blob: 57053e4d30b67d5dc4b98dcf3cbe1ec4a54fe8c2 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file specifies a recursive data storage class called Value intended for
// storing settings and other persistable data.
//
// A Value represents something that can be stored in JSON or passed to/from
// JavaScript. As such, it is NOT a generalized variant type, since only the
// types supported by JavaScript/JSON are supported.
//
// IN PARTICULAR this means that there is no support for int64_t or unsigned
// numbers. Writing JSON with such types would violate the spec. If you need
// something like this, either use a double or make a string value containing
// the number you want.
//
// NOTE: A Value parameter that is always a Value::STRING should just be passed
// as a std::string. Similarly for Values that are always Value::DICTIONARY
// (should be flat_map), Value::LIST (should be std::vector), et cetera.
#ifndef BASE_VALUES_H_
#define BASE_VALUES_H_
#include <stddef.h>
#include <stdint.h>
#include <initializer_list>
#include <iosfwd>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "base/base_export.h"
#include "base/containers/checked_iterators.h"
#include "base/containers/checked_range.h"
#include "base/containers/cxx20_erase_vector.h"
#include "base/containers/flat_map.h"
#include "base/containers/span.h"
#include "base/strings/string_piece.h"
#include "base/trace_event/base_tracing_forward.h"
#include "base/value_iterators.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/abseil-cpp/absl/types/variant.h"
namespace base {
class DictionaryValue;
class ListValue;
// The Value class is the base class for Values. A Value can be instantiated
// via passing the appropriate type or backing storage to the constructor.
//
// See the file-level comment above for more information.
//
// base::Value is currently in the process of being refactored. Design doc:
// https://docs.google.com/document/d/1uDLu5uTRlCWePxQUEHc8yNQdEoE1BDISYdpggWEABnw
//
// Previously (which is how most code that currently exists is written), Value
// used derived types to implement the individual data types, and base::Value
// was just a base class to refer to them. This required everything be heap
// allocated.
//
// OLD WAY:
//
// std::unique_ptr<base::Value> GetFoo() {
// std::unique_ptr<DictionaryValue> dict;
// dict->SetString("mykey", foo);
// return dict;
// }
//
// The new design makes base::Value a variant type that holds everything in
// a union. It is now recommended to pass by value with std::move rather than
// use heap allocated values. The DictionaryValue and ListValue subclasses
// exist only as a compatibility shim that we're in the process of removing.
//
// NEW WAY:
//
// base::Value GetFoo() {
// base::Value dict(base::Value::Type::DICTIONARY);
// dict.SetKey("mykey", base::Value(foo));
// return dict;
// }
//
// The new design tries to avoid losing type information. Thus when migrating
// off deprecated types, existing usages of base::ListValue should be replaced
// by std::vector<base::Value>, and existing usages of base::DictionaryValue
// should be replaced with base::flat_map<std::string, base::Value>.
//
// OLD WAY:
//
// void AlwaysTakesList(std::unique_ptr<base::ListValue> list);
// void AlwaysTakesDict(std::unique_ptr<base::DictionaryValue> dict);
//
// NEW WAY:
//
// void AlwaysTakesList(std::vector<base::Value> list);
// void AlwaysTakesDict(base::flat_map<std::string, base::Value> dict);
//
// Migrating code will require conversions on API boundaries. This can be done
// cheaply by making use of overloaded base::Value constructors and the
// `Value::TakeList()` and `Value::TakeDict()` APIs.
class BASE_EXPORT Value {
public:
using BlobStorage = std::vector<uint8_t>;
using ListStorage = std::vector<Value>;
using DictStorage = flat_map<std::string, Value>;
// Like `DictStorage`, but with std::unique_ptr in the mapped type. This is
// due to legacy reasons, and should be removed once no caller relies on
// stability of pointers anymore.
using LegacyDictStorage = flat_map<std::string, std::unique_ptr<Value>>;
using ListView = CheckedContiguousRange<ListStorage>;
using ConstListView = CheckedContiguousConstRange<ListStorage>;
enum class Type : unsigned char {
NONE = 0,
BOOLEAN,
INTEGER,
DOUBLE,
STRING,
BINARY,
DICTIONARY,
LIST,
// Note: Do not add more types. See the file-level comment above for why.
};
// Adaptors for converting from the old way to the new way and vice versa.
static Value FromUniquePtrValue(std::unique_ptr<Value> val);
static std::unique_ptr<Value> ToUniquePtrValue(Value val);
static const DictionaryValue& AsDictionaryValue(const Value& val);
static const ListValue& AsListValue(const Value& val);
Value() noexcept;
Value(Value&& that) noexcept;
// Value's copy constructor and copy assignment operator are deleted. Use this
// to obtain a deep copy explicitly.
Value Clone() const;
explicit Value(Type type);
explicit Value(bool in_bool);
explicit Value(int in_int);
explicit Value(double in_double);
// Value(const char*) and Value(const char16_t*) are required despite
// Value(StringPiece) and Value(StringPiece16) because otherwise the
// compiler will choose the Value(bool) constructor for these arguments.
