blob: 322aef29c9b11be94cebe0c5d4ae4444c36af876 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This file contains an implementation of a VP9 bitstream parser.
#include "media/filters/vp9_parser.h"
#include <algorithm>
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
namespace {
const int kMaxLoopFilterLevel = 63;
// Helper function for Vp9Parser::ReadTiles. Defined as get_min_log2_tile_cols
// in spec.
int GetMinLog2TileCols(int sb64_cols) {
const int kMaxTileWidthB64 = 64;
int min_log2 = 0;
while ((kMaxTileWidthB64 << min_log2) < sb64_cols)
min_log2++;
return min_log2;
}
// Helper function for Vp9Parser::ReadTiles. Defined as get_max_log2_tile_cols
// in spec.
int GetMaxLog2TileCols(int sb64_cols) {
const int kMinTileWidthB64 = 4;
int max_log2 = 1;
while ((sb64_cols >> max_log2) >= kMinTileWidthB64)
max_log2++;
return max_log2 - 1;
}
} // namespace
namespace media {
bool Vp9FrameHeader::IsKeyframe() const {
// When show_existing_frame is true, the frame header does not precede an
// actual frame to be decoded, so frame_type does not apply (and is not read
// from the stream).
return !show_existing_frame && frame_type == KEYFRAME;
}
Vp9Parser::FrameInfo::FrameInfo(const uint8_t* ptr, off_t size)
: ptr(ptr), size(size) {}
Vp9Parser::Vp9Parser() {
Reset();
}
Vp9Parser::~Vp9Parser() {}
void Vp9Parser::SetStream(const uint8_t* stream, off_t stream_size) {
DCHECK(stream);
stream_ = stream;
bytes_left_ = stream_size;
frames_.clear();
}
void Vp9Parser::Reset() {
stream_ = nullptr;
bytes_left_ = 0;
frames_.clear();
memset(&segmentation_, 0, sizeof(segmentation_));
memset(&loop_filter_, 0, sizeof(loop_filter_));
memset(&ref_slots_, 0, sizeof(ref_slots_));
}
uint8_t Vp9Parser::ReadProfile() {
uint8_t profile = 0;
// LSB first.
if (reader_.ReadBool())
profile |= 1;
if (reader_.ReadBool())
profile |= 2;
if (profile > 2 && reader_.ReadBool())
profile += 1;
return profile;
}
bool Vp9Parser::VerifySyncCode() {
const int kSyncCode = 0x498342;
if (reader_.ReadLiteral(8 * 3) != kSyncCode) {
DVLOG(1) << "Invalid frame sync code";
return false;
}
return true;
}
bool Vp9Parser::ReadBitDepthColorSpaceSampling(Vp9FrameHeader* fhdr) {
if (fhdr->profile == 2 || fhdr->profile == 3) {
fhdr->bit_depth = reader_.ReadBool() ? 12 : 10;
} else {
fhdr->bit_depth = 8;
}
fhdr->color_space = static_cast<Vp9ColorSpace>(reader_.ReadLiteral(3));
if (fhdr->color_space != Vp9ColorSpace::SRGB) {
fhdr->yuv_range = reader_.ReadBool();
if (fhdr->profile == 1 || fhdr->profile == 3) {
fhdr->subsampling_x = reader_.ReadBool() ? 1 : 0;
fhdr->subsampling_y = reader_.ReadBool() ? 1 : 0;
if (fhdr->subsampling_x == 1 && fhdr->subsampling_y == 1) {
DVLOG(1) << "4:2:0 color not supported in profile 1 or 3";
return false;
}
bool reserved = reader_.ReadBool();
if (reserved) {
DVLOG(1) << "reserved bit set";
return false;
}
} else {
fhdr->subsampling_x = fhdr->subsampling_y = 1;
}
} else {
if (fhdr->profile == 1 || fhdr->profile == 3) {
fhdr->subsampling_x = fhdr->subsampling_y = 0;
bool reserved = reader_.ReadBool();
if (reserved) {
DVLOG(1) << "reserved bit set";
return false;
}
} else {
