blob: 791cb53bc66f65ff4818c9378ad4c1c5b348c695 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MOJO_PUBLIC_CPP_BINDINGS_MESSAGE_H_
#define MOJO_PUBLIC_CPP_BINDINGS_MESSAGE_H_
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "base/callback.h"
#include "base/compiler_specific.h"
#include "base/component_export.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "mojo/public/cpp/bindings/lib/buffer.h"
#include "mojo/public/cpp/bindings/lib/message_internal.h"
#include "mojo/public/cpp/bindings/lib/unserialized_message_context.h"
#include "mojo/public/cpp/bindings/scoped_interface_endpoint_handle.h"
#include "mojo/public/cpp/system/message.h"
namespace mojo {
class AssociatedGroupController;
using ReportBadMessageCallback =
base::OnceCallback<void(const std::string& error)>;
// Message is a holder for the data and handles to be sent over a MessagePipe.
// Message owns its data and handles, but a consumer of Message is free to
// mutate the data and handles. The message's data is comprised of a header
// followed by payload.
class COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) Message {
public:
static const uint32_t kFlagExpectsResponse = 1 << 0;
static const uint32_t kFlagIsResponse = 1 << 1;
static const uint32_t kFlagIsSync = 1 << 2;
// Constructs an uninitialized Message object.
Message();
// See the move-assignment operator below.
Message(Message&& other);
// Constructs a new message with an unserialized context attached. This
// message may be serialized later if necessary.
explicit Message(
std::unique_ptr<internal::UnserializedMessageContext> context);
// Constructs a new serialized Message object with optional handles attached.
// This message is fully functional and may be exchanged for a
// ScopedMessageHandle for transit over a message pipe. See TakeMojoMessage().
//
// If |handles| is non-null, any handles in |*handles| are attached to the
// newly constructed message.
//
// Note that |payload_size| is only the initially known size of the message
// payload, if any. The payload can be expanded after construction using the
// interface returned by |payload_buffer()|.
Message(uint32_t name,
uint32_t flags,
size_t payload_size,
size_t payload_interface_id_count,
std::vector<ScopedHandle>* handles);
// Constructs a new serialized Message object from an existing
// ScopedMessageHandle; e.g., one read from a message pipe.
//
// If the message had any handles attached, they will be extracted and
// retrievable via |handles()|. Such messages may NOT be sent back over
// another message pipe, but are otherwise safe to inspect and pass around.
//
// If handles are attached and their extraction fails for any reason,
// |*handle| remains unchanged and the returned Message will be null (i.e.
// calling IsNull() on it will return |true|).
static Message CreateFromMessageHandle(ScopedMessageHandle* message_handle);
~Message();
// Moves |other| into a new Message object. The moved-from Message becomes
// invalid and is effectively in a default-constructed state after this call.
Message& operator=(Message&& other);
// Resets the Message to an uninitialized state. Upon reset, the Message
// exists as if it were default-constructed: it has no data buffer and owns no
// handles.
void Reset();
// Indicates whether this Message is uninitialized.
bool IsNull() const { return !handle_.is_valid(); }
// Indicates whether this Message is in valid state. A Message may be in an
// invalid state iff it failed partial deserialization during construction
// over a ScopedMessageHandle.
bool IsValid() const;
// Indicates whether this Message is serialized.
bool is_serialized() const { return serialized_; }
// Access the raw bytes of the message.
const uint8_t* data() const {
DCHECK(payload_buffer_.is_valid());
return static_cast<const uint8_t*>(payload_buffer_.data());
}
uint8_t* mutable_data() { return const_cast<uint8_t*>(data()); }
size_t data_num_bytes() const {
DCHECK(payload_buffer_.is_valid());
return payload_buffer_.cursor();
}
// Access the header.
const internal::MessageHeader* header() const {
return reinterpret_cast<const internal::MessageHeader*>(data());
}
internal::MessageHeader* header() {
return reinterpret_cast<internal::MessageHeader*>(mutable_data());
}
const internal::MessageHeaderV1* header_v1() const {
DCHECK_GE(version(), 1u);
return reinterpret_cast<const internal::MessageHeaderV1*>(data());
}
internal::MessageHeaderV1* header_v1() {
DCHECK_GE(version(), 1u);
return reinterpret_cast<internal::MessageHeaderV1*>(mutable_data());
}
const internal::MessageHeaderV2* header_v2() const {
DCHECK_GE(version(), 2u);
return reinterpret_cast<const internal::MessageHeaderV2*>(data());
}
internal::MessageHeaderV2* header_v2() {
DCHECK_GE(version(), 2u);
return reinterpret_cast<internal::MessageHeaderV2*>(mutable_data());
}
uint32_t version() const { return header()->version; }
uint32_t interface_id() const { return header()->interface_id; }
void set_interface_id(uint32_t id) { header()->interface_id = id; }
uint32_t name() const { return header()->name; }
bool has_flag(uint32_t flag) const { return !!(header()->flags & flag); }
// Access the request_id field (if present).
