| /* fts1 has a design flaw which can lead to database corruption (see |
| ** below). It is recommended not to use it any longer, instead use |
| ** fts3 (or higher). If you believe that your use of fts1 is safe, |
| ** add -DSQLITE_ENABLE_BROKEN_FTS1=1 to your CFLAGS. |
| */ |
| #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)) \ |
| && !defined(SQLITE_ENABLE_BROKEN_FTS1) |
| #error fts1 has a design flaw and has been deprecated. |
| #endif |
| /* The flaw is that fts1 uses the content table's unaliased rowid as |
| ** the unique docid. fts1 embeds the rowid in the index it builds, |
| ** and expects the rowid to not change. The SQLite VACUUM operation |
| ** will renumber such rowids, thereby breaking fts1. If you are using |
| ** fts1 in a system which has disabled VACUUM, then you can continue |
| ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable |
| ** VACUUM, though systems using auto_vacuum are unlikely to invoke |
| ** VACUUM. |
| ** |
| ** fts1 should be safe even across VACUUM if you only insert documents |
| ** and never delete. |
| */ |
| |
| /* The author disclaims copyright to this source code. |
| * |
| * This is an SQLite module implementing full-text search. |
| */ |
| |
| /* |
| ** The code in this file is only compiled if: |
| ** |
| ** * The FTS1 module is being built as an extension |
| ** (in which case SQLITE_CORE is not defined), or |
| ** |
| ** * The FTS1 module is being built into the core of |
| ** SQLite (in which case SQLITE_ENABLE_FTS1 is defined). |
| */ |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) |
| |
| #if defined(SQLITE_ENABLE_FTS1) && !defined(SQLITE_CORE) |
| # define SQLITE_CORE 1 |
| #endif |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <ctype.h> |
| |
| #include "fts1.h" |
| #include "fts1_hash.h" |
| #include "fts1_tokenizer.h" |
| #include "sqlite3.h" |
| #include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| |
| |
| #if 0 |
| # define TRACE(A) printf A; fflush(stdout) |
| #else |
| # define TRACE(A) |
| #endif |
| |
| /* utility functions */ |
| |
| typedef struct StringBuffer { |
| int len; /* length, not including null terminator */ |
| int alloced; /* Space allocated for s[] */ |
| char *s; /* Content of the string */ |
| } StringBuffer; |
| |
| static void initStringBuffer(StringBuffer *sb){ |
| sb->len = 0; |
| sb->alloced = 100; |
| sb->s = malloc(100); |
| sb->s[0] = '\0'; |
| } |
| |
| static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ |
| if( sb->len + nFrom >= sb->alloced ){ |
| sb->alloced = sb->len + nFrom + 100; |
| sb->s = realloc(sb->s, sb->alloced+1); |
| if( sb->s==0 ){ |
| initStringBuffer(sb); |
| return; |
| } |
| } |
| memcpy(sb->s + sb->len, zFrom, nFrom); |
| sb->len += nFrom; |
| sb->s[sb->len] = 0; |
| } |
| static void append(StringBuffer *sb, const char *zFrom){ |
| nappend(sb, zFrom, strlen(zFrom)); |
| } |
| |
| /* We encode variable-length integers in little-endian order using seven bits |
| * per byte as follows: |
| ** |
| ** KEY: |
| ** A = 0xxxxxxx 7 bits of data and one flag bit |
| ** B = 1xxxxxxx 7 bits of data and one flag bit |
| ** |
| ** 7 bits - A |
| ** 14 bits - BA |
| ** 21 bits - BBA |
| ** and so on. |
| */ |
| |
| /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ |
| #define VARINT_MAX 10 |
| |
| /* Write a 64-bit variable-length integer to memory starting at p[0]. |
| * The length of data written will be between 1 and VARINT_MAX bytes. |
| * The number of bytes written is returned. */ |
| static int putVarint(char *p, sqlite_int64 v){ |
| unsigned char *q = (unsigned char *) p; |
| sqlite_uint64 vu = v; |
| do{ |
| *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |
| vu >>= 7; |
| }while( vu!=0 ); |
| q[-1] &= 0x7f; /* turn off high bit in final byte */ |
| assert( q - (unsigned char *)p <= VARINT_MAX ); |
| return (int) (q - (unsigned char *)p); |
| } |
| |
| /* Read a 64-bit variable-length integer from memory starting at p[0]. |
| * Return the number of bytes read, or 0 on error. |
| * The value is stored in *v. */ |
| static int getVarint(const char *p, sqlite_int64 *v){ |
| const unsigned char *q = (const unsigned char *) p; |
| sqlite_uint64 x = 0, y = 1; |
| while( (*q & 0x80) == 0x80 ){ |
| x += y * (*q++ & 0x7f); |
| y <<= 7; |
| if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ |
| assert( 0 ); |
| return 0; |
| } |
| } |
| x += y * (*q++); |
| *v = (sqlite_int64) x; |
| return (int) (q - (unsigned char *)p); |
| } |
| |
| static int getVarint32(const char *p, int *pi){ |
| sqlite_int64 i; |
| int ret = getVarint(p, &i); |
| *pi = (int) i; |
| assert( *pi==i ); |
| return ret; |
| } |
| |
| /*** Document lists *** |
| * |
| * A document list holds a sorted list of varint-encoded document IDs. |
| * |
| * A doclist with type DL_POSITIONS_OFFSETS is stored like this: |
| * |
| * array { |
| * varint docid; |
| * array { |
| * varint position; (delta from previous position plus POS_BASE) |
| * varint startOffset; (delta from previous startOffset) |
| * varint endOffset; (delta from startOffset) |
| * } |
| * } |
| * |
| * Here, array { X } means zero or more occurrences of X, adjacent in memory. |
| * |
| * A position list may hold positions for text in multiple columns. A position |
| * POS_COLUMN is followed by a varint containing the index of the column for |
| * following positions in the list. Any positions appearing before any |
| * occurrences of POS_COLUMN are for column 0. |
| * |
| * A doclist with type DL_POSITIONS is like the above, but holds only docids |
| * and positions without offset information. |
| * |
| * A doclist with type DL_DOCIDS is like the above, but holds only docids |
| * without positions or offset information. |
| * |
| * On disk, every document list has positions and offsets, so we don't bother |
| * to serialize a doclist's type. |
| * |
| * We don't yet delta-encode document IDs; doing so will probably be a |
| * modest win. |
| * |
| * NOTE(shess) I've thought of a slightly (1%) better offset encoding. |
| * After the first offset, estimate the next offset by using the |
| * current token position and the previous token position and offset, |
| * offset to handle some variance. So the estimate would be |
| * (iPosition*w->iStartOffset/w->iPosition-64), which is delta-encoded |
| * as normal. Offsets more than 64 chars from the estimate are |
| * encoded as the delta to the previous start offset + 128. An |
| * additional tiny increment can be gained by using the end offset of |
| * the previous token to make the estimate a tiny bit more precise. |
| */ |
| |
| /* It is not safe to call isspace(), tolower(), or isalnum() on |
| ** hi-bit-set characters. This is the same solution used in the |
| ** tokenizer. |
| */ |
| /* TODO(shess) The snippet-generation code should be using the |
| ** tokenizer-generated tokens rather than doing its own local |
| ** tokenization. |
| */ |
| /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ |
| static int safe_isspace(char c){ |
| return (c&0x80)==0 ? isspace(c) : 0; |
| } |
| static int safe_tolower(char c){ |
| return (c&0x80)==0 ? tolower(c) : c; |
| } |
| static int safe_isalnum(char c){ |
| return (c&0x80)==0 ? isalnum(c) : 0; |
| } |
| |
| typedef enum DocListType { |
| DL_DOCIDS, /* docids only */ |
| DL_POSITIONS, /* docids + positions */ |
| DL_POSITIONS_OFFSETS /* docids + positions + offsets */ |
| } DocListType; |
| |
| /* |
| ** By default, only positions and not offsets are stored in the doclists. |
| ** To change this so that offsets are stored too, compile with |
| ** |
| ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS |
| ** |
| */ |
| #ifndef DL_DEFAULT |
| # define DL_DEFAULT DL_POSITIONS |
| #endif |
| |
| typedef struct DocList { |
| char *pData; |
| int nData; |
| DocListType iType; |
| int iLastColumn; /* the last column written */ |
| int iLastPos; /* the last position written */ |
| int iLastOffset; /* the last start offset written */ |
| } DocList; |
| |
| enum { |
| POS_END = 0, /* end of this position list */ |
| POS_COLUMN, /* followed by new column number */ |
| POS_BASE |
| }; |
| |
| /* Initialize a new DocList to hold the given data. */ |
| static void docListInit(DocList *d, DocListType iType, |
| const char *pData, int nData){ |
| d->nData = nData; |
| if( nData>0 ){ |
| d->pData = malloc(nData); |
| memcpy(d->pData, pData, nData); |
| } else { |
| d->pData = NULL; |
| } |
| d->iType = iType; |
| d->iLastColumn = 0; |
| d->iLastPos = d->iLastOffset = 0; |
| } |
| |
| /* Create a new dynamically-allocated DocList. */ |
| static DocList *docListNew(DocListType iType){ |
| DocList *d = (DocList *) malloc(sizeof(DocList)); |
| docListInit(d, iType, 0, 0); |
| return d; |
| } |
| |
| static void docListDestroy(DocList *d){ |
| free(d->pData); |
| #ifndef NDEBUG |
| memset(d, 0x55, sizeof(*d)); |
| #endif |
| } |
| |
| static void docListDelete(DocList *d){ |
| docListDestroy(d); |
| free(d); |
| } |
| |
| static char *docListEnd(DocList *d){ |
| return d->pData + d->nData; |
| } |
| |
| /* Append a varint to a DocList's data. */ |
| static void appendVarint(DocList *d, sqlite_int64 i){ |
| char c[VARINT_MAX]; |
| int n = putVarint(c, i); |
| d->pData = realloc(d->pData, d->nData + n); |
| memcpy(d->pData + d->nData, c, n); |
| d->nData += n; |
| } |
| |
| static void docListAddDocid(DocList *d, sqlite_int64 iDocid){ |
| appendVarint(d, iDocid); |
| if( d->iType>=DL_POSITIONS ){ |
| appendVarint(d, POS_END); /* initially empty position list */ |
| d->iLastColumn = 0; |
| d->iLastPos = d->iLastOffset = 0; |
| } |
| } |
| |
| /* helper function for docListAddPos and docListAddPosOffset */ |
| static void addPos(DocList *d, int iColumn, int iPos){ |
| assert( d->nData>0 ); |
| --d->nData; /* remove previous terminator */ |
| if( iColumn!=d->iLastColumn ){ |
| assert( iColumn>d->iLastColumn ); |
| appendVarint(d, POS_COLUMN); |
| appendVarint(d, iColumn); |
| d->iLastColumn = iColumn; |
| d->iLastPos = d->iLastOffset = 0; |
| } |
| assert( iPos>=d->iLastPos ); |
| appendVarint(d, iPos-d->iLastPos+POS_BASE); |
| d->iLastPos = iPos; |
| } |
| |
| /* Add a position to the last position list in a doclist. */ |
| static void docListAddPos(DocList *d, int iColumn, int iPos){ |
| assert( d->iType==DL_POSITIONS ); |
| addPos(d, iColumn, iPos); |
| appendVarint(d, POS_END); /* add new terminator */ |
| } |
| |
| /* |
| ** Add a position and starting and ending offsets to a doclist. |
| ** |
| ** If the doclist is setup to handle only positions, then insert |
| ** the position only and ignore the offsets. |
| */ |
| static void docListAddPosOffset( |
| DocList *d, /* Doclist under construction */ |
| int iColumn, /* Column the inserted term is part of */ |
| int iPos, /* Position of the inserted term */ |
| int iStartOffset, /* Starting offset of inserted term */ |
| int iEndOffset /* Ending offset of inserted term */ |
| ){ |
| assert( d->iType>=DL_POSITIONS ); |
| addPos(d, iColumn, iPos); |
| if( d->iType==DL_POSITIONS_OFFSETS ){ |
| assert( iStartOffset>=d->iLastOffset ); |
| appendVarint(d, iStartOffset-d->iLastOffset); |
| d->iLastOffset = iStartOffset; |
| assert( iEndOffset>=iStartOffset ); |
| appendVarint(d, iEndOffset-iStartOffset); |
| } |
| appendVarint(d, POS_END); /* add new terminator */ |
| } |
| |
| /* |
| ** A DocListReader object is a cursor into a doclist. Initialize |
| ** the cursor to the beginning of the doclist by calling readerInit(). |
| ** Then use routines |
| ** |
| ** peekDocid() |
| ** readDocid() |
| ** readPosition() |
| ** skipPositionList() |
