blob: 52f2c1d0527e9dd7e587e24418389ae6d31c54bf [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/latency/latency_info.h"
#include <stddef.h>
#include <algorithm>
#include <string>
#include <utility>
#include "base/json/json_writer.h"
#include "base/lazy_instance.h"
#include "base/macros.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/trace_event.h"
namespace {
const size_t kMaxLatencyInfoNumber = 100;
const char* GetComponentName(ui::LatencyComponentType type) {
#define CASE_TYPE(t) case ui::t: return #t
switch (type) {
CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT);
CASE_TYPE(LATENCY_BEGIN_SCROLL_LISTENER_UPDATE_MAIN_COMPONENT);
CASE_TYPE(LATENCY_BEGIN_FRAME_RENDERER_MAIN_COMPONENT);
CASE_TYPE(LATENCY_BEGIN_FRAME_RENDERER_INVALIDATE_COMPONENT);
CASE_TYPE(LATENCY_BEGIN_FRAME_RENDERER_COMPOSITOR_COMPONENT);
CASE_TYPE(LATENCY_BEGIN_FRAME_UI_MAIN_COMPONENT);
CASE_TYPE(LATENCY_BEGIN_FRAME_UI_COMPOSITOR_COMPONENT);
CASE_TYPE(LATENCY_BEGIN_FRAME_DISPLAY_COMPOSITOR_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_FIRST_SCROLL_UPDATE_ORIGINAL_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_MAIN_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_IMPL_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_FORWARD_SCROLL_UPDATE_TO_MAIN_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_ACK_RWH_COMPONENT);
CASE_TYPE(BROWSER_SNAPSHOT_FRAME_NUMBER_COMPONENT);
CASE_TYPE(TAB_SHOW_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_RENDERER_MAIN_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_RENDERER_SWAP_COMPONENT);
CASE_TYPE(DISPLAY_COMPOSITOR_RECEIVED_FRAME_COMPONENT);
CASE_TYPE(INPUT_EVENT_GPU_SWAP_BUFFER_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_GENERATE_SCROLL_UPDATE_FROM_MOUSE_WHEEL);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_NO_SWAP_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT);
default:
DLOG(WARNING) << "Unhandled LatencyComponentType.\n";
break;
}
#undef CASE_TYPE
return "unknown";
}
bool IsInputLatencyBeginComponent(ui::LatencyComponentType type) {
return type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT;
}
bool IsTraceBeginComponent(ui::LatencyComponentType type) {
return (IsInputLatencyBeginComponent(type) ||
type == ui::LATENCY_BEGIN_SCROLL_LISTENER_UPDATE_MAIN_COMPONENT);
}
bool IsTraceEndComponent(ui::LatencyComponentType type) {
switch (type) {
case ui::INPUT_EVENT_LATENCY_TERMINATED_NO_SWAP_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT:
return true;
default:
return false;
}
}
// This class is for converting latency info to trace buffer friendly format.
class LatencyInfoTracedValue
: public base::trace_event::ConvertableToTraceFormat {
public:
static std::unique_ptr<ConvertableToTraceFormat> FromValue(
std::unique_ptr<base::Value> value);
void AppendAsTraceFormat(std::string* out) const override;
private:
explicit LatencyInfoTracedValue(base::Value* value);
~LatencyInfoTracedValue() override;
std::unique_ptr<base::Value> value_;
DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue);
};
std::unique_ptr<base::trace_event::ConvertableToTraceFormat>
LatencyInfoTracedValue::FromValue(std::unique_ptr<base::Value> value) {
return std::unique_ptr<base::trace_event::ConvertableToTraceFormat>(
new LatencyInfoTracedValue(value.release()));
}
LatencyInfoTracedValue::~LatencyInfoTracedValue() {
}
void LatencyInfoTracedValue::AppendAsTraceFormat(std::string* out) const {
std::string tmp;
base::JSONWriter::Write(*value_, &tmp);
*out += tmp;
}
LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value* value)
: value_(value) {
}
const char kTraceCategoriesForAsyncEvents[] = "benchmark,latencyInfo,rail";
struct LatencyInfoEnabledInitializer {
LatencyInfoEnabledInitializer() :
latency_info_enabled(TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED(
kTraceCategoriesForAsyncEvents)) {
}
const unsigned char* latency_info_enabled;
};
static base::LazyInstance<LatencyInfoEnabledInitializer>::Leaky
g_latency_info_enabled = LAZY_INSTANCE_INITIALIZER;
} // namespace
namespace ui {
LatencyInfo::LatencyInfo() : LatencyInfo(SourceEventType::UNKNOWN) {}
LatencyInfo::LatencyInfo(SourceEventType type)
