| /* |
| ** 2006 Oct 10 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ****************************************************************************** |
| ** |
| ** This is an SQLite module implementing full-text search. |
| */ |
| |
| /* |
| ** The code in this file is only compiled if: |
| ** |
| ** * The FTS3 module is being built as an extension |
| ** (in which case SQLITE_CORE is not defined), or |
| ** |
| ** * The FTS3 module is being built into the core of |
| ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). |
| */ |
| |
| /* The full-text index is stored in a series of b+tree (-like) |
| ** structures called segments which map terms to doclists. The |
| ** structures are like b+trees in layout, but are constructed from the |
| ** bottom up in optimal fashion and are not updatable. Since trees |
| ** are built from the bottom up, things will be described from the |
| ** bottom up. |
| ** |
| ** |
| **** Varints **** |
| ** The basic unit of encoding is a variable-length integer called a |
| ** varint. We encode variable-length integers in little-endian order |
| ** using seven bits * per byte as follows: |
| ** |
| ** KEY: |
| ** A = 0xxxxxxx 7 bits of data and one flag bit |
| ** B = 1xxxxxxx 7 bits of data and one flag bit |
| ** |
| ** 7 bits - A |
| ** 14 bits - BA |
| ** 21 bits - BBA |
| ** and so on. |
| ** |
| ** This is similar in concept to how sqlite encodes "varints" but |
| ** the encoding is not the same. SQLite varints are big-endian |
| ** are are limited to 9 bytes in length whereas FTS3 varints are |
| ** little-endian and can be up to 10 bytes in length (in theory). |
| ** |
| ** Example encodings: |
| ** |
| ** 1: 0x01 |
| ** 127: 0x7f |
| ** 128: 0x81 0x00 |
| ** |
| ** |
| **** Document lists **** |
| ** A doclist (document list) holds a docid-sorted list of hits for a |
| ** given term. Doclists hold docids and associated token positions. |
| ** A docid is the unique integer identifier for a single document. |
| ** A position is the index of a word within the document. The first |
| ** word of the document has a position of 0. |
| ** |
| ** FTS3 used to optionally store character offsets using a compile-time |
| ** option. But that functionality is no longer supported. |
| ** |
| ** A doclist is stored like this: |
| ** |
| ** array { |
| ** varint docid; |
| ** array { (position list for column 0) |
| ** varint position; (2 more than the delta from previous position) |
| ** } |
| ** array { |
| ** varint POS_COLUMN; (marks start of position list for new column) |
| ** varint column; (index of new column) |
| ** array { |
| ** varint position; (2 more than the delta from previous position) |
| ** } |
| ** } |
| ** varint POS_END; (marks end of positions for this document. |
| ** } |
| ** |
| ** Here, array { X } means zero or more occurrences of X, adjacent in |
| ** memory. A "position" is an index of a token in the token stream |
| ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur |
| ** in the same logical place as the position element, and act as sentinals |
| ** ending a position list array. POS_END is 0. POS_COLUMN is 1. |
| ** The positions numbers are not stored literally but rather as two more |
| ** than the difference from the prior position, or the just the position plus |
| ** 2 for the first position. Example: |
| ** |
| ** label: A B C D E F G H I J K |
| ** value: 123 5 9 1 1 14 35 0 234 72 0 |
| ** |
| ** The 123 value is the first docid. For column zero in this document |
| ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1 |
| ** at D signals the start of a new column; the 1 at E indicates that the |
| ** new column is column number 1. There are two positions at 12 and 45 |
| ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The |
| ** 234 at I is the next docid. It has one position 72 (72-2) and then |
| ** terminates with the 0 at K. |
| ** |
| ** A "position-list" is the list of positions for multiple columns for |
| ** a single docid. A "column-list" is the set of positions for a single |
| ** column. Hence, a position-list consists of one or more column-lists, |
| ** a document record consists of a docid followed by a position-list and |
| ** a doclist consists of one or more document records. |
| ** |
| ** A bare doclist omits the position information, becoming an |
| ** array of varint-encoded docids. |
| ** |
| **** Segment leaf nodes **** |
| ** Segment leaf nodes store terms and doclists, ordered by term. Leaf |
| ** nodes are written using LeafWriter, and read using LeafReader (to |
| ** iterate through a single leaf node's data) and LeavesReader (to |
| ** iterate through a segment's entire leaf layer). Leaf nodes have |
| ** the format: |
| ** |
| ** varint iHeight; (height from leaf level, always 0) |
| ** varint nTerm; (length of first term) |
| ** char pTerm[nTerm]; (content of first term) |
| ** varint nDoclist; (length of term's associated doclist) |
| ** char pDoclist[nDoclist]; (content of doclist) |
| ** array { |
| ** (further terms are delta-encoded) |
| ** varint nPrefix; (length of prefix shared with previous term) |
| ** varint nSuffix; (length of unshared suffix) |
| ** char pTermSuffix[nSuffix];(unshared suffix of next term) |
| ** varint nDoclist; (length of term's associated doclist) |
| ** char pDoclist[nDoclist]; (content of doclist) |
| ** } |
| ** |
| ** Here, array { X } means zero or more occurrences of X, adjacent in |
| ** memory. |
| ** |
| ** Leaf nodes are broken into blocks which are stored contiguously in |
| ** the %_segments table in sorted order. This means that when the end |
| ** of a node is reached, the next term is in the node with the next |
| ** greater node id. |
| ** |
| ** New data is spilled to a new leaf node when the current node |
| ** exceeds LEAF_MAX bytes (default 2048). New data which itself is |
| ** larger than STANDALONE_MIN (default 1024) is placed in a standalone |
| ** node (a leaf node with a single term and doclist). The goal of |
| ** these settings is to pack together groups of small doclists while |
| ** making it efficient to directly access large doclists. The |
| ** assumption is that large doclists represent terms which are more |
| ** likely to be query targets. |
| ** |
| ** TODO(shess) It may be useful for blocking decisions to be more |
| ** dynamic. For instance, it may make more sense to have a 2.5k leaf |
| ** node rather than splitting into 2k and .5k nodes. My intuition is |
| ** that this might extend through 2x or 4x the pagesize. |
| ** |
| ** |
| **** Segment interior nodes **** |
| ** Segment interior nodes store blockids for subtree nodes and terms |
| ** to describe what data is stored by the each subtree. Interior |
| ** nodes are written using InteriorWriter, and read using |
| ** InteriorReader. InteriorWriters are created as needed when |
| ** SegmentWriter creates new leaf nodes, or when an interior node |
| ** itself grows too big and must be split. The format of interior |
| ** nodes: |
| ** |
| ** varint iHeight; (height from leaf level, always >0) |
| ** varint iBlockid; (block id of node's leftmost subtree) |
| ** optional { |
| ** varint nTerm; (length of first term) |
| ** char pTerm[nTerm]; (content of first term) |
| ** array { |
| ** (further terms are delta-encoded) |
| ** varint nPrefix; (length of shared prefix with previous term) |
| ** varint nSuffix; (length of unshared suffix) |
| ** char pTermSuffix[nSuffix]; (unshared suffix of next term) |
| ** } |
| ** } |
| ** |
| ** Here, optional { X } means an optional element, while array { X } |
| ** means zero or more occurrences of X, adjacent in memory. |
| ** |
| ** An interior node encodes n terms separating n+1 subtrees. The |
| ** subtree blocks are contiguous, so only the first subtree's blockid |
| ** is encoded. The subtree at iBlockid will contain all terms less |
| ** than the first term encoded (or all terms if no term is encoded). |
| ** Otherwise, for terms greater than or equal to pTerm[i] but less |
| ** than pTerm[i+1], the subtree for that term will be rooted at |
| ** iBlockid+i. Interior nodes only store enough term data to |
| ** distinguish adjacent children (if the rightmost term of the left |
| ** child is "something", and the leftmost term of the right child is |
| ** "wicked", only "w" is stored). |
| ** |
| ** New data is spilled to a new interior node at the same height when |
| ** the current node exceeds INTERIOR_MAX bytes (default 2048). |
| ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing |
| ** interior nodes and making the tree too skinny. The interior nodes |
| ** at a given height are naturally tracked by interior nodes at |
| ** height+1, and so on. |
| ** |
| ** |
| **** Segment directory **** |
| ** The segment directory in table %_segdir stores meta-information for |
| ** merging and deleting segments, and also the root node of the |
| ** segment's tree. |
| ** |
| ** The root node is the top node of the segment's tree after encoding |
| ** the entire segment, restricted to ROOT_MAX bytes (default 1024). |
| ** This could be either a leaf node or an interior node. If the top |
| ** node requires more than ROOT_MAX bytes, it is flushed to %_segments |
| ** and a new root interior node is generated (which should always fit |
| ** within ROOT_MAX because it only needs space for 2 varints, the |
| ** height and the blockid of the previous root). |
| ** |
| ** The meta-information in the segment directory is: |
| ** level - segment level (see below) |
| ** idx - index within level |
| ** - (level,idx uniquely identify a segment) |
| ** start_block - first leaf node |
| ** leaves_end_block - last leaf node |
| ** end_block - last block (including interior nodes) |
| ** root - contents of root node |
| ** |
| ** If the root node is a leaf node, then start_block, |
| ** leaves_end_block, and end_block are all 0. |
| ** |
| ** |
| **** Segment merging **** |
| ** To amortize update costs, segments are grouped into levels and |
| ** merged in batches. Each increase in level represents exponentially |
| ** more documents. |
| ** |
| ** New documents (actually, document updates) are tokenized and |
| ** written individually (using LeafWriter) to a level 0 segment, with |
| ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all |
| ** level 0 segments are merged into a single level 1 segment. Level 1 |
| ** is populated like level 0, and eventually MERGE_COUNT level 1 |
| ** segments are merged to a single level 2 segment (representing |
| ** MERGE_COUNT^2 updates), and so on. |
| ** |
| ** A segment merge traverses all segments at a given level in |
| ** parallel, performing a straightforward sorted merge. Since segment |
| ** leaf nodes are written in to the %_segments table in order, this |
| ** merge traverses the underlying sqlite disk structures efficiently. |
| ** After the merge, all segment blocks from the merged level are |
| ** deleted. |
| ** |
| ** MERGE_COUNT controls how often we merge segments. 16 seems to be |
| ** somewhat of a sweet spot for insertion performance. 32 and 64 show |
| ** very similar performance numbers to 16 on insertion, though they're |
| ** a tiny bit slower (perhaps due to more overhead in merge-time |
| ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than |
| ** 16, 2 about 66% slower than 16. |
| ** |
| ** At query time, high MERGE_COUNT increases the number of segments |
| ** which need to be scanned and merged. For instance, with 100k docs |
| ** inserted: |
| ** |
| ** MERGE_COUNT segments |
| ** 16 25 |
| ** 8 12 |
| ** 4 10 |
| ** 2 6 |
| ** |
| ** This appears to have only a moderate impact on queries for very |
| ** frequent terms (which are somewhat dominated by segment merge |
| ** costs), and infrequent and non-existent terms still seem to be fast |
| ** even with many segments. |
| ** |
| ** TODO(shess) That said, it would be nice to have a better query-side |
| ** argument for MERGE_COUNT of 16. Also, it is possible/likely that |
| ** optimizations to things like doclist merging will swing the sweet |
| ** spot around. |
| ** |
| ** |
| ** |
| **** Handling of deletions and updates **** |
| ** Since we're using a segmented structure, with no docid-oriented |
| ** index into the term index, we clearly cannot simply update the term |
| ** index when a document is deleted or updated. For deletions, we |
| ** write an empty doclist (varint(docid) varint(POS_END)), for updates |
| ** we simply write the new doclist. Segment merges overwrite older |
| ** data for a particular docid with newer data, so deletes or updates |
| ** will eventually overtake the earlier data and knock it out. The |
| ** query logic likewise merges doclists so that newer data knocks out |
| ** older data. |
| ** |
| ** TODO(shess) Provide a VACUUM type operation to clear out all |
| ** deletions and duplications. This would basically be a forced merge |
| ** into a single segment. |
| */ |
| #define CHROMIUM_FTS3_CHANGES 1 |
| |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
| |
| #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) |
| # define SQLITE_CORE 1 |
| #endif |
| |
| #include "fts3Int.h" |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdarg.h> |
| |
| #include "fts3.h" |
| #ifndef SQLITE_CORE |
| # include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| #endif |
| |
| /* |
| ** Write a 64-bit variable-length integer to memory starting at p[0]. |
| ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. |
| ** The number of bytes written is returned. |
| */ |
| int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ |
| unsigned char *q = (unsigned char *) p; |
| sqlite_uint64 vu = v; |
| do{ |
| *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |
| vu >>= 7; |
| }while( vu!=0 ); |
| q[-1] &= 0x7f; /* turn off high bit in final byte */ |
| assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); |
| return (int) (q - (unsigned char *)p); |
| } |
| |
| /* |
| ** Read a 64-bit variable-length integer from memory starting at p[0]. |
| ** Return the number of bytes read, or 0 on error. |
| ** The value is stored in *v. |
| */ |
| int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){ |
| const unsigned char *q = (const unsigned char *) p; |
| sqlite_uint64 x = 0, y = 1; |
| while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){ |
| x += y * (*q++ & 0x7f); |
| y <<= 7; |
| } |
| x += y * (*q++); |
| *v = (sqlite_int64) x; |
| return (int) (q - (unsigned char *)p); |
| } |
| |
| /* |
| ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a |
| ** 32-bit integer before it is returned. |
| */ |
| int sqlite3Fts3GetVarint32(const char *p, int *pi){ |
| sqlite_int64 i; |
| int ret = sqlite3Fts3GetVarint(p, &i); |
| *pi = (int) i; |
| return ret; |
| } |
| |
| /* |
| ** Return the number of bytes required to encode v as a varint |
| */ |
| int sqlite3Fts3VarintLen(sqlite3_uint64 v){ |
| int i = 0; |
| do{ |
| i++; |
| v >>= 7; |
| }while( v!=0 ); |
| return i; |
| } |
| |
| /* |
| ** Convert an SQL-style quoted string into a normal string by removing |
| ** the quote characters. The conversion is done in-place. If the |
| ** input does not begin with a quote character, then this routine |
| ** is a no-op. |
| ** |
| ** Examples: |
| ** |
| ** "abc" becomes abc |
| ** 'xyz' becomes xyz |
| ** [pqr] becomes pqr |
| ** `mno` becomes mno |
| ** |
| */ |
| void sqlite3Fts3Dequote(char *z){ |
| char quote; /* Quote character (if any ) */ |
| |
| quote = z[0]; |
| if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ |
| int iIn = 1; /* Index of next byte to read from input */ |
| int iOut = 0; /* Index of next byte to write to output */ |
| |
| /* If the first byte was a '[', then the close-quote character is a ']' */ |
| if( quote=='[' ) quote = ']'; |
| |
| while( ALWAYS(z[iIn]) ){ |
| if( z[iIn]==quote ){ |
| if( z[iIn+1]!=quote ) break; |
| z[iOut++] = quote; |
| iIn += 2; |
| }else{ |
| z[iOut++] = z[iIn++]; |
| } |
| } |
| z[iOut] = '\0'; |
| } |
| } |
| |
| /* |
| ** Read a single varint from the doclist at *pp and advance *pp to point |
| ** to the first byte past the end of the varint. Add the value of the varint |
| ** to *pVal. |
| */ |
| static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ |
| sqlite3_int64 iVal; |
| *pp += sqlite3Fts3GetVarint(*pp, &iVal); |
| *pVal += iVal; |
| } |
| |
| /* |
| ** As long as *pp has not reached its end (pEnd), then do the same |
| ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal. |
| ** But if we have reached the end of the varint, just set *pp=0 and |
| ** leave *pVal unchanged. |
| */ |
| static void fts3GetDeltaVarint2(char **pp, char *pEnd, sqlite3_int64 *pVal){ |
| if( *pp>=pEnd ){ |
| *pp = 0; |
| }else{ |
| fts3GetDeltaVarint(pp, pVal); |
| } |
| } |
| |
| /* |
| ** The xDisconnect() virtual table method. |
| */ |
| static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ |
| Fts3Table *p = (Fts3Table *)pVtab; |
| int i; |
| |
| assert( p->nPendingData==0 ); |