DVLOG(1) << "4:4:4 color not supported in profile 0 or 2";
return false;
}
}
return true;
}
void Vp9Parser::ReadFrameSize(Vp9FrameHeader* fhdr) {
fhdr->width = reader_.ReadLiteral(16) + 1;
fhdr->height = reader_.ReadLiteral(16) + 1;
}
bool Vp9Parser::ReadFrameSizeFromRefs(Vp9FrameHeader* fhdr) {
for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) {
if (reader_.ReadBool()) {
fhdr->width = ref_slots_[i].width;
fhdr->height = ref_slots_[i].height;
const int kMaxDimension = 1 << 16;
if (fhdr->width == 0 || fhdr->width > kMaxDimension ||
fhdr->height == 0 || fhdr->height > kMaxDimension) {
DVLOG(1) << "The size of reference frame is out of range: "
<< ref_slots_[i].width << "," << ref_slots_[i].height;
return false;
}
return true;
}
}
fhdr->width = reader_.ReadLiteral(16) + 1;
fhdr->height = reader_.ReadLiteral(16) + 1;
return true;
}
void Vp9Parser::ReadDisplayFrameSize(Vp9FrameHeader* fhdr) {
if (reader_.ReadBool()) {
fhdr->display_width = reader_.ReadLiteral(16) + 1;
fhdr->display_height = reader_.ReadLiteral(16) + 1;
} else {
fhdr->display_width = fhdr->width;
fhdr->display_height = fhdr->height;
}
}
Vp9InterpFilter Vp9Parser::ReadInterpFilter() {
if (reader_.ReadBool())
return Vp9InterpFilter::SWICHABLE;
// The mapping table for next two bits.
const Vp9InterpFilter table[] = {
Vp9InterpFilter::EIGHTTAP_SMOOTH, Vp9InterpFilter::EIGHTTAP,
Vp9InterpFilter::EIGHTTAP_SHARP, Vp9InterpFilter::BILINEAR,
};
return table[reader_.ReadLiteral(2)];
}
void Vp9Parser::ReadLoopFilter() {
loop_filter_.filter_level = reader_.ReadLiteral(6);
loop_filter_.sharpness_level = reader_.ReadLiteral(3);
loop_filter_.mode_ref_delta_update = false;
loop_filter_.mode_ref_delta_enabled = reader_.ReadBool();
if (loop_filter_.mode_ref_delta_enabled) {
loop_filter_.mode_ref_delta_update = reader_.ReadBool();
if (loop_filter_.mode_ref_delta_update) {
for (size_t i = 0; i < Vp9LoopFilter::VP9_FRAME_MAX; i++) {
loop_filter_.update_ref_deltas[i] = reader_.ReadBool();
if (loop_filter_.update_ref_deltas[i])
loop_filter_.ref_deltas[i] = reader_.ReadSignedLiteral(6);
}
for (size_t i = 0; i < Vp9LoopFilter::kNumModeDeltas; i++) {
loop_filter_.update_mode_deltas[i] = reader_.ReadBool();
if (loop_filter_.update_mode_deltas[i])
loop_filter_.mode_deltas[i] = reader_.ReadLiteral(6);
}
}
}
}
void Vp9Parser::ReadQuantization(Vp9QuantizationParams* quants) {
quants->base_qindex = reader_.ReadLiteral(8);
if (reader_.ReadBool())
quants->y_dc_delta = reader_.ReadSignedLiteral(4);
if (reader_.ReadBool())
quants->uv_ac_delta = reader_.ReadSignedLiteral(4);
if (reader_.ReadBool())
quants->uv_dc_delta = reader_.ReadSignedLiteral(4);
}
void Vp9Parser::ReadSegmentationMap() {
for (size_t i = 0; i < Vp9Segmentation::kNumTreeProbs; i++) {
segmentation_.tree_probs[i] =
reader_.ReadBool() ? reader_.ReadLiteral(8) : kVp9MaxProb;
}
for (size_t i = 0; i < Vp9Segmentation::kNumPredictionProbs; i++)
segmentation_.pred_probs[i] = kVp9MaxProb;
segmentation_.temporal_update = reader_.ReadBool();
if (segmentation_.temporal_update) {
for (size_t i = 0; i < Vp9Segmentation::kNumPredictionProbs; i++) {
if (reader_.ReadBool())