// Value(std::string&&) allow for efficient move construction.
explicit Value(const char* in_string);
explicit Value(StringPiece in_string);
explicit Value(std::string&& in_string) noexcept;
explicit Value(const char16_t* in_string16);
explicit Value(StringPiece16 in_string16);
// Disable constructions from other pointers, so that there is no silent
// conversion to bool.
template <typename T,
typename = std::enable_if_t<
!std::is_convertible<T*, std::string>::value &&
!std::is_convertible<T*, std::u16string>::value>>
explicit Value(T* ptr) = delete;
explicit Value(const std::vector<char>& in_blob);
explicit Value(base::span<const uint8_t> in_blob);
explicit Value(BlobStorage&& in_blob) noexcept;
explicit Value(const DictStorage& in_dict);
explicit Value(DictStorage&& in_dict) noexcept;
explicit Value(span<const Value> in_list);
explicit Value(ListStorage&& in_list) noexcept;
Value& operator=(Value&& that) noexcept;
Value(const Value&) = delete;
Value& operator=(const Value&) = delete;
~Value();
// Returns the name for a given `type`.
static const char* GetTypeName(Type type);
// Returns the type of the value stored by the current Value object.
Type type() const { return static_cast<Type>(data_.index()); }
// Returns true if the current object represents a given type.
bool is_none() const { return type() == Type::NONE; }
bool is_bool() const { return type() == Type::BOOLEAN; }
bool is_int() const { return type() == Type::INTEGER; }
bool is_double() const { return type() == Type::DOUBLE; }
bool is_string() const { return type() == Type::STRING; }
bool is_blob() const { return type() == Type::BINARY; }
bool is_dict() const { return type() == Type::DICTIONARY; }
bool is_list() const { return type() == Type::LIST; }
// These will return nullopt / nullptr if the type does not match.
absl::optional<bool> GetIfBool() const;
absl::optional<int> GetIfInt() const;
// Implicitly converts from int if necessary.
absl::optional<double> GetIfDouble() const;
const std::string* GetIfString() const;
const BlobStorage* GetIfBlob() const;
// These will all CHECK that the type matches.
bool GetBool() const;
int GetInt() const;
double GetDouble() const; // Implicitly converts from int if necessary.
const std::string& GetString() const;
std::string& GetString();
const BlobStorage& GetBlob() const;
// Returns the Values in a list as a view. The mutable overload allows for
// modification of the underlying values, but does not allow changing the
// structure of the list. If this is desired, use `TakeList()`, perform the
// operations, and return the list back to the Value via move assignment.
ListView GetList();
ConstListView GetList() const;
// Transfers ownership of the underlying list to the caller. Subsequent
// calls to `GetList()` will return an empty list.
// Note: This requires that `type()` is Type::LIST.
ListStorage TakeList() &&;
// Appends `value` to the end of the list.
// Note: These CHECK that `type()` is Type::LIST.
void Append(bool value);
void Append(int value);
void Append(double value);
void Append(const char* value);
void Append(StringPiece value);
void Append(std::string&& value);
void Append(const char16_t* value);
// Disable `Append()` from other pointers, so that there is no silent
// conversion to bool.
template <typename T,
typename = std::enable_if_t<
!std::is_convertible<T*, std::string>::value &&
!std::is_convertible<T*, std::u16string>::value>>
void Append(T* ptr) = delete;
void Append(StringPiece16 value);
void Append(Value&& value);
// Inserts `value` before `pos`.
// Note: This CHECK that `type()` is Type::LIST.
CheckedContiguousIterator<Value> Insert(
CheckedContiguousConstIterator<Value> pos,
Value&& value);
// Erases the Value pointed to by `iter`. Returns false if `iter` is out of
// bounds.
// Note: This requires that `type()` is Type::LIST.
bool EraseListIter(CheckedContiguousConstIterator<Value> iter);
// Erases all Values that compare equal to `val`. Returns the number of
// deleted Values.
// Note: This requires that `type()` is Type::LIST.
size_t EraseListValue(const Value& val);
// Erases all Values for which `pred` returns true. Returns the number of
// deleted Values.
// Note: This requires that `type()` is Type::LIST.
template <typename Predicate>
size_t EraseListValueIf(Predicate pred) {
return base::EraseIf(list(), pred);
}
// Erases all Values from the list.
// Note: This requires that `type()` is Type::LIST.
void ClearList();
// `FindKey` looks up `key` in the underlying dictionary. If found, it returns
// a pointer to the element. Otherwise it returns nullptr.
// returned. Callers are expected to perform a check against null before using
// the pointer.
// Note: This requires that `type()` is Type::DICTIONARY.
//
// Example:
// auto* found = FindKey("foo");
Value* FindKey(StringPiece key);
const Value* FindKey(StringPiece key) const;
// `FindKeyOfType` is similar to `FindKey`, but it also requires the found
// value to have type `type`. If no type is found, or the found value is of a
// different type nullptr is returned.