uint64_t request_id() const { return header_v1()->request_id; }
void set_request_id(uint64_t request_id) {
header_v1()->request_id = request_id;
}
// Access the payload.
const uint8_t* payload() const;
uint8_t* mutable_payload() { return const_cast<uint8_t*>(payload()); }
uint32_t payload_num_bytes() const;
uint32_t payload_num_interface_ids() const;
const uint32_t* payload_interface_ids() const;
internal::Buffer* payload_buffer() { return &payload_buffer_; }
// Access the handles of a received message. Note that these are unused on
// outgoing messages.
const std::vector<ScopedHandle>* handles() const { return &handles_; }
std::vector<ScopedHandle>* mutable_handles() { return &handles_; }
const std::vector<ScopedInterfaceEndpointHandle>*
associated_endpoint_handles() const {
return &associated_endpoint_handles_;
}
std::vector<ScopedInterfaceEndpointHandle>*
mutable_associated_endpoint_handles() {
return &associated_endpoint_handles_;
}
// Takes ownership of any handles within |*context| and attaches them to this
// Message.
void AttachHandlesFromSerializationContext(
internal::SerializationContext* context);
// Takes a scoped MessageHandle which may be passed to |WriteMessageNew()| for
// transmission. Note that this invalidates this Message object, taking
// ownership of its internal storage and any attached handles.
ScopedMessageHandle TakeMojoMessage();
// Notifies the system that this message is "bad," in this case meaning it was
// rejected by bindings validation code.
void NotifyBadMessage(const std::string& error);
// Serializes |associated_endpoint_handles_| into the payload_interface_ids
// field.
void SerializeAssociatedEndpointHandles(
AssociatedGroupController* group_controller);
// Deserializes |associated_endpoint_handles_| from the payload_interface_ids
// field.
bool DeserializeAssociatedEndpointHandles(
AssociatedGroupController* group_controller);
// If this Message has an unserialized message context attached, force it to
// be serialized immediately. Otherwise this does nothing.
void SerializeIfNecessary();
// Takes the unserialized message context from this Message if its tag matches
// |tag|.
std::unique_ptr<internal::UnserializedMessageContext> TakeUnserializedContext(
const internal::UnserializedMessageContext::Tag* tag);
template <typename MessageType>
std::unique_ptr<MessageType> TakeUnserializedContext() {
auto generic_context = TakeUnserializedContext(&MessageType::kMessageTag);
if (!generic_context)
return nullptr;
return base::WrapUnique(
generic_context.release()->template SafeCast<MessageType>());
}
#if defined(ENABLE_IPC_FUZZER)
const char* interface_name() const { return interface_name_; }
void set_interface_name(const char* interface_name) {
interface_name_ = interface_name;
}
const char* method_name() const { return method_name_; }
void set_method_name(const char* method_name) { method_name_ = method_name; }
#endif
private:
// Internal constructor used by |CreateFromMessageHandle()| when either there
// are no attached handles or all attached handles are successfully extracted
// from the message object.
Message(ScopedMessageHandle message_handle,
std::vector<ScopedHandle> attached_handles,
internal::Buffer payload_buffer,
bool serialized);
ScopedMessageHandle handle_;
// A Buffer which may be used to allocate blocks of data within the message
// payload for reading or writing.
internal::Buffer payload_buffer_;
std::vector<ScopedHandle> handles_;
std::vector<ScopedInterfaceEndpointHandle> associated_endpoint_handles_;
// Indicates whether this Message object is transferable, i.e. can be sent
// elsewhere. In general this is true unless |handle_| is invalid or
// serialized handles have been extracted from the serialized message object
// identified by |handle_|.
bool transferable_ = false;
// Indicates whether this Message object is serialized.