segmentation_.pred_probs[i] = reader_.ReadLiteral(8);
}
}
}
void Vp9Parser::ReadSegmentationData() {
segmentation_.abs_delta = reader_.ReadBool();
const int kFeatureDataBits[] = {7, 6, 2, 0};
const bool kFeatureDataSigned[] = {true, true, false, false};
for (size_t i = 0; i < Vp9Segmentation::kNumSegments; i++) {
for (size_t j = 0; j < Vp9Segmentation::SEG_LVL_MAX; j++) {
int8_t data = 0;
segmentation_.feature_enabled[i][j] = reader_.ReadBool();
if (segmentation_.feature_enabled[i][j]) {
data = reader_.ReadLiteral(kFeatureDataBits[j]);
if (kFeatureDataSigned[j])
if (reader_.ReadBool())
data = -data;
}
segmentation_.feature_data[i][j] = data;
}
}
}
void Vp9Parser::ReadSegmentation() {
segmentation_.update_map = false;
segmentation_.update_data = false;
segmentation_.enabled = reader_.ReadBool();
if (!segmentation_.enabled)
return;
segmentation_.update_map = reader_.ReadBool();
if (segmentation_.update_map)
ReadSegmentationMap();
segmentation_.update_data = reader_.ReadBool();
if (segmentation_.update_data)
ReadSegmentationData();
}
void Vp9Parser::ReadTiles(Vp9FrameHeader* fhdr) {
int sb64_cols = (fhdr->width + 63) / 64;
int min_log2_tile_cols = GetMinLog2TileCols(sb64_cols);
int max_log2_tile_cols = GetMaxLog2TileCols(sb64_cols);
int max_ones = max_log2_tile_cols - min_log2_tile_cols;
fhdr->log2_tile_cols = min_log2_tile_cols;
while (max_ones-- && reader_.ReadBool())
fhdr->log2_tile_cols++;
if (reader_.ReadBool())
fhdr->log2_tile_rows = reader_.ReadLiteral(2) - 1;
}
bool Vp9Parser::ParseUncompressedHeader(const uint8_t* stream,
off_t frame_size,
Vp9FrameHeader* fhdr) {
reader_.Initialize(stream, frame_size);
fhdr->data = stream;
fhdr->frame_size = frame_size;
// frame marker
if (reader_.ReadLiteral(2) != 0x2)
return false;
fhdr->profile = ReadProfile();
if (fhdr->profile >= kVp9MaxProfile) {
DVLOG(1) << "Unsupported bitstream profile";
return false;
}
fhdr->show_existing_frame = reader_.ReadBool();
if (fhdr->show_existing_frame) {
fhdr->frame_to_show = reader_.ReadLiteral(3);
fhdr->show_frame = true;
if (!reader_.IsValid()) {
DVLOG(1) << "parser reads beyond the end of buffer";
return false;
}
fhdr->uncompressed_header_size = reader_.GetBytesRead();
return true;
}
fhdr->frame_type = static_cast<Vp9FrameHeader::FrameType>(reader_.ReadBool());
fhdr->show_frame = reader_.ReadBool();
fhdr->error_resilient_mode = reader_.ReadBool();
if (fhdr->IsKeyframe()) {
if (!VerifySyncCode())
return false;
if (!ReadBitDepthColorSpaceSampling(fhdr))
return false;
fhdr->refresh_flags = 0xff;
ReadFrameSize(fhdr);
ReadDisplayFrameSize(fhdr);
} else {
if (!fhdr->show_frame)
fhdr->intra_only = reader_.ReadBool();
if (!fhdr->error_resilient_mode)
fhdr->reset_context = reader_.ReadLiteral(2);
if (fhdr->intra_only) {
if (!VerifySyncCode())
return false;
if (fhdr->profile > 0) {
if (!ReadBitDepthColorSpaceSampling(fhdr))
return false;
} else {
fhdr->bit_depth = 8;
fhdr->color_space = Vp9ColorSpace::BT_601;
fhdr->subsampling_x = fhdr->subsampling_y = 1;
}
fhdr->refresh_flags = reader_.ReadLiteral(8);
ReadFrameSize(fhdr);
ReadDisplayFrameSize(fhdr);
} else {
fhdr->refresh_flags = reader_.ReadLiteral(8);