// Callers are expected to perform a check against null before using the
// pointer.
// Note: This requires that `type()` is Type::DICTIONARY.
//
// Example:
// auto* found = FindKey("foo", Type::DOUBLE);
Value* FindKeyOfType(StringPiece key, Type type);
const Value* FindKeyOfType(StringPiece key, Type type) const;
// These are convenience forms of `FindKey`. They return absl::nullopt if
// the value is not found or doesn't have the type specified in the
// function's name.
absl::optional<bool> FindBoolKey(StringPiece key) const;
absl::optional<int> FindIntKey(StringPiece key) const;
// Note `FindDoubleKey()` will auto-convert INTEGER keys to their double
// value, for consistency with `GetDouble()`.
absl::optional<double> FindDoubleKey(StringPiece key) const;
// `FindStringKey` returns `nullptr` if value is not found or not a string.
const std::string* FindStringKey(StringPiece key) const;
std::string* FindStringKey(StringPiece key);
// Returns nullptr is value is not found or not a binary.
const BlobStorage* FindBlobKey(StringPiece key) const;
// Returns nullptr if value is not found or not a dictionary.
const Value* FindDictKey(StringPiece key) const;
Value* FindDictKey(StringPiece key);
// Returns nullptr if value is not found or not a list.
const Value* FindListKey(StringPiece key) const;
Value* FindListKey(StringPiece key);
// `SetKey` looks up `key` in the underlying dictionary and sets the mapped
// value to `value`. If `key` could not be found, a new element is inserted.
// A pointer to the modified item is returned.
// Note: This requires that `type()` is Type::DICTIONARY.
// Note: Prefer `Set<Type>Key()` for simple values.
//
// Example:
// SetKey("foo", std::move(myvalue));
Value* SetKey(StringPiece key, Value&& value);
// This overload results in a performance improvement for std::string&&.
Value* SetKey(std::string&& key, Value&& value);
// This overload is necessary to avoid ambiguity for const char* arguments.
Value* SetKey(const char* key, Value&& value);
// `Set`Type>Key` looks up `key` in the underlying dictionary and associates a
// corresponding Value() constructed from the second parameter. Compared to
// `SetKey()`, this avoids un-necessary temporary `Value()` creation, as well
// ambiguities in the value type.
Value* SetBoolKey(StringPiece key, bool val);
Value* SetIntKey(StringPiece key, int val);
Value* SetDoubleKey(StringPiece key, double val);
Value* SetStringKey(StringPiece key, StringPiece val);
Value* SetStringKey(StringPiece key, StringPiece16 val);
// NOTE: The following two overloads are provided as performance / code
// generation optimizations.
Value* SetStringKey(StringPiece key, const char* val);
Value* SetStringKey(StringPiece key, std::string&& val);
// This attempts to remove the value associated with `key`. In case of
// failure, e.g. the key does not exist, false is returned and the underlying
// dictionary is not changed. In case of success, `key` is deleted from the
// dictionary and the method returns true.
// Note: This requires that `type()` is Type::DICTIONARY.
//
// Example:
// bool success = dict.RemoveKey("foo");
bool RemoveKey(StringPiece key);
// This attempts to extract the value associated with `key`. In case of
// failure, e.g. the key does not exist, nullopt is returned and the
// underlying dictionary is not changed. In case of success, `key` is deleted
// from the dictionary and the method returns the extracted Value.
// Note: This requires that `type()` is Type::DICTIONARY.
//
// Example:
// absl::optional<Value> maybe_value = dict.ExtractKey("foo");
absl::optional<Value> ExtractKey(StringPiece key);
// Searches a hierarchy of dictionary values for a given value. If a path
// of dictionaries exist, returns the item at that path. If any of the path
// components do not exist or if any but the last path components are not
// dictionaries, returns nullptr.
//
// The type of the leaf Value is not checked.
//
// Implementation note: This can't return an iterator because the iterator
// will actually be into another Value, so it can't be compared to iterators
// from this one (in particular, the DictItems().end() iterator).
//
// This version takes a StringPiece for the path, using dots as separators.
// Example:
// auto* found = FindPath("foo.bar");
Value* FindPath(StringPiece path);
const Value* FindPath(StringPiece path) const;
// There are also deprecated versions that take the path parameter
// as either a std::initializer_list<StringPiece> or a
// span<const StringPiece>. The latter is useful to use a
// std::vector<std::string> as a parameter but creates huge dynamic
// allocations and should be avoided!
// Note: If there is only one component in the path, use `FindKey()` instead.
//
// Example:
// std::vector<StringPiece> components = ...
// auto* found = FindPath(components);
Value* FindPath(std::initializer_list<StringPiece> path);
Value* FindPath(span<const StringPiece> path);
const Value* FindPath(std::initializer_list<StringPiece> path) const;
const Value* FindPath(span<const StringPiece> path) const;
// Like FindPath() but will only return the value if the leaf Value type
// matches the given type. Will return nullptr otherwise.