| assert( p->pSegments==0 ); |
| |
| /* Free any prepared statements held */ |
| for(i=0; i<SizeofArray(p->aStmt); i++){ |
| sqlite3_finalize(p->aStmt[i]); |
| } |
| sqlite3_free(p->zSegmentsTbl); |
| sqlite3_free(p->zReadExprlist); |
| sqlite3_free(p->zWriteExprlist); |
| |
| /* Invoke the tokenizer destructor to free the tokenizer. */ |
| p->pTokenizer->pModule->xDestroy(p->pTokenizer); |
| |
| sqlite3_free(p); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Construct one or more SQL statements from the format string given |
| ** and then evaluate those statements. The success code is written |
| ** into *pRc. |
| ** |
| ** If *pRc is initially non-zero then this routine is a no-op. |
| */ |
| static void fts3DbExec( |
| int *pRc, /* Success code */ |
| sqlite3 *db, /* Database in which to run SQL */ |
| const char *zFormat, /* Format string for SQL */ |
| ... /* Arguments to the format string */ |
| ){ |
| va_list ap; |
| char *zSql; |
| if( *pRc ) return; |
| va_start(ap, zFormat); |
| zSql = sqlite3_vmprintf(zFormat, ap); |
| va_end(ap); |
| if( zSql==0 ){ |
| *pRc = SQLITE_NOMEM; |
| }else{ |
| *pRc = sqlite3_exec(db, zSql, 0, 0, 0); |
| sqlite3_free(zSql); |
| } |
| } |
| |
| /* |
| ** The xDestroy() virtual table method. |
| */ |
| static int fts3DestroyMethod(sqlite3_vtab *pVtab){ |
| int rc = SQLITE_OK; /* Return code */ |
| Fts3Table *p = (Fts3Table *)pVtab; |
| sqlite3 *db = p->db; |
| |
| /* Drop the shadow tables */ |
| fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", p->zDb, p->zName); |
| fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", p->zDb,p->zName); |
| fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", p->zDb, p->zName); |
| fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", p->zDb, p->zName); |
| fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", p->zDb, p->zName); |
| |
| /* If everything has worked, invoke fts3DisconnectMethod() to free the |
| ** memory associated with the Fts3Table structure and return SQLITE_OK. |
| ** Otherwise, return an SQLite error code. |
| */ |
| return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc); |
| } |
| |
| |
| /* |
| ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table |
| ** passed as the first argument. This is done as part of the xConnect() |
| ** and xCreate() methods. |
| ** |
| ** If *pRc is non-zero when this function is called, it is a no-op. |
| ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc |
| ** before returning. |
| */ |
| static void fts3DeclareVtab(int *pRc, Fts3Table *p){ |
| if( *pRc==SQLITE_OK ){ |
| int i; /* Iterator variable */ |
| int rc; /* Return code */ |
| char *zSql; /* SQL statement passed to declare_vtab() */ |
| char *zCols; /* List of user defined columns */ |
| |
| /* Create a list of user columns for the virtual table */ |
| zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); |
| for(i=1; zCols && i<p->nColumn; i++){ |
| zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); |
| } |
| |
| /* Create the whole "CREATE TABLE" statement to pass to SQLite */ |
| zSql = sqlite3_mprintf( |
| "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN)", zCols, p->zName |
| ); |
| if( !zCols || !zSql ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| rc = sqlite3_declare_vtab(p->db, zSql); |
| } |
| |
| sqlite3_free(zSql); |
| sqlite3_free(zCols); |
| *pRc = rc; |
| } |
| } |
| |
| /* |
| ** Create the backing store tables (%_content, %_segments and %_segdir) |
| ** required by the FTS3 table passed as the only argument. This is done |
| ** as part of the vtab xCreate() method. |
| ** |
| ** If the p->bHasDocsize boolean is true (indicating that this is an |
| ** FTS4 table, not an FTS3 table) then also create the %_docsize and |
| ** %_stat tables required by FTS4. |
| */ |
| static int fts3CreateTables(Fts3Table *p){ |
| int rc = SQLITE_OK; /* Return code */ |
| int i; /* Iterator variable */ |
| char *zContentCols; /* Columns of %_content table */ |
| sqlite3 *db = p->db; /* The database connection */ |
| |
| /* Create a list of user columns for the content table */ |
| zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY"); |
| for(i=0; zContentCols && i<p->nColumn; i++){ |
| char *z = p->azColumn[i]; |
| zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z); |
| } |
| if( zContentCols==0 ) rc = SQLITE_NOMEM; |
| |
| /* Create the content table */ |
| fts3DbExec(&rc, db, |
| "CREATE TABLE %Q.'%q_content'(%s)", |
| p->zDb, p->zName, zContentCols |
| ); |
| sqlite3_free(zContentCols); |
| /* Create other tables */ |
| fts3DbExec(&rc, db, |
| "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);", |
| p->zDb, p->zName |
| ); |
| fts3DbExec(&rc, db, |
| "CREATE TABLE %Q.'%q_segdir'(" |
| "level INTEGER," |
| "idx INTEGER," |
| "start_block INTEGER," |
| "leaves_end_block INTEGER," |
| "end_block INTEGER," |
| "root BLOB," |
| "PRIMARY KEY(level, idx)" |
| ");", |
| p->zDb, p->zName |
| ); |
| if( p->bHasDocsize ){ |
| fts3DbExec(&rc, db, |
| "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);", |
| p->zDb, p->zName |
| ); |
| } |
| if( p->bHasStat ){ |
| fts3DbExec(&rc, db, |
| "CREATE TABLE %Q.'%q_stat'(id INTEGER PRIMARY KEY, value BLOB);", |
| p->zDb, p->zName |
| ); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Store the current database page-size in bytes in p->nPgsz. |
| ** |
| ** If *pRc is non-zero when this function is called, it is a no-op. |
| ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc |
| ** before returning. |
| */ |
| static void fts3DatabasePageSize(int *pRc, Fts3Table *p){ |
| if( *pRc==SQLITE_OK ){ |
| int rc; /* Return code */ |
| char *zSql; /* SQL text "PRAGMA %Q.page_size" */ |
| sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */ |
| |
| zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb); |
| if( !zSql ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); |
| if( rc==SQLITE_OK ){ |
| sqlite3_step(pStmt); |
| p->nPgsz = sqlite3_column_int(pStmt, 0); |
| rc = sqlite3_finalize(pStmt); |
| }else if( rc==SQLITE_AUTH ){ |
| p->nPgsz = 1024; |
| rc = SQLITE_OK; |
| } |
| } |
| assert( p->nPgsz>0 || rc!=SQLITE_OK ); |
| sqlite3_free(zSql); |
| *pRc = rc; |
| } |
| } |
| |
| /* |
| ** "Special" FTS4 arguments are column specifications of the following form: |
| ** |
| ** <key> = <value> |
| ** |
| ** There may not be whitespace surrounding the "=" character. The <value> |
| ** term may be quoted, but the <key> may not. |
| */ |
| static int fts3IsSpecialColumn( |
| const char *z, |
| int *pnKey, |
| char **pzValue |
| ){ |
| char *zValue; |
| const char *zCsr = z; |
| |
| while( *zCsr!='=' ){ |
| if( *zCsr=='\0' ) return 0; |
| zCsr++; |
| } |
| |
| *pnKey = (int)(zCsr-z); |
| zValue = sqlite3_mprintf("%s", &zCsr[1]); |
| if( zValue ){ |
| sqlite3Fts3Dequote(zValue); |
| } |
| *pzValue = zValue; |
| return 1; |
| } |
| |
| /* |
| ** Append the output of a printf() style formatting to an existing string. |
| */ |
| static void fts3Appendf( |
| int *pRc, /* IN/OUT: Error code */ |
| char **pz, /* IN/OUT: Pointer to string buffer */ |
| const char *zFormat, /* Printf format string to append */ |
| ... /* Arguments for printf format string */ |
| ){ |
| if( *pRc==SQLITE_OK ){ |
| va_list ap; |
| char *z; |
| va_start(ap, zFormat); |
| z = sqlite3_vmprintf(zFormat, ap); |
| if( z && *pz ){ |
| char *z2 = sqlite3_mprintf("%s%s", *pz, z); |
| sqlite3_free(z); |
| z = z2; |
| } |
| if( z==0 ) *pRc = SQLITE_NOMEM; |
| sqlite3_free(*pz); |
| *pz = z; |
| } |
| } |
| |
| /* |
| ** Return a copy of input string zInput enclosed in double-quotes (") and |
| ** with all double quote characters escaped. For example: |
| ** |
| ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" |
| ** |
| ** The pointer returned points to memory obtained from sqlite3_malloc(). It |
| ** is the callers responsibility to call sqlite3_free() to release this |
| ** memory. |
| */ |
| static char *fts3QuoteId(char const *zInput){ |
| int nRet; |
| char *zRet; |
| nRet = 2 + strlen(zInput)*2 + 1; |
| zRet = sqlite3_malloc(nRet); |
| if( zRet ){ |
| int i; |
| char *z = zRet; |
| *(z++) = '"'; |
| for(i=0; zInput[i]; i++){ |
| if( zInput[i]=='"' ) *(z++) = '"'; |
| *(z++) = zInput[i]; |
| } |
| *(z++) = '"'; |
| *(z++) = '\0'; |
| } |
| return zRet; |
| } |
| |
| /* |
| ** Return a list of comma separated SQL expressions that could be used |
| ** in a SELECT statement such as the following: |
| ** |
| ** SELECT <list of expressions> FROM %_content AS x ... |
| ** |