| ** and so forth... |
| ** |
| ** to read information out of the doclist. When we reach the end |
| ** of the doclist, atEnd() returns TRUE. |
| */ |
| typedef struct DocListReader { |
| DocList *pDoclist; /* The document list we are stepping through */ |
| char *p; /* Pointer to next unread byte in the doclist */ |
| int iLastColumn; |
| int iLastPos; /* the last position read, or -1 when not in a position list */ |
| } DocListReader; |
| |
| /* |
| ** Initialize the DocListReader r to point to the beginning of pDoclist. |
| */ |
| static void readerInit(DocListReader *r, DocList *pDoclist){ |
| r->pDoclist = pDoclist; |
| if( pDoclist!=NULL ){ |
| r->p = pDoclist->pData; |
| } |
| r->iLastColumn = -1; |
| r->iLastPos = -1; |
| } |
| |
| /* |
| ** Return TRUE if we have reached then end of pReader and there is |
| ** nothing else left to read. |
| */ |
| static int atEnd(DocListReader *pReader){ |
| return pReader->pDoclist==0 || (pReader->p >= docListEnd(pReader->pDoclist)); |
| } |
| |
| /* Peek at the next docid without advancing the read pointer. |
| */ |
| static sqlite_int64 peekDocid(DocListReader *pReader){ |
| sqlite_int64 ret; |
| assert( !atEnd(pReader) ); |
| assert( pReader->iLastPos==-1 ); |
| getVarint(pReader->p, &ret); |
| return ret; |
| } |
| |
| /* Read the next docid. See also nextDocid(). |
| */ |
| static sqlite_int64 readDocid(DocListReader *pReader){ |
| sqlite_int64 ret; |
| assert( !atEnd(pReader) ); |
| assert( pReader->iLastPos==-1 ); |
| pReader->p += getVarint(pReader->p, &ret); |
| if( pReader->pDoclist->iType>=DL_POSITIONS ){ |
| pReader->iLastColumn = 0; |
| pReader->iLastPos = 0; |
| } |
| return ret; |
| } |
| |
| /* Read the next position and column index from a position list. |
| * Returns the position, or -1 at the end of the list. */ |
| static int readPosition(DocListReader *pReader, int *iColumn){ |
| int i; |
| int iType = pReader->pDoclist->iType; |
| |
| if( pReader->iLastPos==-1 ){ |
| return -1; |
| } |
| assert( !atEnd(pReader) ); |
| |
| if( iType<DL_POSITIONS ){ |
| return -1; |
| } |
| pReader->p += getVarint32(pReader->p, &i); |
| if( i==POS_END ){ |
| pReader->iLastColumn = pReader->iLastPos = -1; |
| *iColumn = -1; |
| return -1; |
| } |
| if( i==POS_COLUMN ){ |
| pReader->p += getVarint32(pReader->p, &pReader->iLastColumn); |
| pReader->iLastPos = 0; |
| pReader->p += getVarint32(pReader->p, &i); |
| assert( i>=POS_BASE ); |
| } |
| pReader->iLastPos += ((int) i)-POS_BASE; |
| if( iType>=DL_POSITIONS_OFFSETS ){ |
| /* Skip over offsets, ignoring them for now. */ |
| int iStart, iEnd; |
| pReader->p += getVarint32(pReader->p, &iStart); |
| pReader->p += getVarint32(pReader->p, &iEnd); |
| } |
| *iColumn = pReader->iLastColumn; |
| return pReader->iLastPos; |
| } |
| |
| /* Skip past the end of a position list. */ |
| static void skipPositionList(DocListReader *pReader){ |
| DocList *p = pReader->pDoclist; |
| if( p && p->iType>=DL_POSITIONS ){ |
| int iColumn; |
| while( readPosition(pReader, &iColumn)!=-1 ){} |
| } |
| } |
| |
| /* Skip over a docid, including its position list if the doclist has |
| * positions. */ |
| static void skipDocument(DocListReader *pReader){ |
| readDocid(pReader); |
| skipPositionList(pReader); |
| } |
| |
| /* Skip past all docids which are less than [iDocid]. Returns 1 if a docid |
| * matching [iDocid] was found. */ |
| static int skipToDocid(DocListReader *pReader, sqlite_int64 iDocid){ |
| sqlite_int64 d = 0; |
| while( !atEnd(pReader) && (d=peekDocid(pReader))<iDocid ){ |
| skipDocument(pReader); |
| } |
| return !atEnd(pReader) && d==iDocid; |
| } |
| |
| /* Return the first document in a document list. |
| */ |
| static sqlite_int64 firstDocid(DocList *d){ |
| DocListReader r; |
| readerInit(&r, d); |
| return readDocid(&r); |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** This routine is used for debugging purpose only. |
| ** |
| ** Write the content of a doclist to standard output. |
| */ |
| static void printDoclist(DocList *p){ |
| DocListReader r; |
| const char *zSep = ""; |
| |
| readerInit(&r, p); |
| while( !atEnd(&r) ){ |
| sqlite_int64 docid = readDocid(&r); |
| if( docid==0 ){ |
| skipPositionList(&r); |
| continue; |
| } |
| printf("%s%lld", zSep, docid); |
| zSep = ","; |
| if( p->iType>=DL_POSITIONS ){ |
| int iPos, iCol; |
| const char *zDiv = ""; |
| printf("("); |
| while( (iPos = readPosition(&r, &iCol))>=0 ){ |
| printf("%s%d:%d", zDiv, iCol, iPos); |
| zDiv = ":"; |
| } |
| printf(")"); |
| } |
| } |
| printf("\n"); |
| fflush(stdout); |
| } |
| #endif /* SQLITE_DEBUG */ |
| |
| /* Trim the given doclist to contain only positions in column |
| * [iRestrictColumn]. */ |
| static void docListRestrictColumn(DocList *in, int iRestrictColumn){ |
| DocListReader r; |
| DocList out; |
| |
| assert( in->iType>=DL_POSITIONS ); |
| readerInit(&r, in); |
| docListInit(&out, DL_POSITIONS, NULL, 0); |
| |
| while( !atEnd(&r) ){ |
| sqlite_int64 iDocid = readDocid(&r); |
| int iPos, iColumn; |
| |
| docListAddDocid(&out, iDocid); |
| while( (iPos = readPosition(&r, &iColumn)) != -1 ){ |
| if( iColumn==iRestrictColumn ){ |
| docListAddPos(&out, iColumn, iPos); |
| } |
| } |
| } |
| |
| docListDestroy(in); |
| *in = out; |
| } |
| |
| /* Trim the given doclist by discarding any docids without any remaining |
| * positions. */ |
| static void docListDiscardEmpty(DocList *in) { |
| DocListReader r; |
| DocList out; |
| |
| /* TODO: It would be nice to implement this operation in place; that |
| * could save a significant amount of memory in queries with long doclists. */ |
| assert( in->iType>=DL_POSITIONS ); |
| readerInit(&r, in); |
| docListInit(&out, DL_POSITIONS, NULL, 0); |
| |
| while( !atEnd(&r) ){ |
| sqlite_int64 iDocid = readDocid(&r); |
| int match = 0; |
| int iPos, iColumn; |
| while( (iPos = readPosition(&r, &iColumn)) != -1 ){ |
| if( !match ){ |
| docListAddDocid(&out, iDocid); |
| match = 1; |
| } |
| docListAddPos(&out, iColumn, iPos); |
| } |
| } |
| |
| docListDestroy(in); |
| *in = out; |
| } |
| |
| /* Helper function for docListUpdate() and docListAccumulate(). |
| ** Splices a doclist element into the doclist represented by r, |
| ** leaving r pointing after the newly spliced element. |
| */ |
| static void docListSpliceElement(DocListReader *r, sqlite_int64 iDocid, |
| const char *pSource, int nSource){ |
| DocList *d = r->pDoclist; |
| char *pTarget; |
| int nTarget, found; |
| |
| found = skipToDocid(r, iDocid); |
| |
| /* Describe slice in d to place pSource/nSource. */ |
| pTarget = r->p; |
| if( found ){ |
| skipDocument(r); |
| nTarget = r->p-pTarget; |
| }else{ |
| nTarget = 0; |
| } |
| |
| /* The sense of the following is that there are three possibilities. |
| ** If nTarget==nSource, we should not move any memory nor realloc. |
| ** If nTarget>nSource, trim target and realloc. |
| ** If nTarget<nSource, realloc then expand target. |
| */ |
| if( nTarget>nSource ){ |
| memmove(pTarget+nSource, pTarget+nTarget, docListEnd(d)-(pTarget+nTarget)); |
| } |
| if( nTarget!=nSource ){ |
| int iDoclist = pTarget-d->pData; |
| d->pData = realloc(d->pData, d->nData+nSource-nTarget); |
| pTarget = d->pData+iDoclist; |
| } |
| if( nTarget<nSource ){ |
| memmove(pTarget+nSource, pTarget+nTarget, docListEnd(d)-(pTarget+nTarget)); |
| } |
| |
| memcpy(pTarget, pSource, nSource); |
| d->nData += nSource-nTarget; |
| r->p = pTarget+nSource; |
| } |
| |
| /* Insert/update pUpdate into the doclist. */ |
| static void docListUpdate(DocList *d, DocList *pUpdate){ |
| DocListReader reader; |
| |
| assert( d!=NULL && pUpdate!=NULL ); |
| assert( d->iType==pUpdate->iType); |
| |
| readerInit(&reader, d); |
| docListSpliceElement(&reader, firstDocid(pUpdate), |
| pUpdate->pData, pUpdate->nData); |
| } |
| |
| /* Propagate elements from pUpdate to pAcc, overwriting elements with |
| ** matching docids. |
| */ |
| static void docListAccumulate(DocList *pAcc, DocList *pUpdate){ |
| DocListReader accReader, updateReader; |
| |
| /* Handle edge cases where one doclist is empty. */ |
| assert( pAcc!=NULL ); |
| if( pUpdate==NULL || pUpdate->nData==0 ) return; |
| if( pAcc->nData==0 ){ |
| pAcc->pData = malloc(pUpdate->nData); |
| memcpy(pAcc->pData, pUpdate->pData, pUpdate->nData); |
| pAcc->nData = pUpdate->nData; |
| return; |
| } |
| |
| readerInit(&accReader, pAcc); |
| readerInit(&updateReader, pUpdate); |
| |
| while( !atEnd(&updateReader) ){ |
| char *pSource = updateReader.p; |
| sqlite_int64 iDocid = readDocid(&updateReader); |
| skipPositionList(&updateReader); |
| docListSpliceElement(&accReader, iDocid, pSource, updateReader.p-pSource); |
| } |
| } |
| |
| /* |
| ** Read the next docid off of pIn. Return 0 if we reach the end. |
| * |
| * TODO: This assumes that docids are never 0, but they may actually be 0 since |
| * users can choose docids when inserting into a full-text table. Fix this. |
| */ |
| static sqlite_int64 nextDocid(DocListReader *pIn){ |
| skipPositionList(pIn); |
| return atEnd(pIn) ? 0 : readDocid(pIn); |
| } |
| |
| /* |
| ** pLeft and pRight are two DocListReaders that are pointing to |
| ** positions lists of the same document: iDocid. |
| ** |
| ** If there are no instances in pLeft or pRight where the position |
| ** of pLeft is one less than the position of pRight, then this |
| ** routine adds nothing to pOut. |
| ** |
| ** If there are one or more instances where positions from pLeft |
| ** are exactly one less than positions from pRight, then add a new |
| ** document record to pOut. If pOut wants to hold positions, then |
| ** include the positions from pRight that are one more than a |
| ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. |
| ** |
| ** pLeft and pRight are left pointing at the next document record. |
| */ |
| static void mergePosList( |
| DocListReader *pLeft, /* Left position list */ |
| DocListReader *pRight, /* Right position list */ |
| sqlite_int64 iDocid, /* The docid from pLeft and pRight */ |
| DocList *pOut /* Write the merged document record here */ |
| ){ |
| int iLeftCol, iLeftPos = readPosition(pLeft, &iLeftCol); |
| int iRightCol, iRightPos = readPosition(pRight, &iRightCol); |
| int match = 0; |
| |
| /* Loop until we've reached the end of both position lists. */ |
| while( iLeftPos!=-1 && iRightPos!=-1 ){ |
| if( iLeftCol==iRightCol && iLeftPos+1==iRightPos ){ |
| if( !match ){ |
| docListAddDocid(pOut, iDocid); |
| match = 1; |
| } |
| if( pOut->iType>=DL_POSITIONS ){ |
| docListAddPos(pOut, iRightCol, iRightPos); |
| } |
| iLeftPos = readPosition(pLeft, &iLeftCol); |
| iRightPos = readPosition(pRight, &iRightCol); |
| }else if( iRightCol<iLeftCol || |
| (iRightCol==iLeftCol && iRightPos<iLeftPos+1) ){ |
| iRightPos = readPosition(pRight, &iRightCol); |
| }else{ |
| iLeftPos = readPosition(pLeft, &iLeftCol); |
| } |
| } |
| if( iLeftPos>=0 ) skipPositionList(pLeft); |
| if( iRightPos>=0 ) skipPositionList(pRight); |
| } |
| |
| /* We have two doclists: pLeft and pRight. |
| ** Write the phrase intersection of these two doclists into pOut. |
| ** |
| ** A phrase intersection means that two documents only match |
| ** if pLeft.iPos+1==pRight.iPos. |
| ** |
| ** The output pOut may or may not contain positions. If pOut |
| ** does contain positions, they are the positions of pRight. |
| */ |
| static void docListPhraseMerge( |
| DocList *pLeft, /* Doclist resulting from the words on the left */ |
| DocList *pRight, /* Doclist for the next word to the right */ |
| DocList *pOut /* Write the combined doclist here */ |
| ){ |