// Note: Prefer `Find<Type>Path()` for simple values.
//
// Note: If there is only one component in the path, use `FindKeyOfType()`
// instead for slightly better performance.
Value* FindPathOfType(StringPiece path, Type type);
const Value* FindPathOfType(StringPiece path, Type type) const;
// Convenience accessors used when the expected type of a value is known.
// Similar to Find<Type>Key() but accepts paths instead of keys.
absl::optional<bool> FindBoolPath(StringPiece path) const;
absl::optional<int> FindIntPath(StringPiece path) const;
absl::optional<double> FindDoublePath(StringPiece path) const;
const std::string* FindStringPath(StringPiece path) const;
std::string* FindStringPath(StringPiece path);
const BlobStorage* FindBlobPath(StringPiece path) const;
Value* FindDictPath(StringPiece path);
const Value* FindDictPath(StringPiece path) const;
Value* FindListPath(StringPiece path);
const Value* FindListPath(StringPiece path) const;
// The following forms are deprecated too, use the ones that take the path
// as a single StringPiece instead.
Value* FindPathOfType(std::initializer_list<StringPiece> path, Type type);
Value* FindPathOfType(span<const StringPiece> path, Type type);
const Value* FindPathOfType(std::initializer_list<StringPiece> path,
Type type) const;
const Value* FindPathOfType(span<const StringPiece> path, Type type) const;
// Sets the given path, expanding and creating dictionary keys as necessary.
//
// If the current value is not a dictionary, the function returns nullptr. If
// path components do not exist, they will be created. If any but the last
// components matches a value that is not a dictionary, the function will fail
// (it will not overwrite the value) and return nullptr. The last path
// component will be unconditionally overwritten if it exists, and created if
// it doesn't.
//
// Example:
// value.SetPath("foo.bar", std::move(myvalue));
//
// Note: If there is only one component in the path, use `SetKey()` instead.
// Note: Using `Set<Type>Path()` might be more convenient and efficient.
Value* SetPath(StringPiece path, Value&& value);
// These setters are more convenient and efficient than the corresponding
// SetPath(...) call.
Value* SetBoolPath(StringPiece path, bool value);
Value* SetIntPath(StringPiece path, int value);
Value* SetDoublePath(StringPiece path, double value);
Value* SetStringPath(StringPiece path, StringPiece value);
Value* SetStringPath(StringPiece path, const char* value);
Value* SetStringPath(StringPiece path, std::string&& value);
Value* SetStringPath(StringPiece path, StringPiece16 value);
// Deprecated: use the `SetPath(StringPiece, ...)` methods above instead.
Value* SetPath(std::initializer_list<StringPiece> path, Value&& value);
Value* SetPath(span<const StringPiece> path, Value&& value);
// Tries to remove a Value at the given path.
//
// If the current value is not a dictionary or any path component does not
// exist, this operation fails, leaves underlying Values untouched and returns
// `false`. In case intermediate dictionaries become empty as a result of this
// path removal, they will be removed as well.
// Note: If there is only one component in the path, use `ExtractKey()`
// instead.
//
// Example:
// bool success = value.RemovePath("foo.bar");
bool RemovePath(StringPiece path);
// Tries to extract a Value at the given path.
//
// If the current value is not a dictionary or any path component does not
// exist, this operation fails, leaves underlying Values untouched and returns
// nullopt. In case intermediate dictionaries become empty as a result of this
// path removal, they will be removed as well. Returns the extracted value on
// success.
// Note: If there is only one component in the path, use `ExtractKey()`
// instead.
//
// Example:
// absl::optional<Value> maybe_value = value.ExtractPath("foo.bar");
absl::optional<Value> ExtractPath(StringPiece path);
using dict_iterator_proxy = detail::dict_iterator_proxy;
using const_dict_iterator_proxy = detail::const_dict_iterator_proxy;
// `DictItems` returns a proxy object that exposes iterators to the underlying
// dictionary. These are intended for iteration over all items in the
// dictionary and are compatible with for-each loops and standard library
// algorithms.
//
// Unlike with std::map, a range-for over the non-const version of
// `DictItems()` will range over items of type
// `pair<const std::string&, Value&>`, so code of the form
// for (auto kv : my_value.DictItems())
// Mutate(kv.second);
// will actually alter `my_value` in place (if it isn't const).
//
// Note: These CHECK that `type()` is Type::DICTIONARY.
dict_iterator_proxy DictItems();
const_dict_iterator_proxy DictItems() const;
// Transfers ownership of the underlying dict to the caller. Subsequent
// calls to DictItems() will return an empty dict.
// Note: This requires that `type()` is Type::DICTIONARY.