bool serialized_ = false;
#if defined(ENABLE_IPC_FUZZER)
const char* interface_name_ = nullptr;
const char* method_name_ = nullptr;
#endif
DISALLOW_COPY_AND_ASSIGN(Message);
};
class COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) MessageReceiver {
public:
virtual ~MessageReceiver() {}
// Indicates whether the receiver prefers to receive serialized messages.
virtual bool PrefersSerializedMessages();
// The receiver may mutate the given message. Returns true if the message
// was accepted and false otherwise, indicating that the message was invalid
// or malformed.
virtual bool Accept(Message* message) WARN_UNUSED_RESULT = 0;
};
class MessageReceiverWithResponder : public MessageReceiver {
public:
~MessageReceiverWithResponder() override {}
// A variant on Accept that registers a MessageReceiver (known as the
// responder) to handle the response message generated from the given
// message. The responder's Accept method may be called during
// AcceptWithResponder or some time after its return.
virtual bool AcceptWithResponder(Message* message,
std::unique_ptr<MessageReceiver> responder)
WARN_UNUSED_RESULT = 0;
};
// A MessageReceiver that is also able to provide status about the state
// of the underlying MessagePipe to which it will be forwarding messages
// received via the |Accept()| call.
class MessageReceiverWithStatus : public MessageReceiver {
public:
~MessageReceiverWithStatus() override {}
// Returns |true| if this MessageReceiver is currently bound to a MessagePipe,
// the pipe has not been closed, and the pipe has not encountered an error.
virtual bool IsConnected() = 0;
// Determines if this MessageReceiver is still bound to a message pipe and has
// not encountered any errors. This is asynchronous but may be called from any
// sequence. |callback| is eventually invoked from an arbitrary sequence with
// the result of the query.
virtual void IsConnectedAsync(base::OnceCallback<void(bool)> callback) = 0;
};
// An alternative to MessageReceiverWithResponder for cases in which it
// is necessary for the implementor of this interface to know about the status
// of the MessagePipe which will carry the responses.
class MessageReceiverWithResponderStatus : public MessageReceiver {
public:
~MessageReceiverWithResponderStatus() override {}
// A variant on Accept that registers a MessageReceiverWithStatus (known as
// the responder) to handle the response message generated from the given
// message. Any of the responder's methods (Accept or IsValid) may be called
// during AcceptWithResponder or some time after its return.
virtual bool AcceptWithResponder(Message* message,
std::unique_ptr<MessageReceiverWithStatus>
responder) WARN_UNUSED_RESULT = 0;
};
class COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) PassThroughFilter
: public MessageReceiver {
public:
PassThroughFilter();
~PassThroughFilter() override;
// MessageReceiver:
bool Accept(Message* message) override;
private:
DISALLOW_COPY_AND_ASSIGN(PassThroughFilter);
};
namespace internal {
class SyncMessageResponseSetup;
}
// An object which should be constructed on the stack immediately before making
// a sync request for which the caller wishes to perform custom validation of
// the response value(s). It is illegal to make more than one sync call during
// the lifetime of the topmost SyncMessageResponseContext, but it is legal to
// nest contexts to support reentrancy.
//
// Usage should look something like:
//
// SyncMessageResponseContext response_context;
// foo_interface->SomeSyncCall(&response_value);
// if (response_value.IsBad())
// response_context.ReportBadMessage("Bad response_value!");
//
class COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) SyncMessageResponseContext {
public:
SyncMessageResponseContext();
~SyncMessageResponseContext();
static SyncMessageResponseContext* current();
void ReportBadMessage(const std::string& error);
ReportBadMessageCallback GetBadMessageCallback();
private:
friend class internal::SyncMessageResponseSetup;
SyncMessageResponseContext* outer_context_;
Message response_;
DISALLOW_COPY_AND_ASSIGN(SyncMessageResponseContext);
};
// Reports the currently dispatching Message as bad. Note that this is only
// legal to call from directly within the stack frame of a message dispatch. If
// you need to do asynchronous work before you can determine the legitimacy of
// a message, use GetBadMessageCallback() and retain its result until you're
// ready to invoke or discard it.
COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE)
void ReportBadMessage(const std::string& error);
// Acquires a callback which may be run to report the currently dispatching
// Message as bad. Note that this is only legal to call from directly within the
// stack frame of a message dispatch, but the returned callback may be called
// exactly once any time thereafter to report the message as bad. This may only
// be called once per message.
COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE)
ReportBadMessageCallback GetBadMessageCallback();
} // namespace mojo
#endif // MOJO_PUBLIC_CPP_BINDINGS_MESSAGE_H_