| ** to return the docid, followed by each column of text data in order |
| ** from left to write. If parameter zFunc is not NULL, then instead of |
| ** being returned directly each column of text data is passed to an SQL |
| ** function named zFunc first. For example, if zFunc is "unzip" and the |
| ** table has the three user-defined columns "a", "b", and "c", the following |
| ** string is returned: |
| ** |
| ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')" |
| ** |
| ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It |
| ** is the responsibility of the caller to eventually free it. |
| ** |
| ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and |
| ** a NULL pointer is returned). Otherwise, if an OOM error is encountered |
| ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If |
| ** no error occurs, *pRc is left unmodified. |
| */ |
| static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ |
| char *zRet = 0; |
| char *zFree = 0; |
| char *zFunction; |
| int i; |
| |
| if( !zFunc ){ |
| zFunction = ""; |
| }else{ |
| zFree = zFunction = fts3QuoteId(zFunc); |
| } |
| fts3Appendf(pRc, &zRet, "docid"); |
| for(i=0; i<p->nColumn; i++){ |
| fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); |
| } |
| sqlite3_free(zFree); |
| return zRet; |
| } |
| |
| /* |
| ** Return a list of N comma separated question marks, where N is the number |
| ** of columns in the %_content table (one for the docid plus one for each |
| ** user-defined text column). |
| ** |
| ** If argument zFunc is not NULL, then all but the first question mark |
| ** is preceded by zFunc and an open bracket, and followed by a closed |
| ** bracket. For example, if zFunc is "zip" and the FTS3 table has three |
| ** user-defined text columns, the following string is returned: |
| ** |
| ** "?, zip(?), zip(?), zip(?)" |
| ** |
| ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It |
| ** is the responsibility of the caller to eventually free it. |
| ** |
| ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and |
| ** a NULL pointer is returned). Otherwise, if an OOM error is encountered |
| ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If |
| ** no error occurs, *pRc is left unmodified. |
| */ |
| static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ |
| char *zRet = 0; |
| char *zFree = 0; |
| char *zFunction; |
| int i; |
| |
| if( !zFunc ){ |
| zFunction = ""; |
| }else{ |
| zFree = zFunction = fts3QuoteId(zFunc); |
| } |
| fts3Appendf(pRc, &zRet, "?"); |
| for(i=0; i<p->nColumn; i++){ |
| fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); |
| } |
| sqlite3_free(zFree); |
| return zRet; |
| } |
| |
| /* |
| ** This function is the implementation of both the xConnect and xCreate |
| ** methods of the FTS3 virtual table. |
| ** |
| ** The argv[] array contains the following: |
| ** |
| ** argv[0] -> module name ("fts3" or "fts4") |
| ** argv[1] -> database name |
| ** argv[2] -> table name |
| ** argv[...] -> "column name" and other module argument fields. |
| */ |
| static int fts3InitVtab( |
| int isCreate, /* True for xCreate, false for xConnect */ |
| sqlite3 *db, /* The SQLite database connection */ |
| void *pAux, /* Hash table containing tokenizers */ |
| int argc, /* Number of elements in argv array */ |
| const char * const *argv, /* xCreate/xConnect argument array */ |
| sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ |
| char **pzErr /* Write any error message here */ |
| ){ |
| Fts3Hash *pHash = (Fts3Hash *)pAux; |
| Fts3Table *p = 0; /* Pointer to allocated vtab */ |
| int rc = SQLITE_OK; /* Return code */ |
| int i; /* Iterator variable */ |
| int nByte; /* Size of allocation used for *p */ |
| int iCol; /* Column index */ |
| int nString = 0; /* Bytes required to hold all column names */ |
| int nCol = 0; /* Number of columns in the FTS table */ |
| char *zCsr; /* Space for holding column names */ |
| int nDb; /* Bytes required to hold database name */ |
| int nName; /* Bytes required to hold table name */ |
| int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ |
| int bNoDocsize = 0; /* True to omit %_docsize table */ |
| const char **aCol; /* Array of column names */ |
| sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ |
| |
| char *zCompress = 0; |
| char *zUncompress = 0; |
| |
| assert( strlen(argv[0])==4 ); |
| assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) |
| || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) |
| ); |
| |
| nDb = (int)strlen(argv[1]) + 1; |
| nName = (int)strlen(argv[2]) + 1; |
| |
| aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) ); |
| if( !aCol ) return SQLITE_NOMEM; |
| memset((void *)aCol, 0, sizeof(const char *) * (argc-2)); |
| |
| /* Loop through all of the arguments passed by the user to the FTS3/4 |
| ** module (i.e. all the column names and special arguments). This loop |
| ** does the following: |
| ** |
| ** + Figures out the number of columns the FTSX table will have, and |
| ** the number of bytes of space that must be allocated to store copies |
| ** of the column names. |
| ** |
| ** + If there is a tokenizer specification included in the arguments, |
| ** initializes the tokenizer pTokenizer. |
| */ |
| for(i=3; rc==SQLITE_OK && i<argc; i++){ |
| char const *z = argv[i]; |
| int nKey; |
| char *zVal; |
| |
| /* Check if this is a tokenizer specification */ |
| if( !pTokenizer |
| && strlen(z)>8 |
| && 0==sqlite3_strnicmp(z, "tokenize", 8) |
| && 0==sqlite3Fts3IsIdChar(z[8]) |
| ){ |
| rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr); |
| } |
| |
| /* Check if it is an FTS4 special argument. */ |
| else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){ |
| if( !zVal ){ |
| rc = SQLITE_NOMEM; |
| goto fts3_init_out; |
| } |
| if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){ |
| if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){ |
| bNoDocsize = 1; |
| }else{ |
| *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal); |
| rc = SQLITE_ERROR; |
| } |
| }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){ |
| zCompress = zVal; |
| zVal = 0; |
| }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){ |
| zUncompress = zVal; |
| zVal = 0; |
| }else{ |
| *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z); |
| rc = SQLITE_ERROR; |
| } |
| sqlite3_free(zVal); |
| } |
| |
| /* Otherwise, the argument is a column name. */ |
| else { |
| nString += (int)(strlen(z) + 1); |
| aCol[nCol++] = z; |
| } |
| } |
| if( rc!=SQLITE_OK ) goto fts3_init_out; |
| |
| if( nCol==0 ){ |
| assert( nString==0 ); |
| aCol[0] = "content"; |
| nString = 8; |
| nCol = 1; |
| } |
| |
| if( pTokenizer==0 ){ |
| rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr); |
| if( rc!=SQLITE_OK ) goto fts3_init_out; |
| } |
| assert( pTokenizer ); |
| |
| |
| /* Allocate and populate the Fts3Table structure. */ |
| nByte = sizeof(Fts3Table) + /* Fts3Table */ |
| nCol * sizeof(char *) + /* azColumn */ |
| nName + /* zName */ |
| nDb + /* zDb */ |
| nString; /* Space for azColumn strings */ |
| p = (Fts3Table*)sqlite3_malloc(nByte); |
| if( p==0 ){ |
| rc = SQLITE_NOMEM; |
| goto fts3_init_out; |
| } |
| memset(p, 0, nByte); |
| p->db = db; |
| p->nColumn = nCol; |
| p->nPendingData = 0; |
| p->azColumn = (char **)&p[1]; |
| p->pTokenizer = pTokenizer; |
| p->nNodeSize = 1000; |
| p->nMaxPendingData = FTS3_MAX_PENDING_DATA; |
| p->bHasDocsize = (isFts4 && bNoDocsize==0); |
| p->bHasStat = isFts4; |
| fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1); |
| |
| /* Fill in the zName and zDb fields of the vtab structure. */ |
| zCsr = (char *)&p->azColumn[nCol]; |
| p->zName = zCsr; |
| memcpy(zCsr, argv[2], nName); |
| zCsr += nName; |
| p->zDb = zCsr; |
| memcpy(zCsr, argv[1], nDb); |
| zCsr += nDb; |
| |
| /* Fill in the azColumn array */ |
| for(iCol=0; iCol<nCol; iCol++){ |
| char *z; |
| int n; |
| z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n); |
| memcpy(zCsr, z, n); |
| zCsr[n] = '\0'; |
| sqlite3Fts3Dequote(zCsr); |
| p->azColumn[iCol] = zCsr; |
| zCsr += n+1; |
| assert( zCsr <= &((char *)p)[nByte] ); |
| } |
| |
| if( (zCompress==0)!=(zUncompress==0) ){ |
| char const *zMiss = (zCompress==0 ? "compress" : "uncompress"); |
| rc = SQLITE_ERROR; |
| *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss); |
| } |
| p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc); |
| p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); |
| if( rc!=SQLITE_OK ) goto fts3_init_out; |
| |