| DocListReader left, right; |
| sqlite_int64 docidLeft, docidRight; |
| |
| readerInit(&left, pLeft); |
| readerInit(&right, pRight); |
| docidLeft = nextDocid(&left); |
| docidRight = nextDocid(&right); |
| |
| while( docidLeft>0 && docidRight>0 ){ |
| if( docidLeft<docidRight ){ |
| docidLeft = nextDocid(&left); |
| }else if( docidRight<docidLeft ){ |
| docidRight = nextDocid(&right); |
| }else{ |
| mergePosList(&left, &right, docidLeft, pOut); |
| docidLeft = nextDocid(&left); |
| docidRight = nextDocid(&right); |
| } |
| } |
| } |
| |
| /* We have two doclists: pLeft and pRight. |
| ** Write the intersection of these two doclists into pOut. |
| ** Only docids are matched. Position information is ignored. |
| ** |
| ** The output pOut never holds positions. |
| */ |
| static void docListAndMerge( |
| DocList *pLeft, /* Doclist resulting from the words on the left */ |
| DocList *pRight, /* Doclist for the next word to the right */ |
| DocList *pOut /* Write the combined doclist here */ |
| ){ |
| DocListReader left, right; |
| sqlite_int64 docidLeft, docidRight; |
| |
| assert( pOut->iType<DL_POSITIONS ); |
| |
| readerInit(&left, pLeft); |
| readerInit(&right, pRight); |
| docidLeft = nextDocid(&left); |
| docidRight = nextDocid(&right); |
| |
| while( docidLeft>0 && docidRight>0 ){ |
| if( docidLeft<docidRight ){ |
| docidLeft = nextDocid(&left); |
| }else if( docidRight<docidLeft ){ |
| docidRight = nextDocid(&right); |
| }else{ |
| docListAddDocid(pOut, docidLeft); |
| docidLeft = nextDocid(&left); |
| docidRight = nextDocid(&right); |
| } |
| } |
| } |
| |
| /* We have two doclists: pLeft and pRight. |
| ** Write the union of these two doclists into pOut. |
| ** Only docids are matched. Position information is ignored. |
| ** |
| ** The output pOut never holds positions. |
| */ |
| static void docListOrMerge( |
| DocList *pLeft, /* Doclist resulting from the words on the left */ |
| DocList *pRight, /* Doclist for the next word to the right */ |
| DocList *pOut /* Write the combined doclist here */ |
| ){ |
| DocListReader left, right; |
| sqlite_int64 docidLeft, docidRight, priorLeft; |
| |
| readerInit(&left, pLeft); |
| readerInit(&right, pRight); |
| docidLeft = nextDocid(&left); |
| docidRight = nextDocid(&right); |
| |
| while( docidLeft>0 && docidRight>0 ){ |
| if( docidLeft<=docidRight ){ |
| docListAddDocid(pOut, docidLeft); |
| }else{ |
| docListAddDocid(pOut, docidRight); |
| } |
| priorLeft = docidLeft; |
| if( docidLeft<=docidRight ){ |
| docidLeft = nextDocid(&left); |
| } |
| if( docidRight>0 && docidRight<=priorLeft ){ |
| docidRight = nextDocid(&right); |
| } |
| } |
| while( docidLeft>0 ){ |
| docListAddDocid(pOut, docidLeft); |
| docidLeft = nextDocid(&left); |
| } |
| while( docidRight>0 ){ |
| docListAddDocid(pOut, docidRight); |
| docidRight = nextDocid(&right); |
| } |
| } |
| |
| /* We have two doclists: pLeft and pRight. |
| ** Write into pOut all documents that occur in pLeft but not |
| ** in pRight. |
| ** |
| ** Only docids are matched. Position information is ignored. |
| ** |
| ** The output pOut never holds positions. |
| */ |
| static void docListExceptMerge( |
| DocList *pLeft, /* Doclist resulting from the words on the left */ |
| DocList *pRight, /* Doclist for the next word to the right */ |
| DocList *pOut /* Write the combined doclist here */ |
| ){ |
| DocListReader left, right; |
| sqlite_int64 docidLeft, docidRight, priorLeft; |
| |
| readerInit(&left, pLeft); |
| readerInit(&right, pRight); |
| docidLeft = nextDocid(&left); |
| docidRight = nextDocid(&right); |
| |
| while( docidLeft>0 && docidRight>0 ){ |
| priorLeft = docidLeft; |
| if( docidLeft<docidRight ){ |
| docListAddDocid(pOut, docidLeft); |
| } |
| if( docidLeft<=docidRight ){ |
| docidLeft = nextDocid(&left); |
| } |
| if( docidRight>0 && docidRight<=priorLeft ){ |
| docidRight = nextDocid(&right); |
| } |
| } |
| while( docidLeft>0 ){ |
| docListAddDocid(pOut, docidLeft); |
| docidLeft = nextDocid(&left); |
| } |
| } |
| |
| static char *string_dup_n(const char *s, int n){ |
| char *str = malloc(n + 1); |
| memcpy(str, s, n); |
| str[n] = '\0'; |
| return str; |
| } |
| |
| /* Duplicate a string; the caller must free() the returned string. |
| * (We don't use strdup() since it is not part of the standard C library and |
| * may not be available everywhere.) */ |
| static char *string_dup(const char *s){ |
| return string_dup_n(s, strlen(s)); |
| } |
| |
| /* Format a string, replacing each occurrence of the % character with |
| * zDb.zName. This may be more convenient than sqlite_mprintf() |
| * when one string is used repeatedly in a format string. |
| * The caller must free() the returned string. */ |
| static char *string_format(const char *zFormat, |
| const char *zDb, const char *zName){ |
| const char *p; |
| size_t len = 0; |
| size_t nDb = strlen(zDb); |
| size_t nName = strlen(zName); |
| size_t nFullTableName = nDb+1+nName; |
| char *result; |
| char *r; |
| |
| /* first compute length needed */ |
| for(p = zFormat ; *p ; ++p){ |
| len += (*p=='%' ? nFullTableName : 1); |
| } |
| len += 1; /* for null terminator */ |
| |
| r = result = malloc(len); |
| for(p = zFormat; *p; ++p){ |
| if( *p=='%' ){ |
| memcpy(r, zDb, nDb); |
| r += nDb; |
| *r++ = '.'; |
| memcpy(r, zName, nName); |
| r += nName; |
| } else { |
| *r++ = *p; |
| } |
| } |
| *r++ = '\0'; |
| assert( r == result + len ); |
| return result; |
| } |
| |
| static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, |
| const char *zFormat){ |
| char *zCommand = string_format(zFormat, zDb, zName); |
| int rc; |
| TRACE(("FTS1 sql: %s\n", zCommand)); |
| rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); |
| free(zCommand); |
| return rc; |
| } |
| |
| static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, |
| sqlite3_stmt **ppStmt, const char *zFormat){ |
| char *zCommand = string_format(zFormat, zDb, zName); |
| int rc; |
| TRACE(("FTS1 prepare: %s\n", zCommand)); |
| rc = sqlite3_prepare(db, zCommand, -1, ppStmt, NULL); |
| free(zCommand); |
| return rc; |
| } |
| |
| /* end utility functions */ |
| |
| /* Forward reference */ |
| typedef struct fulltext_vtab fulltext_vtab; |
| |
| /* A single term in a query is represented by an instances of |
| ** the following structure. |
| */ |
| typedef struct QueryTerm { |
| short int nPhrase; /* How many following terms are part of the same phrase */ |
| short int iPhrase; /* This is the i-th term of a phrase. */ |
| short int iColumn; /* Column of the index that must match this term */ |
| signed char isOr; /* this term is preceded by "OR" */ |
| signed char isNot; /* this term is preceded by "-" */ |
| char *pTerm; /* text of the term. '\000' terminated. malloced */ |
| int nTerm; /* Number of bytes in pTerm[] */ |
| } QueryTerm; |
| |
| |
| /* A query string is parsed into a Query structure. |
| * |
| * We could, in theory, allow query strings to be complicated |
| * nested expressions with precedence determined by parentheses. |
| * But none of the major search engines do this. (Perhaps the |
| * feeling is that an parenthesized expression is two complex of |
| * an idea for the average user to grasp.) Taking our lead from |
| * the major search engines, we will allow queries to be a list |
| * of terms (with an implied AND operator) or phrases in double-quotes, |
| * with a single optional "-" before each non-phrase term to designate |
| * negation and an optional OR connector. |
| * |
| * OR binds more tightly than the implied AND, which is what the |
| * major search engines seem to do. So, for example: |
| * |
| * [one two OR three] ==> one AND (two OR three) |
| * [one OR two three] ==> (one OR two) AND three |
| * |
| * A "-" before a term matches all entries that lack that term. |
| * The "-" must occur immediately before the term with in intervening |
| * space. This is how the search engines do it. |
| * |
| * A NOT term cannot be the right-hand operand of an OR. If this |
| * occurs in the query string, the NOT is ignored: |
| * |
| * [one OR -two] ==> one OR two |
| * |
| */ |
| typedef struct Query { |
| fulltext_vtab *pFts; /* The full text index */ |
| int nTerms; /* Number of terms in the query */ |
| QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ |
| int nextIsOr; /* Set the isOr flag on the next inserted term */ |
| int nextColumn; /* Next word parsed must be in this column */ |
| int dfltColumn; /* The default column */ |
| } Query; |
| |
| |
| /* |
| ** An instance of the following structure keeps track of generated |
| ** matching-word offset information and snippets. |
| */ |
| typedef struct Snippet { |
| int nMatch; /* Total number of matches */ |
| int nAlloc; /* Space allocated for aMatch[] */ |
| struct snippetMatch { /* One entry for each matching term */ |
| char snStatus; /* Status flag for use while constructing snippets */ |
| short int iCol; /* The column that contains the match */ |
| short int iTerm; /* The index in Query.pTerms[] of the matching term */ |
| short int nByte; /* Number of bytes in the term */ |
| int iStart; /* The offset to the first character of the term */ |
| } *aMatch; /* Points to space obtained from malloc */ |
| char *zOffset; /* Text rendering of aMatch[] */ |
| int nOffset; /* strlen(zOffset) */ |
| char *zSnippet; /* Snippet text */ |
| int nSnippet; /* strlen(zSnippet) */ |
| } Snippet; |
| |
| |
| typedef enum QueryType { |
| QUERY_GENERIC, /* table scan */ |
| QUERY_ROWID, /* lookup by rowid */ |
| QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ |
| } QueryType; |
| |
| /* TODO(shess) CHUNK_MAX controls how much data we allow in segment 0 |
| ** before we start aggregating into larger segments. Lower CHUNK_MAX |
| ** means that for a given input we have more individual segments per |
| ** term, which means more rows in the table and a bigger index (due to |
| ** both more rows and bigger rowids). But it also reduces the average |
| ** cost of adding new elements to the segment 0 doclist, and it seems |
| ** to reduce the number of pages read and written during inserts. 256 |
| ** was chosen by measuring insertion times for a certain input (first |
| ** 10k documents of Enron corpus), though including query performance |
| ** in the decision may argue for a larger value. |
| */ |
| #define CHUNK_MAX 256 |
| |
| typedef enum fulltext_statement { |
| CONTENT_INSERT_STMT, |
| CONTENT_SELECT_STMT, |
| CONTENT_UPDATE_STMT, |
| CONTENT_DELETE_STMT, |
| |
| TERM_SELECT_STMT, |
| TERM_SELECT_ALL_STMT, |
| TERM_INSERT_STMT, |
| TERM_UPDATE_STMT, |
| TERM_DELETE_STMT, |
| |
| MAX_STMT /* Always at end! */ |
| } fulltext_statement; |
| |
| /* These must exactly match the enum above. */ |
| /* TODO(adam): Is there some risk that a statement (in particular, |
| ** pTermSelectStmt) will be used in two cursors at once, e.g. if a |
| ** query joins a virtual table to itself? If so perhaps we should |
| ** move some of these to the cursor object. |
| */ |
| static const char *const fulltext_zStatement[MAX_STMT] = { |
| /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ |
| /* CONTENT_SELECT */ "select * from %_content where rowid = ?", |
| /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ |
| /* CONTENT_DELETE */ "delete from %_content where rowid = ?", |
| |
| /* TERM_SELECT */ |
| "select rowid, doclist from %_term where term = ? and segment = ?", |
| /* TERM_SELECT_ALL */ |
| "select doclist from %_term where term = ? order by segment", |
| /* TERM_INSERT */ |
| "insert into %_term (rowid, term, segment, doclist) values (?, ?, ?, ?)", |