: trace_id_(-1),
ukm_source_id_(ukm::kInvalidSourceId),
coalesced_(false),
began_(false),
terminated_(false),
source_event_type_(type) {}
LatencyInfo::LatencyInfo(const LatencyInfo& other) = default;
LatencyInfo::~LatencyInfo() {}
LatencyInfo::LatencyInfo(int64_t trace_id, bool terminated)
: trace_id_(trace_id),
ukm_source_id_(ukm::kInvalidSourceId),
coalesced_(false),
began_(false),
terminated_(terminated),
source_event_type_(SourceEventType::UNKNOWN) {}
bool LatencyInfo::Verify(const std::vector<LatencyInfo>& latency_info,
const char* referring_msg) {
if (latency_info.size() > kMaxLatencyInfoNumber) {
LOG(ERROR) << referring_msg << ", LatencyInfo vector size "
<< latency_info.size() << " is too big.";
TRACE_EVENT_INSTANT1("input,benchmark", "LatencyInfo::Verify Fails",
TRACE_EVENT_SCOPE_GLOBAL,
"size", latency_info.size());
return false;
}
return true;
}
void LatencyInfo::TraceIntermediateFlowEvents(
const std::vector<LatencyInfo>& latency_info,
const char* event_name) {
for (auto& latency : latency_info) {
if (latency.trace_id() == -1)
continue;
TRACE_EVENT_WITH_FLOW1("input,benchmark", "LatencyInfo.Flow",
TRACE_ID_DONT_MANGLE(latency.trace_id()),
TRACE_EVENT_FLAG_FLOW_IN | TRACE_EVENT_FLAG_FLOW_OUT,
"step", event_name);
}
}
void LatencyInfo::CopyLatencyFrom(const LatencyInfo& other,
LatencyComponentType type) {
// Don't clobber an existing trace_id_ or ukm_source_id_.
if (trace_id_ == -1) {
DCHECK_EQ(ukm_source_id_, ukm::kInvalidSourceId);
DCHECK(latency_components().empty());
trace_id_ = other.trace_id();
ukm_source_id_ = other.ukm_source_id();
} else {
DCHECK_NE(ukm_source_id_, ukm::kInvalidSourceId);
}
for (const auto& lc : other.latency_components()) {
if (lc.first.first == type) {
AddLatencyNumberWithTimestamp(lc.first.first,
lc.first.second,
lc.second.sequence_number,
lc.second.event_time,
lc.second.event_count);
}
}
expected_queueing_time_on_dispatch_ =
other.expected_queueing_time_on_dispatch_;
coalesced_ = other.coalesced();
// TODO(tdresser): Ideally we'd copy |began_| here as well, but |began_|
// isn't very intuitive, and we can actually begin multiple times across
// copied events.
terminated_ = other.terminated();
}
void LatencyInfo::AddNewLatencyFrom(const LatencyInfo& other) {
// Don't clobber an existing trace_id_ or ukm_source_id_.
if (trace_id_ == -1) {
trace_id_ = other.trace_id();
}
if (ukm_source_id_ == ukm::kInvalidSourceId) {
ukm_source_id_ = other.ukm_source_id();
}
for (const auto& lc : other.latency_components()) {
if (!FindLatency(lc.first.first, lc.first.second, NULL)) {
AddLatencyNumberWithTimestamp(lc.first.first,
lc.first.second,
lc.second.sequence_number,
lc.second.event_time,
lc.second.event_count);
}
}
expected_queueing_time_on_dispatch_ =
other.expected_queueing_time_on_dispatch_;
coalesced_ = other.coalesced();
// TODO(tdresser): Ideally we'd copy |began_| here as well, but |began_| isn't
// very intuitive, and we can actually begin multiple times across copied
// events.
terminated_ = other.terminated();
}
void LatencyInfo::AddLatencyNumber(LatencyComponentType component,
int64_t id,
int64_t component_sequence_number) {
AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
base::TimeTicks::Now(), 1, nullptr);
}
void LatencyInfo::AddLatencyNumberWithTraceName(
LatencyComponentType component,
int64_t id,
int64_t component_sequence_number,
const char* trace_name_str) {
AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
base::TimeTicks::Now(), 1, trace_name_str);
}
void LatencyInfo::AddLatencyNumberWithTimestamp(
LatencyComponentType component,
int64_t id,
int64_t component_sequence_number,
base::TimeTicks time,
uint32_t event_count) {
AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
time, event_count, nullptr);
}
void LatencyInfo::AddLatencyNumberWithTimestampImpl(
LatencyComponentType component,
int64_t id,
int64_t component_sequence_number,
base::TimeTicks time,
uint32_t event_count,
const char* trace_name_str) {
const unsigned char* latency_info_enabled =
g_latency_info_enabled.Get().latency_info_enabled;
if (IsTraceBeginComponent(component)) {
// Should only ever add begin component once.