| /* If this is an xCreate call, create the underlying tables in the |
| ** database. TODO: For xConnect(), it could verify that said tables exist. |
| */ |
| if( isCreate ){ |
| rc = fts3CreateTables(p); |
| } |
| |
| /* Figure out the page-size for the database. This is required in order to |
| ** estimate the cost of loading large doclists from the database (see |
| ** function sqlite3Fts3SegReaderCost() for details). |
| */ |
| fts3DatabasePageSize(&rc, p); |
| |
| /* Declare the table schema to SQLite. */ |
| fts3DeclareVtab(&rc, p); |
| |
| fts3_init_out: |
| sqlite3_free(zCompress); |
| sqlite3_free(zUncompress); |
| sqlite3_free((void *)aCol); |
| if( rc!=SQLITE_OK ){ |
| if( p ){ |
| fts3DisconnectMethod((sqlite3_vtab *)p); |
| }else if( pTokenizer ){ |
| pTokenizer->pModule->xDestroy(pTokenizer); |
| } |
| }else{ |
| *ppVTab = &p->base; |
| } |
| return rc; |
| } |
| |
| /* |
| ** The xConnect() and xCreate() methods for the virtual table. All the |
| ** work is done in function fts3InitVtab(). |
| */ |
| static int fts3ConnectMethod( |
| sqlite3 *db, /* Database connection */ |
| void *pAux, /* Pointer to tokenizer hash table */ |
| int argc, /* Number of elements in argv array */ |
| const char * const *argv, /* xCreate/xConnect argument array */ |
| sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ |
| char **pzErr /* OUT: sqlite3_malloc'd error message */ |
| ){ |
| return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr); |
| } |
| static int fts3CreateMethod( |
| sqlite3 *db, /* Database connection */ |
| void *pAux, /* Pointer to tokenizer hash table */ |
| int argc, /* Number of elements in argv array */ |
| const char * const *argv, /* xCreate/xConnect argument array */ |
| sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ |
| char **pzErr /* OUT: sqlite3_malloc'd error message */ |
| ){ |
| return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr); |
| } |
| |
| /* |
| ** Implementation of the xBestIndex method for FTS3 tables. There |
| ** are three possible strategies, in order of preference: |
| ** |
| ** 1. Direct lookup by rowid or docid. |
| ** 2. Full-text search using a MATCH operator on a non-docid column. |
| ** 3. Linear scan of %_content table. |
| */ |
| static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |
| Fts3Table *p = (Fts3Table *)pVTab; |
| int i; /* Iterator variable */ |
| int iCons = -1; /* Index of constraint to use */ |
| |
| /* By default use a full table scan. This is an expensive option, |
| ** so search through the constraints to see if a more efficient |
| ** strategy is possible. |
| */ |
| pInfo->idxNum = FTS3_FULLSCAN_SEARCH; |
| pInfo->estimatedCost = 500000; |
| for(i=0; i<pInfo->nConstraint; i++){ |
| struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; |
| if( pCons->usable==0 ) continue; |
| |
| /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ |
| if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ |
| && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 ) |
| ){ |
| pInfo->idxNum = FTS3_DOCID_SEARCH; |
| pInfo->estimatedCost = 1.0; |
| iCons = i; |
| } |
| |
| /* A MATCH constraint. Use a full-text search. |
| ** |
| ** If there is more than one MATCH constraint available, use the first |
| ** one encountered. If there is both a MATCH constraint and a direct |
| ** rowid/docid lookup, prefer the MATCH strategy. This is done even |
| ** though the rowid/docid lookup is faster than a MATCH query, selecting |
| ** it would lead to an "unable to use function MATCH in the requested |
| ** context" error. |
| */ |
| if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH |
| && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn |
| ){ |
| pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn; |
| pInfo->estimatedCost = 2.0; |
| iCons = i; |
| break; |
| } |
| } |
| |
| if( iCons>=0 ){ |
| pInfo->aConstraintUsage[iCons].argvIndex = 1; |
| pInfo->aConstraintUsage[iCons].omit = 1; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Implementation of xOpen method. |
| */ |
| static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ |
| sqlite3_vtab_cursor *pCsr; /* Allocated cursor */ |
| |
| UNUSED_PARAMETER(pVTab); |
| |
| /* Allocate a buffer large enough for an Fts3Cursor structure. If the |
| ** allocation succeeds, zero it and return SQLITE_OK. Otherwise, |
| ** if the allocation fails, return SQLITE_NOMEM. |
| */ |
| *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor)); |
| if( !pCsr ){ |
| return SQLITE_NOMEM; |
| } |
| memset(pCsr, 0, sizeof(Fts3Cursor)); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Close the cursor. For additional information see the documentation |
| ** on the xClose method of the virtual table interface. |
| */ |
| static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ |
| Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
| assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); |
| sqlite3_finalize(pCsr->pStmt); |
| sqlite3Fts3ExprFree(pCsr->pExpr); |
| sqlite3Fts3FreeDeferredTokens(pCsr); |
| sqlite3_free(pCsr->aDoclist); |
| sqlite3_free(pCsr->aMatchinfo); |
| sqlite3_free(pCsr); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Position the pCsr->pStmt statement so that it is on the row |
| ** of the %_content table that contains the last match. Return |
| ** SQLITE_OK on success. |
| */ |
| static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ |
| if( pCsr->isRequireSeek ){ |
| pCsr->isRequireSeek = 0; |
| sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId); |
| if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){ |
| return SQLITE_OK; |
| }else{ |
| int rc = sqlite3_reset(pCsr->pStmt); |
| if( rc==SQLITE_OK ){ |
| /* If no row was found and no error has occured, then the %_content |
| ** table is missing a row that is present in the full-text index. |
| ** The data structures are corrupt. |
| */ |
| rc = SQLITE_CORRUPT; |
| } |
| pCsr->isEof = 1; |
| if( pContext ){ |
| sqlite3_result_error_code(pContext, rc); |
| } |
| return rc; |
| } |
| }else{ |
| return SQLITE_OK; |
| } |
| } |
| |
| /* |
| ** This function is used to process a single interior node when searching |
| ** a b-tree for a term or term prefix. The node data is passed to this |
| ** function via the zNode/nNode parameters. The term to search for is |
| ** passed in zTerm/nTerm. |
| ** |
| ** If piFirst is not NULL, then this function sets *piFirst to the blockid |
| ** of the child node that heads the sub-tree that may contain the term. |
| ** |
| ** If piLast is not NULL, then *piLast is set to the right-most child node |
| ** that heads a sub-tree that may contain a term for which zTerm/nTerm is |
| ** a prefix. |
| ** |
| ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. |
| */ |
| static int fts3ScanInteriorNode( |
| const char *zTerm, /* Term to select leaves for */ |
| int nTerm, /* Size of term zTerm in bytes */ |
| const char *zNode, /* Buffer containing segment interior node */ |
| int nNode, /* Size of buffer at zNode */ |
| sqlite3_int64 *piFirst, /* OUT: Selected child node */ |
| sqlite3_int64 *piLast /* OUT: Selected child node */ |
| ){ |
| int rc = SQLITE_OK; /* Return code */ |
| const char *zCsr = zNode; /* Cursor to iterate through node */ |
| const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ |
| char *zBuffer = 0; /* Buffer to load terms into */ |
| int nAlloc = 0; /* Size of allocated buffer */ |
| int isFirstTerm = 1; /* True when processing first term on page */ |
| sqlite3_int64 iChild; /* Block id of child node to descend to */ |
| |
| /* Skip over the 'height' varint that occurs at the start of every |
| ** interior node. Then load the blockid of the left-child of the b-tree |
| ** node into variable iChild. |
| ** |
| ** Even if the data structure on disk is corrupted, this (reading two |
| ** varints from the buffer) does not risk an overread. If zNode is a |
| ** root node, then the buffer comes from a SELECT statement. SQLite does |
| ** not make this guarantee explicitly, but in practice there are always |
| ** either more than 20 bytes of allocated space following the nNode bytes of |
| ** contents, or two zero bytes. Or, if the node is read from the %_segments |
| ** table, then there are always 20 bytes of zeroed padding following the |
| ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details). |
| */ |
| zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); |
| zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); |
| if( zCsr>zEnd ){ |
| return SQLITE_CORRUPT; |
| } |