DictStorage TakeDict() &&;
// Returns the size of the dictionary, if the dictionary is empty, and clears
// the dictionary. Note: These CHECK that `type()` is Type::DICTIONARY.
size_t DictSize() const;
bool DictEmpty() const;
void DictClear();
// Merge `dictionary` into this value. This is done recursively, i.e. any
// sub-dictionaries will be merged as well. In case of key collisions, the
// passed in dictionary takes precedence and data already present will be
// replaced. Values within `dictionary` are deep-copied, so `dictionary` may
// be freed any time after this call.
// Note: This requires that `type()` and `dictionary->type()` is
// Type::DICTIONARY.
void MergeDictionary(const Value* dictionary);
// These methods allow the convenient retrieval of the contents of the Value.
// If the current object can be converted into the given type, the value is
// returned through the `out_value` parameter and true is returned;
// otherwise, false is returned and `out_value` is unchanged.
// DEPRECATED, use `GetIfBool()` instead.
bool GetAsBoolean(bool* out_value) const;
// DEPRECATED, use `GetIfDouble()` instead.
bool GetAsDouble(double* out_value) const;
// DEPRECATED, use `GetIfString()` instead.
bool GetAsString(std::string* out_value) const;
bool GetAsString(std::u16string* out_value) const;
bool GetAsString(const Value** out_value) const;
bool GetAsString(StringPiece* out_value) const;
// ListValue::From is the equivalent for std::unique_ptr conversions.
// DEPRECATED, use `is_list()` instead.
bool GetAsList(ListValue** out_value);
bool GetAsList(const ListValue** out_value) const;
// DictionaryValue::From is the equivalent for std::unique_ptr conversions.
bool GetAsDictionary(DictionaryValue** out_value);
bool GetAsDictionary(const DictionaryValue** out_value) const;
// Note: Do not add more types. See the file-level comment above for why.
// This creates a deep copy of the entire Value tree, and returns a pointer
// to the copy. The caller gets ownership of the copy, of course.
// Subclasses return their own type directly in their overrides;
// this works because C++ supports covariant return types.
// DEPRECATED, use `Value::Clone()` instead.
// TODO(crbug.com/646113): Delete this and migrate callsites.
Value* DeepCopy() const;
// DEPRECATED, use `Value::Clone()` instead.
// TODO(crbug.com/646113): Delete this and migrate callsites.
std::unique_ptr<Value> CreateDeepCopy() const;
// Comparison operators so that Values can easily be used with standard
// library algorithms and associative containers.
BASE_EXPORT friend bool operator==(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator!=(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator<(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator>(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator<=(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator>=(const Value& lhs, const Value& rhs);
// Compares if two Value objects have equal contents.
// DEPRECATED, use `operator==(const Value& lhs, const Value& rhs)` instead.
// TODO(crbug.com/646113): Delete this and migrate callsites.
bool Equals(const Value* other) const;
// Estimates dynamic memory usage. Requires tracing support
// (enable_base_tracing gn flag), otherwise always returns 0. See
// base/trace_event/memory_usage_estimator.h for more info.
size_t EstimateMemoryUsage() const;
// Serializes to a string for logging and debug purposes.
std::string DebugString() const;
#if BUILDFLAG(ENABLE_BASE_TRACING)
// Write this object into a trace.
void WriteIntoTrace(perfetto::TracedValue) const;
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
protected:
// Checked convenience accessors for dict and list.
const LegacyDictStorage& dict() const {
return absl::get<LegacyDictStorage>(data_);
}
LegacyDictStorage& dict() { return absl::get<LegacyDictStorage>(data_); }
const ListStorage& list() const { return absl::get<ListStorage>(data_); }
ListStorage& list() { return absl::get<ListStorage>(data_); }
// Internal constructors, allowing the simplify the implementation of Clone().
explicit Value(const LegacyDictStorage& storage);
explicit Value(LegacyDictStorage&& storage) noexcept;
private:
// Special case for doubles, which are aligned to 8 bytes on some
// 32-bit architectures. In this case, a simple declaration as a
// double member would make the whole union 8 byte-aligned, which
// would also force 4 bytes of wasted padding space before it in
// the Value layout.
//
// To override this, store the value as an array of 32-bit integers, and
// perform the appropriate bit casts when reading / writing to it.
using DoubleStorage = struct { alignas(4) char v[sizeof(double)]; };
// Internal constructors, allowing the simplify the implementation of Clone().
explicit Value(absl::monostate);
explicit Value(DoubleStorage storage);
friend class ValuesTest_SizeOfValue_Test;
double AsDoubleInternal() const;
// NOTE: Using a movable reference here is done for performance (it avoids
// creating + moving + destroying a temporary unique ptr).
Value* SetKeyInternal(StringPiece key, std::unique_ptr<Value>&& val_ptr);
Value* SetPathInternal(StringPiece path, std::unique_ptr<Value>&& value_ptr);
absl::variant<absl::monostate,
bool,
int,
DoubleStorage,
std::string,
BlobStorage,
LegacyDictStorage,
ListStorage>
data_;
};
// DictionaryValue provides a key-value dictionary with (optional) "path"
// parsing for recursive access; see the comment at the top of the file. Keys
// are std::string's and should be UTF-8 encoded.
class BASE_EXPORT DictionaryValue : public Value {
public:
// Returns `value` if it is a dictionary, nullptr otherwise.
static std::unique_ptr<DictionaryValue> From(std::unique_ptr<Value> value);
DictionaryValue();
explicit DictionaryValue(const LegacyDictStorage& in_dict);
explicit DictionaryValue(LegacyDictStorage&& in_dict) noexcept;
// Returns true if the current dictionary has a value for the given key.