| /* TERM_UPDATE */ "update %_term set doclist = ? where rowid = ?", |
| /* TERM_DELETE */ "delete from %_term where rowid = ?", |
| }; |
| |
| /* |
| ** A connection to a fulltext index is an instance of the following |
| ** structure. The xCreate and xConnect methods create an instance |
| ** of this structure and xDestroy and xDisconnect free that instance. |
| ** All other methods receive a pointer to the structure as one of their |
| ** arguments. |
| */ |
| struct fulltext_vtab { |
| sqlite3_vtab base; /* Base class used by SQLite core */ |
| sqlite3 *db; /* The database connection */ |
| const char *zDb; /* logical database name */ |
| const char *zName; /* virtual table name */ |
| int nColumn; /* number of columns in virtual table */ |
| char **azColumn; /* column names. malloced */ |
| char **azContentColumn; /* column names in content table; malloced */ |
| sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ |
| |
| /* Precompiled statements which we keep as long as the table is |
| ** open. |
| */ |
| sqlite3_stmt *pFulltextStatements[MAX_STMT]; |
| }; |
| |
| /* |
| ** When the core wants to do a query, it create a cursor using a |
| ** call to xOpen. This structure is an instance of a cursor. It |
| ** is destroyed by xClose. |
| */ |
| typedef struct fulltext_cursor { |
| sqlite3_vtab_cursor base; /* Base class used by SQLite core */ |
| QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ |
| sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ |
| int eof; /* True if at End Of Results */ |
| Query q; /* Parsed query string */ |
| Snippet snippet; /* Cached snippet for the current row */ |
| int iColumn; /* Column being searched */ |
| DocListReader result; /* used when iCursorType == QUERY_FULLTEXT */ |
| } fulltext_cursor; |
| |
| static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ |
| return (fulltext_vtab *) c->base.pVtab; |
| } |
| |
| static const sqlite3_module fulltextModule; /* forward declaration */ |
| |
| /* Append a list of strings separated by commas to a StringBuffer. */ |
| static void appendList(StringBuffer *sb, int nString, char **azString){ |
| int i; |
| for(i=0; i<nString; ++i){ |
| if( i>0 ) append(sb, ", "); |
| append(sb, azString[i]); |
| } |
| } |
| |
| /* Return a dynamically generated statement of the form |
| * insert into %_content (rowid, ...) values (?, ...) |
| */ |
| static const char *contentInsertStatement(fulltext_vtab *v){ |
| StringBuffer sb; |
| int i; |
| |
| initStringBuffer(&sb); |
| append(&sb, "insert into %_content (rowid, "); |
| appendList(&sb, v->nColumn, v->azContentColumn); |
| append(&sb, ") values (?"); |
| for(i=0; i<v->nColumn; ++i) |
| append(&sb, ", ?"); |
| append(&sb, ")"); |
| return sb.s; |
| } |
| |
| /* Return a dynamically generated statement of the form |
| * update %_content set [col_0] = ?, [col_1] = ?, ... |
| * where rowid = ? |
| */ |
| static const char *contentUpdateStatement(fulltext_vtab *v){ |
| StringBuffer sb; |
| int i; |
| |
| initStringBuffer(&sb); |
| append(&sb, "update %_content set "); |
| for(i=0; i<v->nColumn; ++i) { |
| if( i>0 ){ |
| append(&sb, ", "); |
| } |
| append(&sb, v->azContentColumn[i]); |
| append(&sb, " = ?"); |
| } |
| append(&sb, " where rowid = ?"); |
| return sb.s; |
| } |
| |
| /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. |
| ** If the indicated statement has never been prepared, it is prepared |
| ** and cached, otherwise the cached version is reset. |
| */ |
| static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, |
| sqlite3_stmt **ppStmt){ |
| assert( iStmt<MAX_STMT ); |
| if( v->pFulltextStatements[iStmt]==NULL ){ |
| const char *zStmt; |
| int rc; |
| switch( iStmt ){ |
| case CONTENT_INSERT_STMT: |
| zStmt = contentInsertStatement(v); break; |
| case CONTENT_UPDATE_STMT: |
| zStmt = contentUpdateStatement(v); break; |
| default: |
| zStmt = fulltext_zStatement[iStmt]; |
| } |
| rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], |
| zStmt); |
| if( zStmt != fulltext_zStatement[iStmt]) free((void *) zStmt); |
| if( rc!=SQLITE_OK ) return rc; |
| } else { |
| int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| *ppStmt = v->pFulltextStatements[iStmt]; |
| return SQLITE_OK; |
| } |
| |
| /* Step the indicated statement, handling errors SQLITE_BUSY (by |
| ** retrying) and SQLITE_SCHEMA (by re-preparing and transferring |
| ** bindings to the new statement). |
| ** TODO(adam): We should extend this function so that it can work with |
| ** statements declared locally, not only globally cached statements. |
| */ |
| static int sql_step_statement(fulltext_vtab *v, fulltext_statement iStmt, |
| sqlite3_stmt **ppStmt){ |
| int rc; |
| sqlite3_stmt *s = *ppStmt; |
| assert( iStmt<MAX_STMT ); |
| assert( s==v->pFulltextStatements[iStmt] ); |
| |
| while( (rc=sqlite3_step(s))!=SQLITE_DONE && rc!=SQLITE_ROW ){ |
| if( rc==SQLITE_BUSY ) continue; |
| if( rc!=SQLITE_ERROR ) return rc; |
| |
| /* If an SQLITE_SCHEMA error has occurred, then finalizing this |
| * statement is going to delete the fulltext_vtab structure. If |
| * the statement just executed is in the pFulltextStatements[] |
| * array, it will be finalized twice. So remove it before |
| * calling sqlite3_finalize(). |
| */ |
| v->pFulltextStatements[iStmt] = NULL; |
| rc = sqlite3_finalize(s); |
| break; |
| } |
| return rc; |
| |
| err: |
| sqlite3_finalize(s); |
| return rc; |
| } |
| |
| /* Like sql_step_statement(), but convert SQLITE_DONE to SQLITE_OK. |
| ** Useful for statements like UPDATE, where we expect no results. |
| */ |
| static int sql_single_step_statement(fulltext_vtab *v, |
| fulltext_statement iStmt, |
| sqlite3_stmt **ppStmt){ |
| int rc = sql_step_statement(v, iStmt, ppStmt); |
| return (rc==SQLITE_DONE) ? SQLITE_OK : rc; |
| } |
| |
| /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ |
| static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, |
| sqlite3_value **pValues){ |
| sqlite3_stmt *s; |
| int i; |
| int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_value(s, 1, rowid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| for(i=0; i<v->nColumn; ++i){ |
| rc = sqlite3_bind_value(s, 2+i, pValues[i]); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| return sql_single_step_statement(v, CONTENT_INSERT_STMT, &s); |
| } |
| |
| /* update %_content set col0 = pValues[0], col1 = pValues[1], ... |
| * where rowid = [iRowid] */ |
| static int content_update(fulltext_vtab *v, sqlite3_value **pValues, |
| sqlite_int64 iRowid){ |
| sqlite3_stmt *s; |
| int i; |
| int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| for(i=0; i<v->nColumn; ++i){ |
| rc = sqlite3_bind_value(s, 1+i, pValues[i]); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step_statement(v, CONTENT_UPDATE_STMT, &s); |
| } |
| |
| static void freeStringArray(int nString, const char **pString){ |
| int i; |
| |
| for (i=0 ; i < nString ; ++i) { |
| if( pString[i]!=NULL ) free((void *) pString[i]); |
| } |
| free((void *) pString); |
| } |
| |
| /* select * from %_content where rowid = [iRow] |
| * The caller must delete the returned array and all strings in it. |
| * null fields will be NULL in the returned array. |
| * |
| * TODO: Perhaps we should return pointer/length strings here for consistency |
| * with other code which uses pointer/length. */ |
| static int content_select(fulltext_vtab *v, sqlite_int64 iRow, |
| const char ***pValues){ |
| sqlite3_stmt *s; |
| const char **values; |
| int i; |
| int rc; |
| |
| *pValues = NULL; |
| |
| rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, iRow); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sql_step_statement(v, CONTENT_SELECT_STMT, &s); |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| values = (const char **) malloc(v->nColumn * sizeof(const char *)); |
| for(i=0; i<v->nColumn; ++i){ |
| if( sqlite3_column_type(s, i)==SQLITE_NULL ){ |
| values[i] = NULL; |
| }else{ |
| values[i] = string_dup((char*)sqlite3_column_text(s, i)); |
| } |
| } |
| |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain locked. */ |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_DONE ){ |
| *pValues = values; |
| return SQLITE_OK; |
| } |
| |
| freeStringArray(v->nColumn, values); |
| return rc; |
| } |
| |
| /* delete from %_content where rowid = [iRow ] */ |
| static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, iRow); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step_statement(v, CONTENT_DELETE_STMT, &s); |
| } |
| |
| /* select rowid, doclist from %_term |
| * where term = [pTerm] and segment = [iSegment] |
| * If found, returns SQLITE_ROW; the caller must free the |
| * returned doclist. If no rows found, returns SQLITE_DONE. */ |
| static int term_select(fulltext_vtab *v, const char *pTerm, int nTerm, |
| int iSegment, |
| sqlite_int64 *rowid, DocList *out){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, TERM_SELECT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_text(s, 1, pTerm, nTerm, SQLITE_STATIC); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int(s, 2, iSegment); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sql_step_statement(v, TERM_SELECT_STMT, &s); |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| *rowid = sqlite3_column_int64(s, 0); |
| docListInit(out, DL_DEFAULT, |
| sqlite3_column_blob(s, 1), sqlite3_column_bytes(s, 1)); |
| |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain locked. */ |
| rc = sqlite3_step(s); |
| return rc==SQLITE_DONE ? SQLITE_ROW : rc; |
| } |
| |
| /* Load the segment doclists for term pTerm and merge them in |
| ** appropriate order into out. Returns SQLITE_OK if successful. If |
| ** there are no segments for pTerm, successfully returns an empty |
| ** doclist in out. |
| ** |
| ** Each document consists of 1 or more "columns". The number of |
| ** columns is v->nColumn. If iColumn==v->nColumn, then return |
| ** position information about all columns. If iColumn<v->nColumn, |
| ** then only return position information about the iColumn-th column |
| ** (where the first column is 0). |
| */ |
| static int term_select_all( |
| fulltext_vtab *v, /* The fulltext index we are querying against */ |
| int iColumn, /* If <nColumn, only look at the iColumn-th column */ |
| const char *pTerm, /* The term whose posting lists we want */ |
| int nTerm, /* Number of bytes in pTerm */ |
| DocList *out /* Write the resulting doclist here */ |
| ){ |
| DocList doclist; |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, TERM_SELECT_ALL_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_text(s, 1, pTerm, nTerm, SQLITE_STATIC); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| docListInit(&doclist, DL_DEFAULT, 0, 0); |
| |
| /* TODO(shess) Handle schema and busy errors. */ |
| while( (rc=sql_step_statement(v, TERM_SELECT_ALL_STMT, &s))==SQLITE_ROW ){ |
| DocList old; |
| |
| /* TODO(shess) If we processed doclists from oldest to newest, we |
| ** could skip the malloc() involved with the following call. For |
| ** now, I'd rather keep this logic similar to index_insert_term(). |
| ** We could additionally drop elements when we see deletes, but |
| ** that would require a distinct version of docListAccumulate(). |
| */ |
| docListInit(&old, DL_DEFAULT, |
| sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0)); |
| |
| if( iColumn<v->nColumn ){ /* querying a single column */ |
| docListRestrictColumn(&old, iColumn); |
| } |
| |
| /* doclist contains the newer data, so write it over old. Then |
| ** steal accumulated result for doclist. |
| */ |