| |
| while( zCsr<zEnd && (piFirst || piLast) ){ |
| int cmp; /* memcmp() result */ |
| int nSuffix; /* Size of term suffix */ |
| int nPrefix = 0; /* Size of term prefix */ |
| int nBuffer; /* Total term size */ |
| |
| /* Load the next term on the node into zBuffer. Use realloc() to expand |
| ** the size of zBuffer if required. */ |
| if( !isFirstTerm ){ |
| zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix); |
| } |
| isFirstTerm = 0; |
| zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix); |
| |
| /* NOTE(shess): Previous code checked for negative nPrefix and |
| ** nSuffix and suffix overrunning zEnd. Additionally corrupt if |
| ** the prefix is longer than the previous term, or if the suffix |
| ** causes overflow. |
| */ |
| if( nPrefix<0 || nSuffix<0 /* || nPrefix>nBuffer */ |
| || &zCsr[nSuffix]<zCsr || &zCsr[nSuffix]>zEnd ){ |
| rc = SQLITE_CORRUPT; |
| goto finish_scan; |
| } |
| if( nPrefix+nSuffix>nAlloc ){ |
| char *zNew; |
| nAlloc = (nPrefix+nSuffix) * 2; |
| zNew = (char *)sqlite3_realloc(zBuffer, nAlloc); |
| if( !zNew ){ |
| rc = SQLITE_NOMEM; |
| goto finish_scan; |
| } |
| zBuffer = zNew; |
| } |
| memcpy(&zBuffer[nPrefix], zCsr, nSuffix); |
| nBuffer = nPrefix + nSuffix; |
| zCsr += nSuffix; |
| |
| /* Compare the term we are searching for with the term just loaded from |
| ** the interior node. If the specified term is greater than or equal |
| ** to the term from the interior node, then all terms on the sub-tree |
| ** headed by node iChild are smaller than zTerm. No need to search |
| ** iChild. |
| ** |
| ** If the interior node term is larger than the specified term, then |
| ** the tree headed by iChild may contain the specified term. |
| */ |
| cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); |
| if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ |
| *piFirst = iChild; |
| piFirst = 0; |
| } |
| |
| if( piLast && cmp<0 ){ |
| *piLast = iChild; |
| piLast = 0; |
| } |
| |
| iChild++; |
| }; |
| |
| if( piFirst ) *piFirst = iChild; |
| if( piLast ) *piLast = iChild; |
| |
| finish_scan: |
| sqlite3_free(zBuffer); |
| return rc; |
| } |
| |
| |
| /* |
| ** The buffer pointed to by argument zNode (size nNode bytes) contains an |
| ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes) |
| ** contains a term. This function searches the sub-tree headed by the zNode |
| ** node for the range of leaf nodes that may contain the specified term |
| ** or terms for which the specified term is a prefix. |
| ** |
| ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the |
| ** left-most leaf node in the tree that may contain the specified term. |
| ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the |
| ** right-most leaf node that may contain a term for which the specified |
| ** term is a prefix. |
| ** |
| ** It is possible that the range of returned leaf nodes does not contain |
| ** the specified term or any terms for which it is a prefix. However, if the |
| ** segment does contain any such terms, they are stored within the identified |
| ** range. Because this function only inspects interior segment nodes (and |
| ** never loads leaf nodes into memory), it is not possible to be sure. |
| ** |
| ** If an error occurs, an error code other than SQLITE_OK is returned. |
| */ |
| static int fts3SelectLeaf( |
| Fts3Table *p, /* Virtual table handle */ |
| const char *zTerm, /* Term to select leaves for */ |
| int nTerm, /* Size of term zTerm in bytes */ |
| const char *zNode, /* Buffer containing segment interior node */ |
| int nNode, /* Size of buffer at zNode */ |
| sqlite3_int64 *piLeaf, /* Selected leaf node */ |
| sqlite3_int64 *piLeaf2 /* Selected leaf node */ |
| ){ |
| int rc; /* Return code */ |
| int iHeight; /* Height of this node in tree */ |
| |
| assert( piLeaf || piLeaf2 ); |
| |
| sqlite3Fts3GetVarint32(zNode, &iHeight); |
| rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); |
| assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) ); |
| |
| if( rc==SQLITE_OK && iHeight>1 ){ |
| char *zBlob = 0; /* Blob read from %_segments table */ |
| int nBlob; /* Size of zBlob in bytes */ |
| |
| if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ |
| rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob); |
| if( rc==SQLITE_OK ){ |
| rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); |
| } |
| sqlite3_free(zBlob); |
| piLeaf = 0; |
| zBlob = 0; |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); |
| } |
| sqlite3_free(zBlob); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** This function is used to create delta-encoded serialized lists of FTS3 |
| ** varints. Each call to this function appends a single varint to a list. |
| */ |
| static void fts3PutDeltaVarint( |
| char **pp, /* IN/OUT: Output pointer */ |
| sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ |
| sqlite3_int64 iVal /* Write this value to the list */ |
| ){ |
| assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); |
| *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); |
| *piPrev = iVal; |
| } |
| |
| /* |
| ** When this function is called, *ppPoslist is assumed to point to the |
| ** start of a position-list. After it returns, *ppPoslist points to the |
| ** first byte after the position-list. |
| ** |
| ** A position list is list of positions (delta encoded) and columns for |
| ** a single document record of a doclist. So, in other words, this |
| ** routine advances *ppPoslist so that it points to the next docid in |
| ** the doclist, or to the first byte past the end of the doclist. |
| ** |
| ** If pp is not NULL, then the contents of the position list are copied |
| ** to *pp. *pp is set to point to the first byte past the last byte copied |
| ** before this function returns. |
| */ |
| static void fts3PoslistCopy(char **pp, char **ppPoslist){ |
| char *pEnd = *ppPoslist; |
| char c = 0; |
| |
| /* The end of a position list is marked by a zero encoded as an FTS3 |
| ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by |
| ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail |
| ** of some other, multi-byte, value. |
| ** |
| ** The following while-loop moves pEnd to point to the first byte that is not |
| ** immediately preceded by a byte with the 0x80 bit set. Then increments |
| ** pEnd once more so that it points to the byte immediately following the |
| ** last byte in the position-list. |
| */ |
| while( *pEnd | c ){ |
| c = *pEnd++ & 0x80; |
| testcase( c!=0 && (*pEnd)==0 ); |
| } |
| pEnd++; /* Advance past the POS_END terminator byte */ |
| |
| if( pp ){ |
| int n = (int)(pEnd - *ppPoslist); |
| char *p = *pp; |
| memcpy(p, *ppPoslist, n); |
| p += n; |
| *pp = p; |
| } |
| *ppPoslist = pEnd; |
| } |
| |
| /* |
| ** When this function is called, *ppPoslist is assumed to point to the |
| ** start of a column-list. After it returns, *ppPoslist points to the |
| ** to the terminator (POS_COLUMN or POS_END) byte of the column-list. |
| ** |
| ** A column-list is list of delta-encoded positions for a single column |
| ** within a single document within a doclist. |
| ** |
| ** The column-list is terminated either by a POS_COLUMN varint (1) or |
| ** a POS_END varint (0). This routine leaves *ppPoslist pointing to |
| ** the POS_COLUMN or POS_END that terminates the column-list. |
| ** |
| ** If pp is not NULL, then the contents of the column-list are copied |
| ** to *pp. *pp is set to point to the first byte past the last byte copied |
| ** before this function returns. The POS_COLUMN or POS_END terminator |
| ** is not copied into *pp. |
| */ |
| static void fts3ColumnlistCopy(char **pp, char **ppPoslist){ |
| char *pEnd = *ppPoslist; |
| char c = 0; |
| |
| /* A column-list is terminated by either a 0x01 or 0x00 byte that is |
| ** not part of a multi-byte varint. |
| */ |
| while( 0xFE & (*pEnd | c) ){ |
| c = *pEnd++ & 0x80; |
| testcase( c!=0 && ((*pEnd)&0xfe)==0 ); |
| } |
| if( pp ){ |
| int n = (int)(pEnd - *ppPoslist); |
| char *p = *pp; |
| memcpy(p, *ppPoslist, n); |
| p += n; |
| *pp = p; |
| } |
| *ppPoslist = pEnd; |
| } |
| |
| /* |
| ** Value used to signify the end of an position-list. This is safe because |
| ** it is not possible to have a document with 2^31 terms. |
| */ |
| #define POSITION_LIST_END 0x7fffffff |
| |
| /* |
| ** This function is used to help parse position-lists. When this function is |
| ** called, *pp may point to the start of the next varint in the position-list |
| ** being parsed, or it may point to 1 byte past the end of the position-list |