// DEPRECATED, use `Value::FindKey(key)` instead.
bool HasKey(StringPiece key) const;
// Clears any current contents of this dictionary.
// DEPRECATED, use `Value::DictClear()` instead.
void Clear();
// Sets the Value associated with the given path starting from this object.
// A path has the form "<key>" or "<key>.<key>.[...]", where "." indexes
// into the next DictionaryValue down. Obviously, "." can't be used
// within a key, but there are no other restrictions on keys.
// If the key at any step of the way doesn't exist, or exists but isn't
// a DictionaryValue, a new DictionaryValue will be created and attached
// to the path in that location. `in_value` must be non-null.
// Returns a pointer to the inserted value.
// DEPRECATED, use `Value::SetPath(path, value)` instead.
Value* Set(StringPiece path, std::unique_ptr<Value> in_value);
// Convenience forms of Set(). These methods will replace any existing
// value at that path, even if it has a different type.
// DEPRECATED, use `Value::SetBoolKey()` or `Value::SetBoolPath()`.
Value* SetBoolean(StringPiece path, bool in_value);
// DEPRECATED, use `Value::SetIntPath()`.
Value* SetInteger(StringPiece path, int in_value);
// DEPRECATED, use `Value::SetDoublePath()`.
Value* SetDouble(StringPiece path, double in_value);
// DEPRECATED, use `Value::SetStringPath()`.
Value* SetString(StringPiece path, StringPiece in_value);
// DEPRECATED, use `Value::SetStringPath()`.
Value* SetString(StringPiece path, const std::u16string& in_value);
// DEPRECATED, use `Value::SetPath()`.
DictionaryValue* SetDictionary(StringPiece path,
std::unique_ptr<DictionaryValue> in_value);
// DEPRECATED, use `Value::SetPath()`.
ListValue* SetList(StringPiece path, std::unique_ptr<ListValue> in_value);
// Like Set(), but without special treatment of '.'. This allows e.g. URLs to
// be used as paths.
// DEPRECATED, use `Value::SetKey(key, value)` instead.
Value* SetWithoutPathExpansion(StringPiece key,
std::unique_ptr<Value> in_value);
// Gets the Value associated with the given path starting from this object.
// A path has the form "<key>" or "<key>.<key>.[...]", where "." indexes
// into the next DictionaryValue down. If the path can be resolved
// successfully, the value for the last key in the path will be returned
// through the `out_value` parameter, and the function will return true.
// Otherwise, it will return false and `out_value` will be untouched.
// Note that the dictionary always owns the value that's returned.
// `out_value` is optional and will only be set if non-NULL.
// DEPRECATED, use `Value::FindPath(path)` instead.
bool Get(StringPiece path, const Value** out_value) const;
// DEPRECATED, use `Value::FindPath(path)` instead.
bool Get(StringPiece path, Value** out_value);
// These are convenience forms of `Get()`. The value will be retrieved
// and the return value will be true if the path is valid and the value at
// the end of the path can be returned in the form specified.
// `out_value` is optional and will only be set if non-NULL.
// DEPRECATED, use `Value::FindBoolPath(path)` instead.
bool GetBoolean(StringPiece path, bool* out_value) const;
// DEPRECATED, use `Value::FindIntPath(path)` instead.
bool GetInteger(StringPiece path, int* out_value) const;
// Values of both type Type::INTEGER and Type::DOUBLE can be obtained as
// doubles.
// DEPRECATED, use `Value::FindDoublePath(path)`.
bool GetDouble(StringPiece path, double* out_value) const;
// DEPRECATED, use `Value::FindStringPath(path)` instead.
bool GetString(StringPiece path, std::string* out_value) const;
// DEPRECATED, use `Value::FindStringPath(path)` instead.
bool GetString(StringPiece path, std::u16string* out_value) const;
// DEPRECATED, use `Value::FindString(path)` and `IsAsciiString()` instead.
bool GetStringASCII(StringPiece path, std::string* out_value) const;
// DEPRECATED, use `Value::FindBlobPath(path)` instead.
bool GetBinary(StringPiece path, const Value** out_value) const;
// DEPRECATED, use `Value::FindBlobPath(path)` instead.
bool GetBinary(StringPiece path, Value** out_value);
// DEPRECATED, use `Value::FindPath(path)` and Value's Dictionary API
// instead.
bool GetDictionary(StringPiece path, const DictionaryValue** out_value) const;
// DEPRECATED, use `Value::FindPath(path)` and Value's Dictionary API
// instead.
bool GetDictionary(StringPiece path, DictionaryValue** out_value);
// DEPRECATED, use `Value::FindPath(path)` and `Value::GetList()` instead.
bool GetList(StringPiece path, const ListValue** out_value) const;
// DEPRECATED, use `Value::FindPath(path)` and `Value::GetList()` instead.
bool GetList(StringPiece path, ListValue** out_value);
// Like `Get()`, but without special treatment of '.'. This allows e.g. URLs
// to be used as paths.