for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) {
fhdr->frame_refs[i] = reader_.ReadLiteral(kVp9NumRefFramesLog2);
fhdr->ref_sign_biases[i] = reader_.ReadBool();
}
if (!ReadFrameSizeFromRefs(fhdr))
return false;
ReadDisplayFrameSize(fhdr);
fhdr->allow_high_precision_mv = reader_.ReadBool();
fhdr->interp_filter = ReadInterpFilter();
}
}
if (fhdr->error_resilient_mode) {
fhdr->frame_parallel_decoding_mode = true;
} else {
fhdr->refresh_frame_context = reader_.ReadBool();
fhdr->frame_parallel_decoding_mode = reader_.ReadBool();
}
fhdr->frame_context_idx = reader_.ReadLiteral(2);
if (fhdr->IsKeyframe() || fhdr->intra_only)
SetupPastIndependence();
ReadLoopFilter();
ReadQuantization(&fhdr->quant_params);
ReadSegmentation();
ReadTiles(fhdr);
fhdr->first_partition_size = reader_.ReadLiteral(16);
if (fhdr->first_partition_size == 0) {
DVLOG(1) << "invalid header size";
return false;
}
if (!reader_.IsValid()) {
DVLOG(1) << "parser reads beyond the end of buffer";
return false;
}
fhdr->uncompressed_header_size = reader_.GetBytesRead();
SetupSegmentationDequant(fhdr->quant_params);
SetupLoopFilter();
UpdateSlots(fhdr);
return true;
}
void Vp9Parser::UpdateSlots(const Vp9FrameHeader* fhdr) {
for (size_t i = 0; i < kVp9NumRefFrames; i++) {
if (fhdr->RefreshFlag(i)) {
ref_slots_[i].width = fhdr->width;
ref_slots_[i].height = fhdr->height;
}
}
}
Vp9Parser::Result Vp9Parser::ParseNextFrame(Vp9FrameHeader* fhdr) {
if (frames_.empty()) {
// No frames to be decoded, if there is no more stream, request more.
if (!stream_)
return kEOStream;
// New stream to be parsed, parse it and fill frames_.
if (!ParseSuperframe()) {
DVLOG(1) << "Failed parsing superframes";
return kInvalidStream;
}
}
DCHECK(!frames_.empty());
FrameInfo frame_info = frames_.front();
frames_.pop_front();
memset(fhdr, 0, sizeof(*fhdr));
if (!ParseUncompressedHeader(frame_info.ptr, frame_info.size, fhdr))
return kInvalidStream;
return kOk;
}
bool Vp9Parser::ParseSuperframe() {
const uint8_t* stream = stream_;
off_t bytes_left = bytes_left_;
DCHECK(frames_.empty());
// Make sure we don't parse stream_ more than once.
stream_ = nullptr;
bytes_left_ = 0;
if (bytes_left < 1)
return false;
// If this is a superframe, the last byte in the stream will contain the
// superframe marker. If not, the whole buffer contains a single frame.
uint8_t marker = *(stream + bytes_left - 1);
if ((marker & 0xe0) != 0xc0) {
frames_.push_back(FrameInfo(stream, bytes_left));
return true;
}
DVLOG(1) << "Parsing a superframe";
// The bytes immediately before the superframe marker constitute superframe
// index, which stores information about sizes of each frame in it.
// Calculate its size and set index_ptr to the beginning of it.
size_t num_frames = (marker & 0x7) + 1;
size_t mag = ((marker >> 3) & 0x3) + 1;
off_t index_size = 2 + mag * num_frames;
if (bytes_left < index_size)
return false;
const uint8_t* index_ptr = stream + bytes_left - index_size;
if (marker != *index_ptr)
return false;
++index_ptr;
bytes_left -= index_size;
// Parse frame information contained in the index and add a pointer to and
// size of each frame to frames_.