| ** (in which case **pp will be a terminator bytes POS_END (0) or |
| ** (1)). |
| ** |
| ** If *pp points past the end of the current position-list, set *pi to |
| ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp, |
| ** increment the current value of *pi by the value read, and set *pp to |
| ** point to the next value before returning. |
| ** |
| ** Before calling this routine *pi must be initialized to the value of |
| ** the previous position, or zero if we are reading the first position |
| ** in the position-list. Because positions are delta-encoded, the value |
| ** of the previous position is needed in order to compute the value of |
| ** the next position. |
| */ |
| static void fts3ReadNextPos( |
| char **pp, /* IN/OUT: Pointer into position-list buffer */ |
| sqlite3_int64 *pi /* IN/OUT: Value read from position-list */ |
| ){ |
| if( (**pp)&0xFE ){ |
| fts3GetDeltaVarint(pp, pi); |
| *pi -= 2; |
| }else{ |
| *pi = POSITION_LIST_END; |
| } |
| } |
| |
| /* |
| ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by |
| ** the value of iCol encoded as a varint to *pp. This will start a new |
| ** column list. |
| ** |
| ** Set *pp to point to the byte just after the last byte written before |
| ** returning (do not modify it if iCol==0). Return the total number of bytes |
| ** written (0 if iCol==0). |
| */ |
| static int fts3PutColNumber(char **pp, int iCol){ |
| int n = 0; /* Number of bytes written */ |
| if( iCol ){ |
| char *p = *pp; /* Output pointer */ |
| n = 1 + sqlite3Fts3PutVarint(&p[1], iCol); |
| *p = 0x01; |
| *pp = &p[n]; |
| } |
| return n; |
| } |
| |
| /* |
| ** Compute the union of two position lists. The output written |
| ** into *pp contains all positions of both *pp1 and *pp2 in sorted |
| ** order and with any duplicates removed. All pointers are |
| ** updated appropriately. The caller is responsible for insuring |
| ** that there is enough space in *pp to hold the complete output. |
| */ |
| static void fts3PoslistMerge( |
| char **pp, /* Output buffer */ |
| char **pp1, /* Left input list */ |
| char **pp2 /* Right input list */ |
| ){ |
| char *p = *pp; |
| char *p1 = *pp1; |
| char *p2 = *pp2; |
| |
| while( *p1 || *p2 ){ |
| int iCol1; /* The current column index in pp1 */ |
| int iCol2; /* The current column index in pp2 */ |
| |
| if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1); |
| else if( *p1==POS_END ) iCol1 = POSITION_LIST_END; |
| else iCol1 = 0; |
| |
| if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2); |
| else if( *p2==POS_END ) iCol2 = POSITION_LIST_END; |
| else iCol2 = 0; |
| |
| if( iCol1==iCol2 ){ |
| sqlite3_int64 i1 = 0; /* Last position from pp1 */ |
| sqlite3_int64 i2 = 0; /* Last position from pp2 */ |
| sqlite3_int64 iPrev = 0; |
| int n = fts3PutColNumber(&p, iCol1); |
| p1 += n; |
| p2 += n; |
| |
| /* At this point, both p1 and p2 point to the start of column-lists |
| ** for the same column (the column with index iCol1 and iCol2). |
| ** A column-list is a list of non-negative delta-encoded varints, each |
| ** incremented by 2 before being stored. Each list is terminated by a |
| ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists |
| ** and writes the results to buffer p. p is left pointing to the byte |
| ** after the list written. No terminator (POS_END or POS_COLUMN) is |
| ** written to the output. |
| */ |
| fts3GetDeltaVarint(&p1, &i1); |
| fts3GetDeltaVarint(&p2, &i2); |
| do { |
| fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2); |
| iPrev -= 2; |
| if( i1==i2 ){ |
| fts3ReadNextPos(&p1, &i1); |
| fts3ReadNextPos(&p2, &i2); |
| }else if( i1<i2 ){ |
| fts3ReadNextPos(&p1, &i1); |
| }else{ |
| fts3ReadNextPos(&p2, &i2); |
| } |
| }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END ); |
| }else if( iCol1<iCol2 ){ |
| p1 += fts3PutColNumber(&p, iCol1); |
| fts3ColumnlistCopy(&p, &p1); |
| }else{ |
| p2 += fts3PutColNumber(&p, iCol2); |
| fts3ColumnlistCopy(&p, &p2); |
| } |
| } |
| |
| *p++ = POS_END; |
| *pp = p; |
| *pp1 = p1 + 1; |
| *pp2 = p2 + 1; |
| } |
| |
| /* |
| ** nToken==1 searches for adjacent positions. |
| ** |
| ** This function is used to merge two position lists into one. When it is |
| ** called, *pp1 and *pp2 must both point to position lists. A position-list is |
| ** the part of a doclist that follows each document id. For example, if a row |
| ** contains: |
| ** |
| ** 'a b c'|'x y z'|'a b b a' |
| ** |
| ** Then the position list for this row for token 'b' would consist of: |
| ** |
| ** 0x02 0x01 0x02 0x03 0x03 0x00 |
| ** |
| ** When this function returns, both *pp1 and *pp2 are left pointing to the |
| ** byte following the 0x00 terminator of their respective position lists. |
| ** |
| ** If isSaveLeft is 0, an entry is added to the output position list for |
| ** each position in *pp2 for which there exists one or more positions in |
| ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. |
| ** when the *pp1 token appears before the *pp2 token, but not more than nToken |
| ** slots before it. |
| */ |
| static int fts3PoslistPhraseMerge( |
| char **pp, /* IN/OUT: Preallocated output buffer */ |
| int nToken, /* Maximum difference in token positions */ |
| int isSaveLeft, /* Save the left position */ |
| int isExact, /* If *pp1 is exactly nTokens before *pp2 */ |
| char **pp1, /* IN/OUT: Left input list */ |
| char **pp2 /* IN/OUT: Right input list */ |
| ){ |
| char *p = (pp ? *pp : 0); |
| char *p1 = *pp1; |
| char *p2 = *pp2; |
| int iCol1 = 0; |
| int iCol2 = 0; |
| |
| /* Never set both isSaveLeft and isExact for the same invocation. */ |
| assert( isSaveLeft==0 || isExact==0 ); |
| |
| assert( *p1!=0 && *p2!=0 ); |
| if( *p1==POS_COLUMN ){ |
| p1++; |
| p1 += sqlite3Fts3GetVarint32(p1, &iCol1); |
| } |
| if( *p2==POS_COLUMN ){ |
| p2++; |
| p2 += sqlite3Fts3GetVarint32(p2, &iCol2); |
| } |
| |
| while( 1 ){ |
| if( iCol1==iCol2 ){ |
| char *pSave = p; |
| sqlite3_int64 iPrev = 0; |
| sqlite3_int64 iPos1 = 0; |
| sqlite3_int64 iPos2 = 0; |
| |
| if( pp && iCol1 ){ |
| *p++ = POS_COLUMN; |
| p += sqlite3Fts3PutVarint(p, iCol1); |
| } |
| |
| assert( *p1!=POS_END && *p1!=POS_COLUMN ); |
| assert( *p2!=POS_END && *p2!=POS_COLUMN ); |
| fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; |
| fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; |
| |
| while( 1 ){ |
| if( iPos2==iPos1+nToken |
| || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) |
| ){ |
| sqlite3_int64 iSave; |
| if( !pp ){ |
| fts3PoslistCopy(0, &p2); |
| fts3PoslistCopy(0, &p1); |
| *pp1 = p1; |
| *pp2 = p2; |
| return 1; |
| } |
| iSave = isSaveLeft ? iPos1 : iPos2; |
| fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2; |
| pSave = 0; |
| } |
| if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){ |
| if( (*p2&0xFE)==0 ) break; |
| fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; |
| }else{ |
| if( (*p1&0xFE)==0 ) break; |
| fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; |
| } |
| } |
| |
| if( pSave ){ |
| assert( pp && p ); |
| p = pSave; |
| } |
| |
| fts3ColumnlistCopy(0, &p1); |
| fts3ColumnlistCopy(0, &p2); |
| assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 ); |
| if( 0==*p1 || 0==*p2 ) break; |
| |
| p1++; |
| p1 += sqlite3Fts3GetVarint32(p1, &iCol1); |
| p2++; |
| p2 += sqlite3Fts3GetVarint32(p2, &iCol2); |
| } |
| |
| /* Advance pointer p1 or p2 (whichever corresponds to the smaller of |
| ** iCol1 and iCol2) so that it points to either the 0x00 that marks the |
| ** end of the position list, or the 0x01 that precedes the next |
| ** column-number in the position list. |
| */ |
| else if( iCol1<iCol2 ){ |
| fts3ColumnlistCopy(0, &p1); |
| if( 0==*p1 ) break; |
| p1++; |
| p1 += sqlite3Fts3GetVarint32(p1, &iCol1); |
| }else{ |
| fts3ColumnlistCopy(0, &p2); |
| if( 0==*p2 ) break; |
| p2++; |
| p2 += sqlite3Fts3GetVarint32(p2, &iCol2); |
| } |
| } |
| |
| fts3PoslistCopy(0, &p2); |
| fts3PoslistCopy(0, &p1); |
| *pp1 = p1; |
| *pp2 = p2; |
| if( !pp || *pp==p ){ |
| return 0; |
| } |
| *p++ = 0x00; |
| *pp = p; |
| return 1; |
| } |
| |
| /* |
| ** Merge two position-lists as required by the NEAR operator. |
| */ |
| static int fts3PoslistNearMerge( |
| char **pp, /* Output buffer */ |
| char *aTmp, /* Temporary buffer space */ |
| int nRight, /* Maximum difference in token positions */ |
| int nLeft, /* Maximum difference in token positions */ |
| char **pp1, /* IN/OUT: Left input list */ |
| char **pp2 /* IN/OUT: Right input list */ |
