD(GetNSSModelSocket(), nss_fd_) == NULL) {
LogFailedNSSFunction(net_log_, "SSL_ImportFD", "");
PR_Close(nss_fd_);
nss_fd_ = NULL;
return ERR_OUT_OF_MEMORY; // TODO(port): map NSPR/NSS error code.
}
// TODO(port): set more ssl options! Check errors!
int rv;
rv = SSL_OptionSet(nss_fd_, SSL_SECURITY, PR_TRUE);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_SECURITY");
return ERR_UNEXPECTED;
}
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_SSL2, PR_FALSE);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_ENABLE_SSL2");
return ERR_UNEXPECTED;
}
// Don't do V2 compatible hellos because they don't support TLS extensions.
rv = SSL_OptionSet(nss_fd_, SSL_V2_COMPATIBLE_HELLO, PR_FALSE);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_OptionSet", "SSL_V2_COMPATIBLE_HELLO");
return ERR_UNEXPECTED;
}
SSLVersionRange version_range;
version_range.min = ssl_config_.version_min;
version_range.max = ssl_config_.version_max;
rv = SSL_VersionRangeSet(nss_fd_, &version_range);
if (rv != SECSuccess) {
LogFailedNSSFunction(net_log_, "SSL_VersionRangeSet", "");
return ERR_NO_SSL_VERSIONS_ENABLED;
}
if (ssl_config_.require_ecdhe) {
const PRUint16* const ssl_ciphers = SSL_GetImplementedCiphers();
const PRUint16 num_ciphers = SSL_GetNumImplementedCiphers();
// Iterate over the cipher suites and disable those that don't use ECDHE.
for (unsigned i = 0; i < num_ciphers; i++) {
SSLCipherSuiteInfo info;
if (SSL_GetCipherSuiteInfo(ssl_ciphers[i], &info, sizeof(info)) ==
SECSuccess) {
if (strcmp(info.keaTypeName, "ECDHE") != 0) {
SSL_CipherPrefSet(nss_fd_, ssl_ciphers[i], PR_FALSE);
}
}
}
}
if (ssl_config_.version_fallback) {
rv = SSL_OptionSet(nss_fd_, SSL_ENABLE_FALLBACK_SCSV, PR_TRUE);
if (rv != SECSuccess) {
LogFailedNSSFunction(
net_log_, "SSL_OptionSet", "SSL_ENABLE_FALLBACK_SCSV");
}
}
for (std::vector<uint16>::const_iterator it =
ssl_config_.disabled_cipher_suites.begin();
it != ssl_config_.disabled_cipher_suites.end(); ++it) {
// This will fail if the specified cipher is not implemented by NSS, but
// the failure is harmless.
SSL_CipherPrefSet(nss_fd_, *it, PR_FALSE);
}
if (!ssl_config_.enable_deprecated_cipher_suites) {
const PRUint16* const ssl_ciphers = SSL_GetImplementedCiphers();
const PRUint16 num_ciphers = SSL_GetNumImplementedCiphers();
for (int i = 0; i < num_ciphers; i++) {
SSLCipherSuiteInfo info;
if (SSL_GetCipherSuiteInfo(ssl_ciphers[i], &info, sizeof(info)) !=
SECSuccess)