for (size_t i = 0; i < num_frames; ++i) {
uint32_t size = 0;
for (size_t j = 0; j < mag; ++j) {
size |= *index_ptr << (j * 8);
++index_ptr;
}
if (base::checked_cast<off_t>(size) > bytes_left) {
DVLOG(1) << "Not enough data in the buffer for frame " << i;
return false;
}
frames_.push_back(FrameInfo(stream, size));
stream += size;
bytes_left -= size;
DVLOG(1) << "Frame " << i << ", size: " << size;
}
return true;
}
void Vp9Parser::ResetLoopfilter() {
loop_filter_.mode_ref_delta_enabled = true;
loop_filter_.mode_ref_delta_update = true;
const int8_t default_ref_deltas[] = {1, 0, -1, -1};
static_assert(
arraysize(default_ref_deltas) == arraysize(loop_filter_.ref_deltas),
"ref_deltas arrays of incorrect size");
for (size_t i = 0; i < arraysize(loop_filter_.ref_deltas); ++i)
loop_filter_.ref_deltas[i] = default_ref_deltas[i];
memset(loop_filter_.mode_deltas, 0, sizeof(loop_filter_.mode_deltas));
}
void Vp9Parser::SetupPastIndependence() {
memset(&segmentation_, 0, sizeof(segmentation_));
ResetLoopfilter();
}
const size_t QINDEX_RANGE = 256;
const int16_t kDcQLookup[QINDEX_RANGE] = {
4, 8, 8, 9, 10, 11, 12, 12,
13, 14, 15, 16, 17, 18, 19, 19,
20, 21, 22, 23, 24, 25, 26, 26,
27, 28, 29, 30, 31, 32, 32, 33,
34, 35, 36, 37, 38, 38, 39, 40,
41, 42, 43, 43, 44, 45, 46, 47,
48, 48, 49, 50, 51, 52, 53, 53,
54, 55, 56, 57, 57, 58, 59, 60,
61, 62, 62, 63, 64, 65, 66, 66,
67, 68, 69, 70, 70, 71, 72, 73,
74, 74, 75, 76, 77, 78, 78, 79,
80, 81, 81, 82, 83, 84, 85, 85,
87, 88, 90, 92, 93, 95, 96, 98,
99, 101, 102, 104, 105, 107, 108, 110,
111, 113, 114, 116, 117, 118, 120, 121,
123, 125, 127, 129, 131, 134, 136, 138,
140, 142, 144, 146, 148, 150, 152, 154,
156, 158, 161, 164, 166, 169, 172, 174,
177, 180, 182, 185, 187, 190, 192, 195,
199, 202, 205, 208, 211, 214, 217, 220,
223, 226, 230, 233, 237, 240, 243, 247,
250, 253, 257, 261, 265, 269, 272, 276,
280, 284, 288, 292, 296, 300, 304, 309,
313, 317, 322, 326, 330, 335, 340, 344,
349, 354, 359, 364, 369, 374, 379, 384,
389, 395, 400, 406, 411, 417, 423, 429,
435, 441, 447, 454, 461, 467, 475, 482,
489, 497, 505, 513, 522, 530, 539, 549,
559, 569, 579, 590, 602, 614, 626, 640,
654, 668, 684, 700, 717, 736, 755, 775,
796, 819, 843, 869, 896, 925, 955, 988,
1022, 1058, 1098, 1139, 1184, 1232, 1282, 1336,
};
const int16_t kAcQLookup[QINDEX_RANGE] = {
4, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100, 101, 102,
104, 106, 108, 110, 112, 114, 116, 118,
120, 122, 124, 126, 128, 130, 132, 134,
136, 138, 140, 142, 144, 146, 148, 150,
152, 155, 158, 161, 164, 167, 170, 173,
176, 179, 182, 185, 188, 191, 194, 197,
200, 203, 207, 211, 215, 219, 223, 227,
231, 235, 239, 243, 247, 251, 255, 260,
265, 270, 275, 280, 285, 290, 295, 300,
305, 311, 317, 323, 329, 335, 341, 347,
353, 359, 366, 373, 380, 387, 394, 401,
408, 416, 424, 432, 440, 448, 456, 465,
474, 483, 492, 501, 510, 520, 530, 540,
550, 560, 571, 582, 593, 604, 615, 627,
639, 651, 663, 676, 689, 702, 715, 729,