| docListAccumulate(&old, &doclist); |
| docListDestroy(&doclist); |
| doclist = old; |
| } |
| if( rc!=SQLITE_DONE ){ |
| docListDestroy(&doclist); |
| return rc; |
| } |
| |
| docListDiscardEmpty(&doclist); |
| *out = doclist; |
| return SQLITE_OK; |
| } |
| |
| /* insert into %_term (rowid, term, segment, doclist) |
| values ([piRowid], [pTerm], [iSegment], [doclist]) |
| ** Lets sqlite select rowid if piRowid is NULL, else uses *piRowid. |
| ** |
| ** NOTE(shess) piRowid is IN, with values of "space of int64" plus |
| ** null, it is not used to pass data back to the caller. |
| */ |
| static int term_insert(fulltext_vtab *v, sqlite_int64 *piRowid, |
| const char *pTerm, int nTerm, |
| int iSegment, DocList *doclist){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, TERM_INSERT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| if( piRowid==NULL ){ |
| rc = sqlite3_bind_null(s, 1); |
| }else{ |
| rc = sqlite3_bind_int64(s, 1, *piRowid); |
| } |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_text(s, 2, pTerm, nTerm, SQLITE_STATIC); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int(s, 3, iSegment); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_blob(s, 4, doclist->pData, doclist->nData, SQLITE_STATIC); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step_statement(v, TERM_INSERT_STMT, &s); |
| } |
| |
| /* update %_term set doclist = [doclist] where rowid = [rowid] */ |
| static int term_update(fulltext_vtab *v, sqlite_int64 rowid, |
| DocList *doclist){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, TERM_UPDATE_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_blob(s, 1, doclist->pData, doclist->nData, SQLITE_STATIC); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 2, rowid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step_statement(v, TERM_UPDATE_STMT, &s); |
| } |
| |
| static int term_delete(fulltext_vtab *v, sqlite_int64 rowid){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, TERM_DELETE_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, rowid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step_statement(v, TERM_DELETE_STMT, &s); |
| } |
| |
| /* |
| ** Free the memory used to contain a fulltext_vtab structure. |
| */ |
| static void fulltext_vtab_destroy(fulltext_vtab *v){ |
| int iStmt, i; |
| |
| TRACE(("FTS1 Destroy %p\n", v)); |
| for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ |
| if( v->pFulltextStatements[iStmt]!=NULL ){ |
| sqlite3_finalize(v->pFulltextStatements[iStmt]); |
| v->pFulltextStatements[iStmt] = NULL; |
| } |
| } |
| |
| if( v->pTokenizer!=NULL ){ |
| v->pTokenizer->pModule->xDestroy(v->pTokenizer); |
| v->pTokenizer = NULL; |
| } |
| |
| free(v->azColumn); |
| for(i = 0; i < v->nColumn; ++i) { |
| sqlite3_free(v->azContentColumn[i]); |
| } |
| free(v->azContentColumn); |
| free(v); |
| } |
| |
| /* |
| ** Token types for parsing the arguments to xConnect or xCreate. |
| */ |
| #define TOKEN_EOF 0 /* End of file */ |
| #define TOKEN_SPACE 1 /* Any kind of whitespace */ |
| #define TOKEN_ID 2 /* An identifier */ |
| #define TOKEN_STRING 3 /* A string literal */ |
| #define TOKEN_PUNCT 4 /* A single punctuation character */ |
| |
| /* |
| ** If X is a character that can be used in an identifier then |
| ** IdChar(X) will be true. Otherwise it is false. |
| ** |
| ** For ASCII, any character with the high-order bit set is |
| ** allowed in an identifier. For 7-bit characters, |
| ** sqlite3IsIdChar[X] must be 1. |
| ** |
| ** Ticket #1066. the SQL standard does not allow '$' in the |
| ** middle of identfiers. But many SQL implementations do. |
| ** SQLite will allow '$' in identifiers for compatibility. |
| ** But the feature is undocumented. |
| */ |
| static const char isIdChar[] = { |
| /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ |
| 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ |
| 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ |
| 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ |
| }; |
| #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) |
| |
| |
| /* |
| ** Return the length of the token that begins at z[0]. |
| ** Store the token type in *tokenType before returning. |
| */ |
| static int getToken(const char *z, int *tokenType){ |
| int i, c; |
| switch( *z ){ |
| case 0: { |
| *tokenType = TOKEN_EOF; |
| return 0; |
| } |
| case ' ': case '\t': case '\n': case '\f': case '\r': { |
| for(i=1; safe_isspace(z[i]); i++){} |
| *tokenType = TOKEN_SPACE; |
| return i; |
| } |
| case '`': |
| case '\'': |
| case '"': { |
| int delim = z[0]; |
| for(i=1; (c=z[i])!=0; i++){ |
| if( c==delim ){ |
| if( z[i+1]==delim ){ |
| i++; |
| }else{ |
| break; |
| } |
| } |
| } |
| *tokenType = TOKEN_STRING; |
| return i + (c!=0); |
| } |
| case '[': { |
| for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} |
| *tokenType = TOKEN_ID; |
| return i; |
| } |
| default: { |
| if( !IdChar(*z) ){ |
| break; |
| } |
| for(i=1; IdChar(z[i]); i++){} |
| *tokenType = TOKEN_ID; |
| return i; |
| } |
| } |
| *tokenType = TOKEN_PUNCT; |
| return 1; |
| } |
| |
| /* |
| ** A token extracted from a string is an instance of the following |
| ** structure. |
| */ |
| typedef struct Token { |
| const char *z; /* Pointer to token text. Not '\000' terminated */ |
| short int n; /* Length of the token text in bytes. */ |
| } Token; |
| |
| /* |
| ** Given a input string (which is really one of the argv[] parameters |
| ** passed into xConnect or xCreate) split the string up into tokens. |
| ** Return an array of pointers to '\000' terminated strings, one string |
| ** for each non-whitespace token. |
| ** |
| ** The returned array is terminated by a single NULL pointer. |
| ** |
| ** Space to hold the returned array is obtained from a single |
| ** malloc and should be freed by passing the return value to free(). |
| ** The individual strings within the token list are all a part of |
| ** the single memory allocation and will all be freed at once. |
| */ |
| static char **tokenizeString(const char *z, int *pnToken){ |
| int nToken = 0; |
| Token *aToken = malloc( strlen(z) * sizeof(aToken[0]) ); |
| int n = 1; |
| int e, i; |
| int totalSize = 0; |
| char **azToken; |
| char *zCopy; |
| while( n>0 ){ |
| n = getToken(z, &e); |
| if( e!=TOKEN_SPACE ){ |
| aToken[nToken].z = z; |
| aToken[nToken].n = n; |
| nToken++; |
| totalSize += n+1; |
| } |
| z += n; |
| } |
| azToken = (char**)malloc( nToken*sizeof(char*) + totalSize ); |
| zCopy = (char*)&azToken[nToken]; |
| nToken--; |
| for(i=0; i<nToken; i++){ |
| azToken[i] = zCopy; |
| n = aToken[i].n; |
| memcpy(zCopy, aToken[i].z, n); |
| zCopy[n] = 0; |
| zCopy += n+1; |
| } |
| azToken[nToken] = 0; |
| free(aToken); |
| *pnToken = nToken; |
| return azToken; |
| } |
| |
| /* |
| ** Convert an SQL-style quoted string into a normal string by removing |
| ** the quote characters. The conversion is done in-place. If the |
| ** input does not begin with a quote character, then this routine |
| ** is a no-op. |
| ** |
| ** Examples: |
| ** |
| ** "abc" becomes abc |
| ** 'xyz' becomes xyz |
| ** [pqr] becomes pqr |
| ** `mno` becomes mno |
| */ |
| static void dequoteString(char *z){ |
| int quote; |
| int i, j; |
| if( z==0 ) return; |
| quote = z[0]; |
| switch( quote ){ |
| case '\'': break; |
| case '"': break; |
| case '`': break; /* For MySQL compatibility */ |
| case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
| default: return; |
| } |
| for(i=1, j=0; z[i]; i++){ |
| if( z[i]==quote ){ |
| if( z[i+1]==quote ){ |
| z[j++] = quote; |
| i++; |
| }else{ |
| z[j++] = 0; |
| break; |
| } |
| }else{ |
| z[j++] = z[i]; |
| } |
| } |
| } |
| |
| /* |
| ** The input azIn is a NULL-terminated list of tokens. Remove the first |
| ** token and all punctuation tokens. Remove the quotes from |
| ** around string literal tokens. |
| ** |
| ** Example: |
| ** |
| ** input: tokenize chinese ( 'simplifed' , 'mixed' ) |
| ** output: chinese simplifed mixed |
| ** |
| ** Another example: |
| ** |
| ** input: delimiters ( '[' , ']' , '...' ) |
| ** output: [ ] ... |
| */ |
| static void tokenListToIdList(char **azIn){ |
| int i, j; |
| if( azIn ){ |
| for(i=0, j=-1; azIn[i]; i++){ |
| if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ |
| dequoteString(azIn[i]); |
| if( j>=0 ){ |
| azIn[j] = azIn[i]; |
| } |
| j++; |
| } |
| } |
| azIn[j] = 0; |
| } |
| } |
| |
| |
| /* |
| ** Find the first alphanumeric token in the string zIn. Null-terminate |
| ** this token. Remove any quotation marks. And return a pointer to |
| ** the result. |
| */ |
| static char *firstToken(char *zIn, char **pzTail){ |
| int n, ttype; |
| while(1){ |
| n = getToken(zIn, &ttype); |
| if( ttype==TOKEN_SPACE ){ |
| zIn += n; |
| }else if( ttype==TOKEN_EOF ){ |
| *pzTail = zIn; |
| return 0; |
| }else{ |
| zIn[n] = 0; |
| *pzTail = &zIn[1]; |
| dequoteString(zIn); |
| return zIn; |
| } |
| } |
| /*NOTREACHED*/ |
| } |
| |
| /* Return true if... |
| ** |
| ** * s begins with the string t, ignoring case |
| ** * s is longer than t |
| ** * The first character of s beyond t is not a alphanumeric |
| ** |
| ** Ignore leading space in *s. |
| ** |
| ** To put it another way, return true if the first token of |
| ** s[] is t[]. |
| */ |
| static int startsWith(const char *s, const char *t){ |
| while( safe_isspace(*s) ){ s++; } |
| while( *t ){ |
| if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; |
| } |
| return *s!='_' && !safe_isalnum(*s); |
| } |
| |
| /* |
| ** An instance of this structure defines the "spec" of a |
| ** full text index. This structure is populated by parseSpec |
| ** and use by fulltextConnect and fulltextCreate. |
| */ |
| typedef struct TableSpec { |
| const char *zDb; /* Logical database name */ |
| const char *zName; /* Name of the full-text index */ |
| int nColumn; /* Number of columns to be indexed */ |
| char **azColumn; /* Original names of columns to be indexed */ |
| char **azContentColumn; /* Column names for %_content */ |
| char **azTokenizer; /* Name of tokenizer and its arguments */ |
| } TableSpec; |
| |
| /* |
| ** Reclaim all of the memory used by a TableSpec |
| */ |
| static void clearTableSpec(TableSpec *p) { |
| free(p->azColumn); |
| free(p->azContentColumn); |
| free(p->azTokenizer); |
| } |
| |
| /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: |
| * |
| * CREATE VIRTUAL TABLE email |
| * USING fts1(subject, body, tokenize mytokenizer(myarg)) |
| * |
| * We return parsed information in a TableSpec structure. |
| * |
| */ |
| static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, |
| char**pzErr){ |
| int i, n; |
| char *z, *zDummy; |
| char **azArg; |
| const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ |
| |
| assert( argc>=3 ); |
| /* Current interface: |
| ** argv[0] - module name |
| ** argv[1] - database name |
| ** argv[2] - table name |
| ** argv[3..] - columns, optionally followed by tokenizer specification |
| ** and snippet delimiters specification. |
| */ |
| |
| /* Make a copy of the complete argv[][] array in a single allocation. |
| ** The argv[][] array is read-only and transient. We can write to the |
| ** copy in order to modify things and the copy is persistent. |
| */ |
| memset(pSpec, 0, sizeof(*pSpec)); |
| for(i=n=0; i<argc; i++){ |
| n += strlen(argv[i]) + 1; |
| } |
| azArg = malloc( sizeof(char*)*argc + n ); |
| if( azArg==0 ){ |
| return SQLITE_NOMEM; |
| } |
| z = (char*)&azArg[argc]; |
| for(i=0; i<argc; i++){ |
| azArg[i] = z; |
| strcpy(z, argv[i]); |
| z += strlen(z)+1; |
| } |
| |