// DEPRECATED, use `Value::FindStringKey(key)` instead.
bool GetStringWithoutPathExpansion(StringPiece key,
std::string* out_value) const;
// DEPRECATED, use `Value::FindStringKey(key)` and UTF8ToUTF16() instead.
bool GetStringWithoutPathExpansion(StringPiece key,
std::u16string* out_value) const;
// DEPRECATED, use `Value::FindDictKey(key)` instead.
bool GetDictionaryWithoutPathExpansion(
StringPiece key,
const DictionaryValue** out_value) const;
// DEPRECATED, use `Value::FindDictKey(key)` instead.
bool GetDictionaryWithoutPathExpansion(StringPiece key,
DictionaryValue** out_value);
// DEPRECATED, use `Value::FindListKey(key)` instead.
bool GetListWithoutPathExpansion(StringPiece key,
const ListValue** out_value) const;
// DEPRECATED, use `Value::FindListKey(key)` instead.
bool GetListWithoutPathExpansion(StringPiece key, ListValue** out_value);
// Removes the Value with the specified path from this dictionary (or one
// of its child dictionaries, if the path is more than just a local key).
// If `out_value` is non-NULL, the removed Value will be passed out via
// `out_value`. If `out_value` is NULL, the removed value will be deleted.
// This method returns true if `path` is a valid path; otherwise it will
// return false and the DictionaryValue object will be unchanged.
// DEPRECATED, use `Value::RemovePath(path)` or `Value::ExtractPath(path)`
// instead.
bool Remove(StringPiece path, std::unique_ptr<Value>* out_value);
// Like Remove(), but without special treatment of '.'. This allows e.g. URLs
// to be used as paths.
// DEPRECATED, use `Value::RemoveKey(key)` or `Value::ExtractKey(key)`
// instead.
bool RemoveWithoutPathExpansion(StringPiece key,
std::unique_ptr<Value>* out_value);
// Makes a copy of `this` but doesn't include empty dictionaries and lists in
// the copy. This never returns NULL, even if `this` itself is empty.
std::unique_ptr<DictionaryValue> DeepCopyWithoutEmptyChildren() const;
// Swaps contents with the `other` dictionary.
void Swap(DictionaryValue* other);
// This class provides an iterator over both keys and values in the
// dictionary. It can't be used to modify the dictionary.
// DEPRECATED, use `Value::DictItems()` instead.
class BASE_EXPORT Iterator {
public:
explicit Iterator(const DictionaryValue& target);
Iterator(const Iterator& other);
~Iterator();
bool IsAtEnd() const { return it_ == target_.DictItems().end(); }
void Advance() { ++it_; }
const std::string& key() const { return it_->first; }
const Value& value() const { return it_->second; }
private:
const DictionaryValue& target_;
detail::const_dict_iterator it_;
};
// DEPRECATED, use `Value::Clone()` instead.
// TODO(crbug.com/646113): Delete this and migrate callsites.
DictionaryValue* DeepCopy() const;
// DEPRECATED, use `Value::Clone()` instead.
// TODO(crbug.com/646113): Delete this and migrate callsites.
std::unique_ptr<DictionaryValue> CreateDeepCopy() const;
};
// This type of Value represents a list of other Value values.
// DEPRECATED: Use std::vector<base::Value> instead.
class BASE_EXPORT ListValue : public Value {
public:
using const_iterator = ListView::const_iterator;
using iterator = ListView::iterator;
// Returns `value` if it is a list, nullptr otherwise.
static std::unique_ptr<ListValue> From(std::unique_ptr<Value> value);
ListValue();
explicit ListValue(span<const Value> in_list);
explicit ListValue(ListStorage&& in_list) noexcept;
// Returns the number of Values in this list.
// DEPRECATED, use `GetList()::size()` instead.
size_t GetSize() const { return list().size(); }
// Sets the list item at the given index to be the Value specified by
// the value given. If the index beyond the current end of the list, null
// Values will be used to pad out the list.
// Returns true if successful, or false if the index was negative or
// the value is a null pointer.
// DEPRECATED, use `GetList()::operator[] instead.
bool Set(size_t index, std::unique_ptr<Value> in_value);
// Gets the Value at the given index. Modifies `out_value` (and returns true)
// only if the index falls within the current list range.
// Note that the list always owns the Value passed out via `out_value`.
// `out_value` is optional and will only be set if non-NULL.