743, 757, 771, 786, 801, 816, 832, 848,
864, 881, 898, 915, 933, 951, 969, 988,
1007, 1026, 1046, 1066, 1087, 1108, 1129, 1151,
1173, 1196, 1219, 1243, 1267, 1292, 1317, 1343,
1369, 1396, 1423, 1451, 1479, 1508, 1537, 1567,
1597, 1628, 1660, 1692, 1725, 1759, 1793, 1828,
};
static_assert(arraysize(kDcQLookup) == arraysize(kAcQLookup),
"quantizer lookup arrays of incorrect size");
#define CLAMP_Q(q) \
std::min(std::max(static_cast<size_t>(0), q), arraysize(kDcQLookup) - 1)
size_t Vp9Parser::GetQIndex(const Vp9QuantizationParams& quant,
size_t segid) const {
if (segmentation_.FeatureEnabled(segid, Vp9Segmentation::SEG_LVL_ALT_Q)) {
int8_t feature_data =
segmentation_.FeatureData(segid, Vp9Segmentation::SEG_LVL_ALT_Q);
size_t q_index = segmentation_.abs_delta ? feature_data
: quant.base_qindex + feature_data;
return CLAMP_Q(q_index);
}
return quant.base_qindex;
}
void Vp9Parser::SetupSegmentationDequant(const Vp9QuantizationParams& quant) {
if (segmentation_.enabled) {
for (size_t i = 0; i < Vp9Segmentation::kNumSegments; ++i) {
const size_t q_index = GetQIndex(quant, i);
segmentation_.y_dequant[i][0] =
kDcQLookup[CLAMP_Q(q_index + quant.y_dc_delta)];
segmentation_.y_dequant[i][1] = kAcQLookup[CLAMP_Q(q_index)];
segmentation_.uv_dequant[i][0] =
kDcQLookup[CLAMP_Q(q_index + quant.uv_dc_delta)];
segmentation_.uv_dequant[i][1] =
kAcQLookup[CLAMP_Q(q_index + quant.uv_ac_delta)];
}
} else {
const size_t q_index = quant.base_qindex;
segmentation_.y_dequant[0][0] =
kDcQLookup[CLAMP_Q(q_index + quant.y_dc_delta)];
segmentation_.y_dequant[0][1] = kAcQLookup[CLAMP_Q(q_index)];
segmentation_.uv_dequant[0][0] =
kDcQLookup[CLAMP_Q(q_index + quant.uv_dc_delta)];
segmentation_.uv_dequant[0][1] =
kAcQLookup[CLAMP_Q(q_index + quant.uv_ac_delta)];
}
}
#undef CLAMP_Q
#define CLAMP_LF(l) std::min(std::max(0, l), kMaxLoopFilterLevel)
void Vp9Parser::SetupLoopFilter() {
if (!loop_filter_.filter_level)
return;
int scale = loop_filter_.filter_level < 32 ? 1 : 2;
for (size_t i = 0; i < Vp9Segmentation::kNumSegments; ++i) {
int level = loop_filter_.filter_level;
if (segmentation_.FeatureEnabled(i, Vp9Segmentation::SEG_LVL_ALT_LF)) {
int feature_data =
segmentation_.FeatureData(i, Vp9Segmentation::SEG_LVL_ALT_LF);
level = CLAMP_LF(segmentation_.abs_delta ? feature_data
: level + feature_data);
}
if (!loop_filter_.mode_ref_delta_enabled) {
memset(loop_filter_.lvl[i], level, sizeof(loop_filter_.lvl[i]));
} else {
loop_filter_.lvl[i][Vp9LoopFilter::VP9_FRAME_INTRA][0] = CLAMP_LF(
level +
loop_filter_.ref_deltas[Vp9LoopFilter::VP9_FRAME_INTRA] * scale);
loop_filter_.lvl[i][Vp9LoopFilter::VP9_FRAME_INTRA][1] = 0;
for (size_t type = Vp9LoopFilter::VP9_FRAME_LAST;
type < Vp9LoopFilter::VP9_FRAME_MAX; ++type) {
for (size_t mode = 0; mode < Vp9LoopFilter::kNumModeDeltas; ++mode) {
loop_filter_.lvl[i][type][mode] =
CLAMP_LF(level + loop_filter_.ref_deltas[type] * scale +
loop_filter_.mode_deltas[mode] * scale);
}
}
}
}
}
#undef CLAMP_LF
} // namespace media