| /* Identify the column names and the tokenizer and delimiter arguments |
| ** in the argv[][] array. |
| */ |
| pSpec->zDb = azArg[1]; |
| pSpec->zName = azArg[2]; |
| pSpec->nColumn = 0; |
| pSpec->azColumn = azArg; |
| zTokenizer = "tokenize simple"; |
| for(i=3; i<argc; ++i){ |
| if( startsWith(azArg[i],"tokenize") ){ |
| zTokenizer = azArg[i]; |
| }else{ |
| z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); |
| pSpec->nColumn++; |
| } |
| } |
| if( pSpec->nColumn==0 ){ |
| azArg[0] = "content"; |
| pSpec->nColumn = 1; |
| } |
| |
| /* |
| ** Construct the list of content column names. |
| ** |
| ** Each content column name will be of the form cNNAAAA |
| ** where NN is the column number and AAAA is the sanitized |
| ** column name. "sanitized" means that special characters are |
| ** converted to "_". The cNN prefix guarantees that all column |
| ** names are unique. |
| ** |
| ** The AAAA suffix is not strictly necessary. It is included |
| ** for the convenience of people who might examine the generated |
| ** %_content table and wonder what the columns are used for. |
| */ |
| pSpec->azContentColumn = malloc( pSpec->nColumn * sizeof(char *) ); |
| if( pSpec->azContentColumn==0 ){ |
| clearTableSpec(pSpec); |
| return SQLITE_NOMEM; |
| } |
| for(i=0; i<pSpec->nColumn; i++){ |
| char *p; |
| pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); |
| for (p = pSpec->azContentColumn[i]; *p ; ++p) { |
| if( !safe_isalnum(*p) ) *p = '_'; |
| } |
| } |
| |
| /* |
| ** Parse the tokenizer specification string. |
| */ |
| pSpec->azTokenizer = tokenizeString(zTokenizer, &n); |
| tokenListToIdList(pSpec->azTokenizer); |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Generate a CREATE TABLE statement that describes the schema of |
| ** the virtual table. Return a pointer to this schema string. |
| ** |
| ** Space is obtained from sqlite3_mprintf() and should be freed |
| ** using sqlite3_free(). |
| */ |
| static char *fulltextSchema( |
| int nColumn, /* Number of columns */ |
| const char *const* azColumn, /* List of columns */ |
| const char *zTableName /* Name of the table */ |
| ){ |
| int i; |
| char *zSchema, *zNext; |
| const char *zSep = "("; |
| zSchema = sqlite3_mprintf("CREATE TABLE x"); |
| for(i=0; i<nColumn; i++){ |
| zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); |
| sqlite3_free(zSchema); |
| zSchema = zNext; |
| zSep = ","; |
| } |
| zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); |
| sqlite3_free(zSchema); |
| return zNext; |
| } |
| |
| /* |
| ** Build a new sqlite3_vtab structure that will describe the |
| ** fulltext index defined by spec. |
| */ |
| static int constructVtab( |
| sqlite3 *db, /* The SQLite database connection */ |
| TableSpec *spec, /* Parsed spec information from parseSpec() */ |
| sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ |
| char **pzErr /* Write any error message here */ |
| ){ |
| int rc; |
| int n; |
| fulltext_vtab *v = 0; |
| const sqlite3_tokenizer_module *m = NULL; |
| char *schema; |
| |
| v = (fulltext_vtab *) malloc(sizeof(fulltext_vtab)); |
| if( v==0 ) return SQLITE_NOMEM; |
| memset(v, 0, sizeof(*v)); |
| /* sqlite will initialize v->base */ |
| v->db = db; |
| v->zDb = spec->zDb; /* Freed when azColumn is freed */ |
| v->zName = spec->zName; /* Freed when azColumn is freed */ |
| v->nColumn = spec->nColumn; |
| v->azContentColumn = spec->azContentColumn; |
| spec->azContentColumn = 0; |
| v->azColumn = spec->azColumn; |
| spec->azColumn = 0; |
| |
| if( spec->azTokenizer==0 ){ |
| return SQLITE_NOMEM; |
| } |
| /* TODO(shess) For now, add new tokenizers as else if clauses. */ |
| if( spec->azTokenizer[0]==0 || startsWith(spec->azTokenizer[0], "simple") ){ |
| sqlite3Fts1SimpleTokenizerModule(&m); |
| }else if( startsWith(spec->azTokenizer[0], "porter") ){ |
| sqlite3Fts1PorterTokenizerModule(&m); |
| }else{ |
| *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); |
| rc = SQLITE_ERROR; |
| goto err; |
| } |
| for(n=0; spec->azTokenizer[n]; n++){} |
| if( n ){ |
| rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], |
| &v->pTokenizer); |
| }else{ |
| rc = m->xCreate(0, 0, &v->pTokenizer); |
| } |
| if( rc!=SQLITE_OK ) goto err; |
| v->pTokenizer->pModule = m; |
| |
| /* TODO: verify the existence of backing tables foo_content, foo_term */ |
| |
| schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, |
| spec->zName); |
| rc = sqlite3_declare_vtab(db, schema); |
| sqlite3_free(schema); |
| if( rc!=SQLITE_OK ) goto err; |
| |
| memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); |
| |
| *ppVTab = &v->base; |
| TRACE(("FTS1 Connect %p\n", v)); |
| |
| return rc; |
| |
| err: |
| fulltext_vtab_destroy(v); |
| return rc; |
| } |
| |
| static int fulltextConnect( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVTab, |
| char **pzErr |
| ){ |
| TableSpec spec; |
| int rc = parseSpec(&spec, argc, argv, pzErr); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = constructVtab(db, &spec, ppVTab, pzErr); |
| clearTableSpec(&spec); |
| return rc; |
| } |
| |
| /* The %_content table holds the text of each document, with |
| ** the rowid used as the docid. |
| ** |
| ** The %_term table maps each term to a document list blob |
| ** containing elements sorted by ascending docid, each element |
| ** encoded as: |
| ** |
| ** docid varint-encoded |
| ** token elements: |
| ** position+1 varint-encoded as delta from previous position |
| ** start offset varint-encoded as delta from previous start offset |
| ** end offset varint-encoded as delta from start offset |
| ** |
| ** The sentinel position of 0 indicates the end of the token list. |
| ** |
| ** Additionally, doclist blobs are chunked into multiple segments, |
| ** using segment to order the segments. New elements are added to |
| ** the segment at segment 0, until it exceeds CHUNK_MAX. Then |
| ** segment 0 is deleted, and the doclist is inserted at segment 1. |
| ** If there is already a doclist at segment 1, the segment 0 doclist |
| ** is merged with it, the segment 1 doclist is deleted, and the |
| ** merged doclist is inserted at segment 2, repeating those |
| ** operations until an insert succeeds. |
| ** |
| ** Since this structure doesn't allow us to update elements in place |
| ** in case of deletion or update, these are simply written to |
| ** segment 0 (with an empty token list in case of deletion), with |
| ** docListAccumulate() taking care to retain lower-segment |
| ** information in preference to higher-segment information. |
| */ |
| /* TODO(shess) Provide a VACUUM type operation which both removes |
| ** deleted elements which are no longer necessary, and duplicated |
| ** elements. I suspect this will probably not be necessary in |
| ** practice, though. |
| */ |
| static int fulltextCreate(sqlite3 *db, void *pAux, |
| int argc, const char * const *argv, |
| sqlite3_vtab **ppVTab, char **pzErr){ |
| int rc; |
| TableSpec spec; |
| StringBuffer schema; |
| TRACE(("FTS1 Create\n")); |
| |
| rc = parseSpec(&spec, argc, argv, pzErr); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| initStringBuffer(&schema); |
| append(&schema, "CREATE TABLE %_content("); |
| appendList(&schema, spec.nColumn, spec.azContentColumn); |
| append(&schema, ")"); |
| rc = sql_exec(db, spec.zDb, spec.zName, schema.s); |
| free(schema.s); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| rc = sql_exec(db, spec.zDb, spec.zName, |
| "create table %_term(term text, segment integer, doclist blob, " |
| "primary key(term, segment));"); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| rc = constructVtab(db, &spec, ppVTab, pzErr); |
| |
| out: |
| clearTableSpec(&spec); |
| return rc; |
| } |
| |
| /* Decide how to handle an SQL query. */ |
| static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |
| int i; |
| TRACE(("FTS1 BestIndex\n")); |
| |
| for(i=0; i<pInfo->nConstraint; ++i){ |
| const struct sqlite3_index_constraint *pConstraint; |
| pConstraint = &pInfo->aConstraint[i]; |
| if( pConstraint->usable ) { |
| if( pConstraint->iColumn==-1 && |
| pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ |
| TRACE(("FTS1 QUERY_ROWID\n")); |
| } else if( pConstraint->iColumn>=0 && |
| pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
| /* full-text search */ |
| pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; |
| TRACE(("FTS1 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); |
| } else continue; |
| |
| pInfo->aConstraintUsage[i].argvIndex = 1; |
| pInfo->aConstraintUsage[i].omit = 1; |
| |
| /* An arbitrary value for now. |
| * TODO: Perhaps rowid matches should be considered cheaper than |
| * full-text searches. */ |
| pInfo->estimatedCost = 1.0; |
| |
| return SQLITE_OK; |
| } |
| } |
| pInfo->idxNum = QUERY_GENERIC; |
| return SQLITE_OK; |
| } |
| |
| static int fulltextDisconnect(sqlite3_vtab *pVTab){ |
| TRACE(("FTS1 Disconnect %p\n", pVTab)); |
| fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
| return SQLITE_OK; |
| } |
| |
| static int fulltextDestroy(sqlite3_vtab *pVTab){ |
| fulltext_vtab *v = (fulltext_vtab *)pVTab; |
| int rc; |
| |
| TRACE(("FTS1 Destroy %p\n", pVTab)); |
| rc = sql_exec(v->db, v->zDb, v->zName, |
| "drop table if exists %_content;" |
| "drop table if exists %_term;" |
| ); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
| return SQLITE_OK; |
| } |
| |
| static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| fulltext_cursor *c; |
| |
| c = (fulltext_cursor *) calloc(sizeof(fulltext_cursor), 1); |
| /* sqlite will initialize c->base */ |
| *ppCursor = &c->base; |
| TRACE(("FTS1 Open %p: %p\n", pVTab, c)); |
| |
| return SQLITE_OK; |
| } |
| |
| |
| /* Free all of the dynamically allocated memory held by *q |
| */ |
| static void queryClear(Query *q){ |
| int i; |
| for(i = 0; i < q->nTerms; ++i){ |
| free(q->pTerms[i].pTerm); |
| } |
| free(q->pTerms); |
| memset(q, 0, sizeof(*q)); |
| } |
| |
| /* Free all of the dynamically allocated memory held by the |
| ** Snippet |
| */ |
| static void snippetClear(Snippet *p){ |
| free(p->aMatch); |
| free(p->zOffset); |
| free(p->zSnippet); |
| memset(p, 0, sizeof(*p)); |
| } |
| /* |
| ** Append a single entry to the p->aMatch[] log. |
| */ |
| static void snippetAppendMatch( |
| Snippet *p, /* Append the entry to this snippet */ |
| int iCol, int iTerm, /* The column and query term */ |
| int iStart, int nByte /* Offset and size of the match */ |
| ){ |
| int i; |
| struct snippetMatch *pMatch; |
| if( p->nMatch+1>=p->nAlloc ){ |
| p->nAlloc = p->nAlloc*2 + 10; |
| p->aMatch = realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); |
| if( p->aMatch==0 ){ |
| p->nMatch = 0; |
| p->nAlloc = 0; |
| return; |
| } |
| } |
| i = p->nMatch++; |
| pMatch = &p->aMatch[i]; |
| pMatch->iCol = iCol; |
| pMatch->iTerm = iTerm; |
| pMatch->iStart = iStart; |
| pMatch->nByte = nByte; |
| } |
| |
| /* |
| ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() |
| */ |
| #define FTS1_ROTOR_SZ (32) |
| #define FTS1_ROTOR_MASK (FTS1_ROTOR_SZ-1) |
| |
| /* |
| ** Add entries to pSnippet->aMatch[] for every match that occurs against |
| ** document zDoc[0..nDoc-1] which is stored in column iColumn. |
| */ |
| static void snippetOffsetsOfColumn( |
| Query *pQuery, |
| Snippet *pSnippet, |
| int iColumn, |
| const char *zDoc, |
| int nDoc |
| ){ |
| const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ |
| sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ |
| sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ |
| fulltext_vtab *pVtab; /* The full text index */ |