// DEPRECATED, use `GetList()::operator[] instead.
bool Get(size_t index, const Value** out_value) const;
bool Get(size_t index, Value** out_value);
// Convenience forms of `Get()`. Modifies `out_value` (and returns true)
// only if the index is valid and the Value at that index can be returned
// in the specified form.
// `out_value` is optional and will only be set if non-NULL.
// DEPRECATED, use `GetList()::operator[]::GetBool()` instead.
bool GetBoolean(size_t index, bool* out_value) const;
// Values of both type Type::INTEGER and Type::DOUBLE can be obtained as
// doubles.
// DEPRECATED, use `GetList()::operator[]::GetDouble()` instead.
bool GetDouble(size_t index, double* out_value) const;
// DEPRECATED, use `GetList()::operator[]::GetString()` instead.
bool GetString(size_t index, std::string* out_value) const;
bool GetString(size_t index, std::u16string* out_value) const;
bool GetDictionary(size_t index, const DictionaryValue** out_value) const;
bool GetDictionary(size_t index, DictionaryValue** out_value);
using Value::Append;
// Appends a Value to the end of the list.
// DEPRECATED, use `Value::Append()` instead.
void Append(std::unique_ptr<Value> in_value);
// Convenience forms of Append.
// DEPRECATED, use `Value::Append()` instead.
void AppendBoolean(bool in_value);
void AppendInteger(int in_value);
void AppendString(StringPiece in_value);
void AppendString(const std::u16string& in_value);
// Swaps contents with the `other` list.
// DEPRECATED, use `GetList()::swap()` instead.
void Swap(ListValue* other);
// Iteration.
//
// ListValue no longer supports iteration. Instead, use GetList() to get the
// underlying list:
//
// for (const auto& entry : list_value.GetList()) {
// ...
//
// for (auto it = list_value.GetList().begin();
// it != list_value.GetList().end(); ++it) {
// ...
// DEPRECATED, use `Value::Clone()` instead.
// TODO(crbug.com/646113): Delete this and migrate callsites.
ListValue* DeepCopy() const;
// DEPRECATED, use `Value::Clone()` instead.
// TODO(crbug.com/646113): Delete this and migrate callsites.
std::unique_ptr<ListValue> CreateDeepCopy() const;
};
// This interface is implemented by classes that know how to serialize
// Value objects.
class BASE_EXPORT ValueSerializer {
public:
virtual ~ValueSerializer();
virtual bool Serialize(const Value& root) = 0;
};
// This interface is implemented by classes that know how to deserialize Value
// objects.
class BASE_EXPORT ValueDeserializer {
public:
virtual ~ValueDeserializer();
// This method deserializes the subclass-specific format into a Value object.
// If the return value is non-NULL, the caller takes ownership of returned
// Value.
//
// If the return value is nullptr, and if `error_code` is non-nullptr,
// `*error_code` will be set to an integer value representing the underlying
// error. See "enum ErrorCode" below for more detail about the integer value.
//
// If `error_message` is non-nullptr, it will be filled in with a formatted
// error message including the location of the error if appropriate.
virtual std::unique_ptr<Value> Deserialize(int* error_code,
std::string* error_message) = 0;
// The integer-valued error codes form four groups:
// - The value 0 means no error.
// - Values between 1 and 999 inclusive mean an error in the data (i.e.
// content). The bytes being deserialized are not in the right format.
// - Values 1000 and above mean an error in the metadata (i.e. context). The
// file could not be read, the network is down, etc.
// - Negative values are reserved.
enum ErrorCode {
kErrorCodeNoError = 0,
// kErrorCodeInvalidFormat is a generic error code for "the data is not in
// the right format". Subclasses of ValueDeserializer may return other
// values for more specific errors.
kErrorCodeInvalidFormat = 1,
// kErrorCodeFirstMetadataError is the minimum value (inclusive) of the
// range of metadata errors.
kErrorCodeFirstMetadataError = 1000,
};
// The `error_code` argument can be one of the ErrorCode values, but it is
// not restricted to only being 0, 1 or 1000. Subclasses of ValueDeserializer
// can define their own error code values.
static inline bool ErrorCodeIsDataError(int error_code) {
return (kErrorCodeInvalidFormat <= error_code) &&
(error_code < kErrorCodeFirstMetadataError);
}
};
// Stream operator so Values can be used in assertion statements. In order that
// gtest uses this operator to print readable output on test failures, we must
// override each specific type. Otherwise, the default template implementation
// is preferred over an upcast.
BASE_EXPORT std::ostream& operator<<(std::ostream& out, const Value& value);
BASE_EXPORT inline std::ostream& operator<<(std::ostream& out,
const DictionaryValue& value) {
return out << static_cast<const Value&>(value);
}
BASE_EXPORT inline std::ostream& operator<<(std::ostream& out,
const ListValue& value) {
return out << static_cast<const Value&>(value);
}
// Stream operator so that enum class Types can be used in log statements.
BASE_EXPORT std::ostream& operator<<(std::ostream& out,
const Value::Type& type);
} // namespace base
#endif // BASE_VALUES_H_