CHECK(!began_);
began_ = true;
// We should have a trace ID assigned by now.
DCHECK(trace_id_ != -1);
if (*latency_info_enabled) {
// The timestamp for ASYNC_BEGIN trace event is used for drawing the
// beginning of the trace event in trace viewer. For better visualization,
// for an input event, we want to draw the beginning as when the event is
// originally created, e.g. the timestamp of its ORIGINAL/UI_COMPONENT,
// not when we actually issue the ASYNC_BEGIN trace event.
LatencyComponent begin_component;
base::TimeTicks ts;
if (FindLatency(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT, 0,
&begin_component) ||
FindLatency(INPUT_EVENT_LATENCY_UI_COMPONENT, 0, &begin_component)) {
ts = begin_component.event_time;
} else {
ts = base::TimeTicks::Now();
}
if (trace_name_str) {
if (IsInputLatencyBeginComponent(component))
trace_name_ = std::string("InputLatency::") + trace_name_str;
else
trace_name_ = std::string("Latency::") + trace_name_str;
}
TRACE_EVENT_COPY_ASYNC_BEGIN_WITH_TIMESTAMP0(
kTraceCategoriesForAsyncEvents,
trace_name_.c_str(),
TRACE_ID_DONT_MANGLE(trace_id_),
ts);
}
TRACE_EVENT_WITH_FLOW1("input,benchmark",
"LatencyInfo.Flow",
TRACE_ID_DONT_MANGLE(trace_id_),
TRACE_EVENT_FLAG_FLOW_OUT,
"trace_id", trace_id_);
}
LatencyMap::key_type key = std::make_pair(component, id);
LatencyMap::iterator it = latency_components_.find(key);
if (it == latency_components_.end()) {
LatencyComponent info = {component_sequence_number, time, event_count, time,
time};
latency_components_[key] = info;
} else {
it->second.sequence_number = std::max(component_sequence_number,
it->second.sequence_number);
uint32_t new_count = event_count + it->second.event_count;
if (event_count > 0 && new_count != 0) {
// Do a weighted average, so that the new event_time is the average of
// the times of events currently in this structure with the time passed
// into this method.
it->second.event_time += (time - it->second.event_time) * event_count /
new_count;
it->second.event_count = new_count;
it->second.last_event_time = std::max(it->second.last_event_time, time);
}
}
if (IsTraceEndComponent(component) && began_) {
// Should only ever add terminal component once.
CHECK(!terminated_);
terminated_ = true;
if (*latency_info_enabled) {
TRACE_EVENT_COPY_ASYNC_END1(
kTraceCategoriesForAsyncEvents, trace_name_.c_str(),
TRACE_ID_DONT_MANGLE(trace_id_), "data", AsTraceableData());
}
TRACE_EVENT_WITH_FLOW0("input,benchmark",
"LatencyInfo.Flow",
TRACE_ID_DONT_MANGLE(trace_id_),
TRACE_EVENT_FLAG_FLOW_IN);
}
}
std::unique_ptr<base::trace_event::ConvertableToTraceFormat>
LatencyInfo::AsTraceableData() {
std::unique_ptr<base::DictionaryValue> record_data(
new base::DictionaryValue());
for (const auto& lc : latency_components_) {
std::unique_ptr<base::DictionaryValue> component_info(
new base::DictionaryValue());
component_info->SetDouble("comp_id", static_cast<double>(lc.first.second));
component_info->SetDouble(
"time", static_cast<double>(
lc.second.event_time.since_origin().InMicroseconds()));
component_info->SetDouble("count", lc.second.event_count);
component_info->SetDouble("sequence_number",
lc.second.sequence_number);
record_data->Set(GetComponentName(lc.first.first),
std::move(component_info));
}
record_data->SetDouble("trace_id", static_cast<double>(trace_id_));
return LatencyInfoTracedValue::FromValue(std::move(record_data));
}
bool LatencyInfo::FindLatency(LatencyComponentType type,
int64_t id,
LatencyComponent* output) const {
LatencyMap::const_iterator it = latency_components_.find(
std::make_pair(type, id));
if (it == latency_components_.end())
return false;
if (output)
*output = it->second;
return true;
}
bool LatencyInfo::FindLatency(LatencyComponentType type,
LatencyComponent* output) const {
LatencyMap::const_iterator it = latency_components_.begin();
while (it != latency_components_.end()) {
if (it->first.first == type) {
if (output)
*output = it->second;
return true;
}
++it;
}
return false;
}
void LatencyInfo::RemoveLatency(LatencyComponentType type) {
LatencyMap::iterator it = latency_components_.begin();
while (it != latency_components_.end()) {
if (it->first.first == type)
it = latency_components_.erase(it);
else
it++;
}
}
} // namespace ui