| int nColumn; /* Number of columns in the index */ |
| const QueryTerm *aTerm; /* Query string terms */ |
| int nTerm; /* Number of query string terms */ |
| int i, j; /* Loop counters */ |
| int rc; /* Return code */ |
| unsigned int match, prevMatch; /* Phrase search bitmasks */ |
| const char *zToken; /* Next token from the tokenizer */ |
| int nToken; /* Size of zToken */ |
| int iBegin, iEnd, iPos; /* Offsets of beginning and end */ |
| |
| /* The following variables keep a circular buffer of the last |
| ** few tokens */ |
| unsigned int iRotor = 0; /* Index of current token */ |
| int iRotorBegin[FTS1_ROTOR_SZ]; /* Beginning offset of token */ |
| int iRotorLen[FTS1_ROTOR_SZ]; /* Length of token */ |
| |
| pVtab = pQuery->pFts; |
| nColumn = pVtab->nColumn; |
| pTokenizer = pVtab->pTokenizer; |
| pTModule = pTokenizer->pModule; |
| rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); |
| if( rc ) return; |
| pTCursor->pTokenizer = pTokenizer; |
| aTerm = pQuery->pTerms; |
| nTerm = pQuery->nTerms; |
| if( nTerm>=FTS1_ROTOR_SZ ){ |
| nTerm = FTS1_ROTOR_SZ - 1; |
| } |
| prevMatch = 0; |
| while(1){ |
| rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); |
| if( rc ) break; |
| iRotorBegin[iRotor&FTS1_ROTOR_MASK] = iBegin; |
| iRotorLen[iRotor&FTS1_ROTOR_MASK] = iEnd-iBegin; |
| match = 0; |
| for(i=0; i<nTerm; i++){ |
| int iCol; |
| iCol = aTerm[i].iColumn; |
| if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; |
| if( aTerm[i].nTerm!=nToken ) continue; |
| if( memcmp(aTerm[i].pTerm, zToken, nToken) ) continue; |
| if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; |
| match |= 1<<i; |
| if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ |
| for(j=aTerm[i].iPhrase-1; j>=0; j--){ |
| int k = (iRotor-j) & FTS1_ROTOR_MASK; |
| snippetAppendMatch(pSnippet, iColumn, i-j, |
| iRotorBegin[k], iRotorLen[k]); |
| } |
| } |
| } |
| prevMatch = match<<1; |
| iRotor++; |
| } |
| pTModule->xClose(pTCursor); |
| } |
| |
| |
| /* |
| ** Compute all offsets for the current row of the query. |
| ** If the offsets have already been computed, this routine is a no-op. |
| */ |
| static void snippetAllOffsets(fulltext_cursor *p){ |
| int nColumn; |
| int iColumn, i; |
| int iFirst, iLast; |
| fulltext_vtab *pFts; |
| |
| if( p->snippet.nMatch ) return; |
| if( p->q.nTerms==0 ) return; |
| pFts = p->q.pFts; |
| nColumn = pFts->nColumn; |
| iColumn = p->iCursorType - QUERY_FULLTEXT; |
| if( iColumn<0 || iColumn>=nColumn ){ |
| iFirst = 0; |
| iLast = nColumn-1; |
| }else{ |
| iFirst = iColumn; |
| iLast = iColumn; |
| } |
| for(i=iFirst; i<=iLast; i++){ |
| const char *zDoc; |
| int nDoc; |
| zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); |
| nDoc = sqlite3_column_bytes(p->pStmt, i+1); |
| snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); |
| } |
| } |
| |
| /* |
| ** Convert the information in the aMatch[] array of the snippet |
| ** into the string zOffset[0..nOffset-1]. |
| */ |
| static void snippetOffsetText(Snippet *p){ |
| int i; |
| int cnt = 0; |
| StringBuffer sb; |
| char zBuf[200]; |
| if( p->zOffset ) return; |
| initStringBuffer(&sb); |
| for(i=0; i<p->nMatch; i++){ |
| struct snippetMatch *pMatch = &p->aMatch[i]; |
| zBuf[0] = ' '; |
| sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", |
| pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); |
| append(&sb, zBuf); |
| cnt++; |
| } |
| p->zOffset = sb.s; |
| p->nOffset = sb.len; |
| } |
| |
| /* |
| ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set |
| ** of matching words some of which might be in zDoc. zDoc is column |
| ** number iCol. |
| ** |
| ** iBreak is suggested spot in zDoc where we could begin or end an |
| ** excerpt. Return a value similar to iBreak but possibly adjusted |
| ** to be a little left or right so that the break point is better. |
| */ |
| static int wordBoundary( |
| int iBreak, /* The suggested break point */ |
| const char *zDoc, /* Document text */ |
| int nDoc, /* Number of bytes in zDoc[] */ |
| struct snippetMatch *aMatch, /* Matching words */ |
| int nMatch, /* Number of entries in aMatch[] */ |
| int iCol /* The column number for zDoc[] */ |
| ){ |
| int i; |
| if( iBreak<=10 ){ |
| return 0; |
| } |
| if( iBreak>=nDoc-10 ){ |
| return nDoc; |
| } |
| for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} |
| while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } |
| if( i<nMatch ){ |
| if( aMatch[i].iStart<iBreak+10 ){ |
| return aMatch[i].iStart; |
| } |
| if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ |
| return aMatch[i-1].iStart; |
| } |
| } |
| for(i=1; i<=10; i++){ |
| if( safe_isspace(zDoc[iBreak-i]) ){ |
| return iBreak - i + 1; |
| } |
| if( safe_isspace(zDoc[iBreak+i]) ){ |
| return iBreak + i + 1; |
| } |
| } |
| return iBreak; |
| } |
| |
| /* |
| ** If the StringBuffer does not end in white space, add a single |
| ** space character to the end. |
| */ |
| static void appendWhiteSpace(StringBuffer *p){ |
| if( p->len==0 ) return; |
| if( safe_isspace(p->s[p->len-1]) ) return; |
| append(p, " "); |
| } |
| |
| /* |
| ** Remove white space from teh end of the StringBuffer |
| */ |
| static void trimWhiteSpace(StringBuffer *p){ |
| while( p->len>0 && safe_isspace(p->s[p->len-1]) ){ |
| p->len--; |
| } |
| } |
| |
| |
| |
| /* |
| ** Allowed values for Snippet.aMatch[].snStatus |
| */ |
| #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ |
| #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ |
| |
| /* |
| ** Generate the text of a snippet. |
| */ |
| static void snippetText( |
| fulltext_cursor *pCursor, /* The cursor we need the snippet for */ |
| const char *zStartMark, /* Markup to appear before each match */ |
| const char *zEndMark, /* Markup to appear after each match */ |
| const char *zEllipsis /* Ellipsis mark */ |
| ){ |
| int i, j; |
| struct snippetMatch *aMatch; |
| int nMatch; |
| int nDesired; |
| StringBuffer sb; |
| int tailCol; |
| int tailOffset; |
| int iCol; |
| int nDoc; |
| const char *zDoc; |
| int iStart, iEnd; |
| int tailEllipsis = 0; |
| int iMatch; |
| |
| |
| free(pCursor->snippet.zSnippet); |
| pCursor->snippet.zSnippet = 0; |
| aMatch = pCursor->snippet.aMatch; |
| nMatch = pCursor->snippet.nMatch; |
| initStringBuffer(&sb); |
| |
| for(i=0; i<nMatch; i++){ |
| aMatch[i].snStatus = SNIPPET_IGNORE; |
| } |
| nDesired = 0; |
| for(i=0; i<pCursor->q.nTerms; i++){ |
| for(j=0; j<nMatch; j++){ |
| if( aMatch[j].iTerm==i ){ |
| aMatch[j].snStatus = SNIPPET_DESIRED; |
| nDesired++; |
| break; |
| } |
| } |
| } |
| |
| iMatch = 0; |
| tailCol = -1; |
| tailOffset = 0; |
| for(i=0; i<nMatch && nDesired>0; i++){ |
| if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; |
| nDesired--; |
| iCol = aMatch[i].iCol; |
| zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); |
| nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); |
| iStart = aMatch[i].iStart - 40; |
| iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); |
| if( iStart<=10 ){ |
| iStart = 0; |
| } |
| if( iCol==tailCol && iStart<=tailOffset+20 ){ |
| iStart = tailOffset; |
| } |
| if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ |
| trimWhiteSpace(&sb); |
| appendWhiteSpace(&sb); |
| append(&sb, zEllipsis); |
| appendWhiteSpace(&sb); |
| } |
| iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; |
| iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); |
| if( iEnd>=nDoc-10 ){ |
| iEnd = nDoc; |
| tailEllipsis = 0; |
| }else{ |
| tailEllipsis = 1; |
| } |
| while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } |
| while( iStart<iEnd ){ |
| while( iMatch<nMatch && aMatch[iMatch].iStart<iStart |
| && aMatch[iMatch].iCol<=iCol ){ |
| iMatch++; |
| } |
| if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd |
| && aMatch[iMatch].iCol==iCol ){ |
| nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); |
| iStart = aMatch[iMatch].iStart; |
| append(&sb, zStartMark); |
| nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); |
| append(&sb, zEndMark); |
| iStart += aMatch[iMatch].nByte; |
| for(j=iMatch+1; j<nMatch; j++){ |
| if( aMatch[j].iTerm==aMatch[iMatch].iTerm |
| && aMatch[j].snStatus==SNIPPET_DESIRED ){ |
| nDesired--; |
| aMatch[j].snStatus = SNIPPET_IGNORE; |
| } |
| } |
| }else{ |
| nappend(&sb, &zDoc[iStart], iEnd - iStart); |
| iStart = iEnd; |
| } |
| } |
| tailCol = iCol; |
| tailOffset = iEnd; |
| } |
| trimWhiteSpace(&sb); |
| if( tailEllipsis ){ |
| appendWhiteSpace(&sb); |
| append(&sb, zEllipsis); |
| } |
| pCursor->snippet.zSnippet = sb.s; |
| pCursor->snippet.nSnippet = sb.len; |
| } |
| |
| |
| /* |
| ** Close the cursor. For additional information see the documentation |
| ** on the xClose method of the virtual table interface. |
| */ |
| static int fulltextClose(sqlite3_vtab_cursor *pCursor){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| TRACE(("FTS1 Close %p\n", c)); |
| sqlite3_finalize(c->pStmt); |
| queryClear(&c->q); |
| snippetClear(&c->snippet); |
| if( c->result.pDoclist!=NULL ){ |
| docListDelete(c->result.pDoclist); |
| } |
| free(c); |
| return SQLITE_OK; |
| } |
| |
| static int fulltextNext(sqlite3_vtab_cursor *pCursor){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| sqlite_int64 iDocid; |
| int rc; |
| |
| TRACE(("FTS1 Next %p\n", pCursor)); |
| snippetClear(&c->snippet); |
| if( c->iCursorType < QUERY_FULLTEXT ){ |
| /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
| rc = sqlite3_step(c->pStmt); |
| switch( rc ){ |
| case SQLITE_ROW: |
| c->eof = 0; |
| return SQLITE_OK; |
| case SQLITE_DONE: |
| c->eof = 1; |
| return SQLITE_OK; |
| default: |
| c->eof = 1; |
| return rc; |
| } |
| } else { /* full-text query */ |
| rc = sqlite3_reset(c->pStmt); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| iDocid = nextDocid(&c->result); |
| if( iDocid==0 ){ |
| c->eof = 1; |
| return SQLITE_OK; |
| } |
| rc = sqlite3_bind_int64(c->pStmt, 1, iDocid); |
| if( rc!=SQLITE_OK ) return rc; |
| /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
| rc = sqlite3_step(c->pStmt); |
| if( rc==SQLITE_ROW ){ /* the case we expect */ |
| c->eof = 0; |
| return SQLITE_OK; |
| } |
| /* an error occurred; abort */ |
| return rc==SQLITE_DONE ? SQLITE_ERROR : rc; |
| } |
| } |
| |
| |
| /* Return a DocList corresponding to the query term *pTerm. If *pTerm |
| ** is the first term of a phrase query, go ahead and evaluate the phrase |
| ** query and return the doclist for the entire phrase query. |
| ** |
| ** The result is stored in pTerm->doclist. |
| */ |
| static int docListOfTerm( |
| fulltext_vtab *v, /* The full text index */ |
| int iColumn, /* column to restrict to. No restrition if >=nColumn */ |
| QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ |
| DocList **ppResult /* Write the result here */ |
| ){ |
| DocList *pLeft, *pRight, *pNew; |
| int i, rc; |
| |
| pLeft = docListNew(DL_POSITIONS); |
| rc = term_select_all(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pLeft); |
| if( rc ){ |
| docListDelete(pLeft); |
| return rc; |
| } |
| for(i=1; i<=pQTerm->nPhrase; i++){ |
| pRight = docListNew(DL_POSITIONS); |
| rc = term_select_all(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, pRight); |
| if( rc ){ |
| docListDelete(pLeft); |
| return rc; |
| } |
| pNew = docListNew(i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS); |
| docListPhraseMerge(pLeft, pRight, pNew); |
| docListDelete(pLeft); |
| docListDelete(pRight); |
| pLeft = pNew; |
| } |
| *ppResult = pLeft; |
| return SQLITE_OK; |
| } |
| |
| /* Add a new term pTerm[0..nTerm-1] to the query *q. |
| */ |
| static void queryAdd(Query *q, const char *pTerm, int nTerm){ |
| QueryTerm *t; |
| ++q->nTerms; |
| q->pTerms = realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); |
| if( q->pTerms==0 ){ |
| q->nTerms = 0; |
| return; |
| } |
| t = &q->pTerms[q->nTerms - 1]; |
| memset(t, 0, sizeof(*t)); |
| t->pTerm = malloc(nTerm+1); |
| memcpy(t->pTerm, pTerm, nTerm); |
| t->pTerm[nTerm] = 0; |
| t->nTerm = nTerm; |
| t->isOr = q->nextIsOr; |
| q->nextIsOr = 0; |
| t->iColumn = q->nextColumn; |
| q->nextColumn = q->dfltColumn; |
| } |
| |
| /* |
| ** Check to see if the string zToken[0...nToken-1] matches any |
| ** column name in the virtual table. If it does, |
| ** return the zero-indexed column number. If not, return -1. |
| */ |
| static int checkColumnSpecifier( |
| fulltext_vtab *pVtab, /* The virtual table */ |
| const char *zToken, /* Text of the token */ |
| int nToken /* Number of characters in the token */ |
| ){ |
| int i; |
| for(i=0; i<pVtab->nColumn; i++){ |
| if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 |
| && pVtab->azColumn[i][nToken]==0 ){ |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| ** Parse the text at pSegment[0..nSegment-1]. Add additional terms |
| ** to the query being assemblied in pQuery. |
| ** |
| ** inPhrase is true if pSegment[0..nSegement-1] is contained within |
| ** double-quotes. If inPhrase is true, then the first term |
| ** is marked with the number of terms in the phrase less one and |
| ** OR and "-" syntax is ignored. If inPhrase is false, then every |
| ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. |
| */ |
| static int tokenizeSegment( |
| sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ |
| const char *pSegment, int nSegment, /* Query expression being parsed */ |
| int inPhrase, /* True if within "..." */ |
| Query *pQuery /* Append results here */ |
| ){ |
| const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; |
| sqlite3_tokenizer_cursor *pCursor; |
| int firstIndex = pQuery->nTerms; |
| int iCol; |
| int nTerm = 1; |
| |
| int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); |
| if( rc!=SQLITE_OK ) return rc; |
| pCursor->pTokenizer = pTokenizer; |
| |
| while( 1 ){ |
| const char *pToken; |
| int nToken, iBegin, iEnd, iPos; |
| |
| rc = pModule->xNext(pCursor, |
| &pToken, &nToken, |
| &iBegin, &iEnd, &iPos); |
| if( rc!=SQLITE_OK ) break; |
| if( !inPhrase && |
| pSegment[iEnd]==':' && |
| (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ |
| pQuery->nextColumn = iCol; |
| continue; |
| } |
| if( !inPhrase && pQuery->nTerms>0 && nToken==2 |
| && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ |
| pQuery->nextIsOr = 1; |
| continue; |
| } |
| queryAdd(pQuery, pToken, nToken); |
| if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ |
| pQuery->pTerms[pQuery->nTerms-1].isNot = 1; |
| } |
| pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; |
| if( inPhrase ){ |
| nTerm++; |
| } |
| } |
| |
| if( inPhrase && pQuery->nTerms>firstIndex ){ |
| pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; |
| } |
| |
| return pModule->xClose(pCursor); |
| } |
| |
| /* Parse a query string, yielding a Query object pQuery. |
| ** |
| ** The calling function will need to queryClear() to clean up |
| ** the dynamically allocated memory held by pQuery. |
| */ |
| static int parseQuery( |
| fulltext_vtab *v, /* The fulltext index */ |
| const char *zInput, /* Input text of the query string */ |
| int nInput, /* Size of the input text */ |
| int dfltColumn, /* Default column of the index to match against */ |
| Query *pQuery /* Write the parse results here. */ |
| ){ |
| int iInput, inPhrase = 0; |
| |
| if( zInput==0 ) nInput = 0; |
| if( nInput<0 ) nInput = strlen(zInput); |
| pQuery->nTerms = 0; |
| pQuery->pTerms = NULL; |
| pQuery->nextIsOr = 0; |
| pQuery->nextColumn = dfltColumn; |
| pQuery->dfltColumn = dfltColumn; |
| pQuery->pFts = v; |
| |
| for(iInput=0; iInput<nInput; ++iInput){ |
| int i; |
| for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} |
| if( i>iInput ){ |
| tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, |
| pQuery); |
| } |
| iInput = i; |
| if( i<nInput ){ |
| assert( zInput[i]=='"' ); |
| inPhrase = !inPhrase; |
| } |
| } |
| |
| if( inPhrase ){ |
| /* unmatched quote */ |
| queryClear(pQuery); |
| return SQLITE_ERROR; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Perform a full-text query using the search expression in |
| ** zInput[0..nInput-1]. Return a list of matching documents |
| ** in pResult. |
| ** |
| ** Queries must match column iColumn. Or if iColumn>=nColumn |
| ** they are allowed to match against any column. |
| */ |
| static int fulltextQuery( |
| fulltext_vtab *v, /* The full text index */ |
| int iColumn, /* Match against this column by default */ |
| const char *zInput, /* The query string */ |
| int nInput, /* Number of bytes in zInput[] */ |
| DocList **pResult, /* Write the result doclist here */ |
| Query *pQuery /* Put parsed query string here */ |
| ){ |
| int i, iNext, rc; |
| DocList *pLeft = NULL; |
| DocList *pRight, *pNew, *pOr; |
| int nNot = 0; |
| QueryTerm *aTerm; |
| |
| rc = parseQuery(v, zInput, nInput, iColumn, pQuery); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Merge AND terms. */ |
| aTerm = pQuery->pTerms; |
| for(i = 0; i<pQuery->nTerms; i=iNext){ |
| if( aTerm[i].isNot ){ |
| /* Handle all NOT terms in a separate pass */ |
| nNot++; |
| iNext = i + aTerm[i].nPhrase+1; |
| continue; |
| } |
| iNext = i + aTerm[i].nPhrase + 1; |
| rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); |
| if( rc ){ |
| queryClear(pQuery); |
| return rc; |
| } |
| while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ |
| rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &pOr); |
| iNext += aTerm[iNext].nPhrase + 1; |
| if( rc ){ |
| queryClear(pQuery); |
| return rc; |
| } |
| pNew = docListNew(DL_DOCIDS); |
| docListOrMerge(pRight, pOr, pNew); |
| docListDelete(pRight); |
| docListDelete(pOr); |
| pRight = pNew; |
| } |
| if( pLeft==0 ){ |
| pLeft = pRight; |
| }else{ |
| pNew = docListNew(DL_DOCIDS); |
| docListAndMerge(pLeft, pRight, pNew); |
| docListDelete(pRight); |
| docListDelete(pLeft); |
| pLeft = pNew; |
| } |
| } |
| |
| if( nNot && pLeft==0 ){ |
| /* We do not yet know how to handle a query of only NOT terms */ |
| return SQLITE_ERROR; |
| } |
| |
| /* Do the EXCEPT terms */ |
| for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ |
| if( !aTerm[i].isNot ) continue; |
| rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); |
| if( rc ){ |
| queryClear(pQuery); |
| docListDelete(pLeft); |
| return rc; |
| } |
| pNew = docListNew(DL_DOCIDS); |
| docListExceptMerge(pLeft, pRight, pNew); |
| docListDelete(pRight); |
| docListDelete(pLeft); |
| pLeft = pNew; |
| } |
| |
| *pResult = pLeft; |
| return rc; |
| } |
| |
| /* |
| ** This is the xFilter interface for the virtual table. See |
| ** the virtual table xFilter method documentation for additional |
| ** information. |
| ** |
| ** If idxNum==QUERY_GENERIC then do a full table scan against |
| ** the %_content table. |
| ** |
| ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry |
| ** in the %_content table. |
| ** |
| ** If idxNum>=QUERY_FULLTEXT then use the full text index. The |
| ** column on the left-hand side of the MATCH operator is column |
| ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand |
| ** side of the MATCH operator. |
| */ |
| /* TODO(shess) Upgrade the cursor initialization and destruction to |
| ** account for fulltextFilter() being called multiple times on the |
| ** same cursor. The current solution is very fragile. Apply fix to |
| ** fts2 as appropriate. |
| */ |
| static int fulltextFilter( |
| sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ |
| int idxNum, const char *idxStr, /* Which indexing scheme to use */ |
| int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ |
| ){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| fulltext_vtab *v = cursor_vtab(c); |
| int rc; |
| char *zSql; |
| |
| TRACE(("FTS1 Filter %p\n",pCursor)); |
| |
| zSql = sqlite3_mprintf("select rowid, * from %%_content %s", |
| idxNum==QUERY_GENERIC ? "" : "where rowid=?"); |
| sqlite3_finalize(c->pStmt); |
| rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); |
| sqlite3_free(zSql); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| c->iCursorType = idxNum; |
| switch( idxNum ){ |
| case QUERY_GENERIC: |
| break; |
| |
| case QUERY_ROWID: |
| rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); |
| if( rc!=SQLITE_OK ) return rc; |
| break; |
| |
| default: /* full-text search */ |
| { |
| const char *zQuery = (const char *)sqlite3_value_text(argv[0]); |
| DocList *pResult; |
| assert( idxNum<=QUERY_FULLTEXT+v->nColumn); |
| assert( argc==1 ); |
| queryClear(&c->q); |
| rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &pResult, &c->q); |
| if( rc!=SQLITE_OK ) return rc; |
| if( c->result.pDoclist!=NULL ) docListDelete(c->result.pDoclist); |
| readerInit(&c->result, pResult); |
| break; |
| } |
| } |
| |
| return fulltextNext(pCursor); |
| } |
| |
| /* This is the xEof method of the virtual table. The SQLite core |
| ** calls this routine to find out if it has reached the end of |
| ** a query's results set. |
| */ |
| static int fulltextEof(sqlite3_vtab_cursor *pCursor){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| return c->eof; |
| } |
| |
| /* This is the xColumn method of the virtual table. The SQLite |
| ** core calls this method during a query when it needs the value |
| ** of a column from the virtual table. This method needs to use |
| ** one of the sqlite3_result_*() routines to store the requested |
| ** value back in the pContext. |
| */ |
| static int fulltextColumn(sqlite3_vtab_cursor *pCursor, |
| sqlite3_context *pContext, int idxCol){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| fulltext_vtab *v = cursor_vtab(c); |
| |
| if( idxCol<v->nColumn ){ |
| sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); |
| sqlite3_result_value(pContext, pVal); |
| }else if( idxCol==v->nColumn ){ |
| /* The extra column whose name is the same as the table. |
| ** Return a blob which is a pointer to the cursor |
| */ |
| sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* This is the xRowid method. The SQLite core calls this routine to |
| ** retrive the rowid for the current row of the result set. The |
| ** rowid should be written to *pRowid. |
| */ |
| static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| |
| *pRowid = sqlite3_column_int64(c->pStmt, 0); |
| return SQLITE_OK; |
| } |
| |
| /* Add all terms in [zText] to the given hash table. If [iColumn] > 0, |
| * we also store positions and offsets in the hash table using the given |
| * column number. */ |
| static int buildTerms(fulltext_vtab *v, fts1Hash *terms, sqlite_int64 iDocid, |
| const char *zText, int iColumn){ |
| sqlite3_tokenizer *pTokenizer = v->pTokenizer; |
| sqlite3_tokenizer_cursor *pCursor; |
| const char *pToken; |
| int nTokenBytes; |
| int iStartOffset, iEndOffset, iPosition; |
| int rc; |
| |
| rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| pCursor->pTokenizer = pTokenizer; |
| while( SQLITE_OK==pTokenizer->pModule->xNext(pCursor, |
| &pToken, &nTokenBytes, |
| &iStartOffset, &iEndOffset, |
| &iPosition) ){ |
| DocList *p; |
| |
| /* Positions can't be negative; we use -1 as a terminator internally. */ |
| if( iPosition<0 ){ |
| pTokenizer->pModule->xClose(pCursor); |
| return SQLITE_ERROR; |
| } |
| |
| p = fts1HashFind(terms, pToken, nTokenBytes
|