| ){ |
| char *p1 = *pp1; |
| char *p2 = *pp2; |
| |
| if( !pp ){ |
| if( fts3PoslistPhraseMerge(0, nRight, 0, 0, pp1, pp2) ) return 1; |
| *pp1 = p1; |
| *pp2 = p2; |
| return fts3PoslistPhraseMerge(0, nLeft, 0, 0, pp2, pp1); |
| }else{ |
| char *pTmp1 = aTmp; |
| char *pTmp2; |
| char *aTmp2; |
| int res = 1; |
| |
| fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2); |
| aTmp2 = pTmp2 = pTmp1; |
| *pp1 = p1; |
| *pp2 = p2; |
| fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1); |
| if( pTmp1!=aTmp && pTmp2!=aTmp2 ){ |
| fts3PoslistMerge(pp, &aTmp, &aTmp2); |
| }else if( pTmp1!=aTmp ){ |
| fts3PoslistCopy(pp, &aTmp); |
| }else if( pTmp2!=aTmp2 ){ |
| fts3PoslistCopy(pp, &aTmp2); |
| }else{ |
| res = 0; |
| } |
| |
| return res; |
| } |
| } |
| |
| /* |
| ** Values that may be used as the first parameter to fts3DoclistMerge(). |
| */ |
| #define MERGE_NOT 2 /* D + D -> D */ |
| #define MERGE_AND 3 /* D + D -> D */ |
| #define MERGE_OR 4 /* D + D -> D */ |
| #define MERGE_POS_OR 5 /* P + P -> P */ |
| #define MERGE_PHRASE 6 /* P + P -> D */ |
| #define MERGE_POS_PHRASE 7 /* P + P -> P */ |
| #define MERGE_NEAR 8 /* P + P -> D */ |
| #define MERGE_POS_NEAR 9 /* P + P -> P */ |
| |
| /* |
| ** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2 |
| ** (size n2 bytes). The output is written to pre-allocated buffer aBuffer, |
| ** which is guaranteed to be large enough to hold the results. The number |
| ** of bytes written to aBuffer is stored in *pnBuffer before returning. |
| ** |
| ** If successful, SQLITE_OK is returned. Otherwise, if a malloc error |
| ** occurs while allocating a temporary buffer as part of the merge operation, |
| ** SQLITE_NOMEM is returned. |
| */ |
| static int fts3DoclistMerge( |
| int mergetype, /* One of the MERGE_XXX constants */ |
| int nParam1, /* Used by MERGE_NEAR and MERGE_POS_NEAR */ |
| int nParam2, /* Used by MERGE_NEAR and MERGE_POS_NEAR */ |
| char *aBuffer, /* Pre-allocated output buffer */ |
| int *pnBuffer, /* OUT: Bytes written to aBuffer */ |
| char *a1, /* Buffer containing first doclist */ |
| int n1, /* Size of buffer a1 */ |
| char *a2, /* Buffer containing second doclist */ |
| int n2, /* Size of buffer a2 */ |
| int *pnDoc /* OUT: Number of docids in output */ |
| ){ |
| sqlite3_int64 i1 = 0; |
| sqlite3_int64 i2 = 0; |
| sqlite3_int64 iPrev = 0; |
| |
| char *p = aBuffer; |
| char *p1 = a1; |
| char *p2 = a2; |
| char *pEnd1 = &a1[n1]; |
| char *pEnd2 = &a2[n2]; |
| int nDoc = 0; |
| |
| assert( mergetype==MERGE_OR || mergetype==MERGE_POS_OR |
| || mergetype==MERGE_AND || mergetype==MERGE_NOT |
| || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE |
| || mergetype==MERGE_NEAR || mergetype==MERGE_POS_NEAR |
| ); |
| |
| if( !aBuffer ){ |
| *pnBuffer = 0; |
| return SQLITE_NOMEM; |
| } |
| |
| /* Read the first docid from each doclist */ |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| |
| switch( mergetype ){ |
| case MERGE_OR: |
| case MERGE_POS_OR: |
| while( p1 || p2 ){ |
| if( p2 && p1 && i1==i2 ){ |
| fts3PutDeltaVarint(&p, &iPrev, i1); |
| if( mergetype==MERGE_POS_OR ) fts3PoslistMerge(&p, &p1, &p2); |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| }else if( !p2 || (p1 && i1<i2) ){ |
| fts3PutDeltaVarint(&p, &iPrev, i1); |
| if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p1); |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| }else{ |
| fts3PutDeltaVarint(&p, &iPrev, i2); |
| if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p2); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| } |
| } |
| break; |
| |
| case MERGE_AND: |
| while( p1 && p2 ){ |
| if( i1==i2 ){ |
| fts3PutDeltaVarint(&p, &iPrev, i1); |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| nDoc++; |
| }else if( i1<i2 ){ |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| }else{ |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| } |
| } |
| break; |
| |
| case MERGE_NOT: |
| while( p1 ){ |
| if( p2 && i1==i2 ){ |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| }else if( !p2 || i1<i2 ){ |
| fts3PutDeltaVarint(&p, &iPrev, i1); |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| }else{ |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| } |
| } |
| break; |
| |
| case MERGE_POS_PHRASE: |
| case MERGE_PHRASE: { |
| char **ppPos = (mergetype==MERGE_PHRASE ? 0 : &p); |
| while( p1 && p2 ){ |
| if( i1==i2 ){ |
| char *pSave = p; |
| sqlite3_int64 iPrevSave = iPrev; |
| fts3PutDeltaVarint(&p, &iPrev, i1); |
| if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){ |
| p = pSave; |
| iPrev = iPrevSave; |
| }else{ |
| nDoc++; |
| } |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| }else if( i1<i2 ){ |
| fts3PoslistCopy(0, &p1); |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| }else{ |
| fts3PoslistCopy(0, &p2); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| } |
| } |
| break; |
| } |
| |
| default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); { |
| char *aTmp = 0; |
| char **ppPos = 0; |
| |
| if( mergetype==MERGE_POS_NEAR ){ |
| ppPos = &p; |
| aTmp = sqlite3_malloc(2*(n1+n2+1)); |
| if( !aTmp ){ |
| return SQLITE_NOMEM; |
| } |
| } |
| |
| while( p1 && p2 ){ |
| if( i1==i2 ){ |
| char *pSave = p; |
| sqlite3_int64 iPrevSave = iPrev; |
| fts3PutDeltaVarint(&p, &iPrev, i1); |
| |
| if( !fts3PoslistNearMerge(ppPos, aTmp, nParam1, nParam2, &p1, &p2) ){ |
| iPrev = iPrevSave; |
| p = pSave; |
| } |
| |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| }else if( i1<i2 ){ |
| fts3PoslistCopy(0, &p1); |
| fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
| }else{ |
| fts3PoslistCopy(0, &p2); |
| fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
| } |
| } |
| sqlite3_free(aTmp); |
| break; |
| } |
| } |
| |
| if( pnDoc ) *pnDoc = nDoc; |
| *pnBuffer = (int)(p-aBuffer); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** A pointer to an instance of this structure is used as the context |
| ** argument to sqlite3Fts3SegReaderIterate() |
| */ |
| typedef struct TermSelect TermSelect; |
| struct TermSelect { |
| int isReqPos; |
| char *aaOutput[16]; /* Malloc'd output buffer */ |
| int anOutput[16]; /* Size of output in bytes */ |
| }; |
| |
| /* |
| ** Merge all doclists in the TermSelect.aaOutput[] array into a single |
| ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all |
| ** other doclists (except the aaOutput[0] one) and return SQLITE_OK. |
| ** |
| ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is |
| ** the responsibility of the caller to free any doclists left in the |
| ** TermSelect.aaOutput[] array. |
| */ |
| static int fts3TermSelectMerge(TermSelect *pTS){ |
| int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR); |
| char *aOut = 0; |
| int nOut = 0; |
| int i; |
| |
| /* Loop through the doclists in the aaOutput[] array. Merge them all |
| ** into a single doclist. |
| */ |
| for(i=0; i<SizeofArray(pTS->aaOutput); i++){ |
| if( pTS->aaOutput[i] ){ |
| if( !aOut ){ |
| aOut = pTS->aaOutput[i]; |
| nOut = pTS->anOutput[i]; |
| pTS->aaOutput[i] = 0; |
| }else{ |
| int nNew = nOut + pTS->anOutput[i]; |
| char *aNew = sqlite3_malloc(nNew); |
| if( !aNew ){ |
| sqlite3_free(aOut); |
| return SQLITE_NOMEM; |
| } |
| fts3DoclistMerge(mergetype, 0, 0, |
| aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0 |
| ); |
| sqlite3_free(pTS->aaOutput[i]); |
| sqlite3_free(aOut); |
| pTS->aaOutput[i] = 0; |
| aOut = aNew; |
| nOut = nNew; |
| } |
| } |
| } |
| |
| pTS->aaOutput[0] = aOut; |
| pTS->anOutput[0] = nOut; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This function is used as the sqlite3Fts3SegReaderIterate() callback when |
| ** querying the full-text index for a doclist associated with a term or |
| ** term-prefix. |
| */ |
| static int fts3TermSelectCb( |
| Fts3Table *p, /* Virtual table object */ |
| void *pContext, /* Pointer to TermSelect structure */ |
| char *zTerm, |
| int nTerm, |
| char *aDoclist, |
| int nDoclist |
| ){ |
| TermSelect *pTS = (TermSelect *)pContext; |
| |
| UNUSED_PARAMETER(p); |
| UNUSED_PARAMETER(zTerm); |
| UNUSED_PARAMETER(nTerm); |
| |
| if( pTS->aaOutput[0]==0 ){ |
| /* If this is the first term selected, copy the doclist to the output |
| ** buffer using memcpy(). TODO: Add a way to transfer control of the |
| ** aDoclist buffer from the caller so as to avoid the memcpy(). |
| */ |
| pTS->aaOutput[0] = sqlite3_malloc(nDoclist); |
| pTS->anOutput[0] = nDoclist; |
| if( pTS->aaOutput[0] ){ |
| memcpy(pTS->aaOutput[0], aDoclist, nDoclist); |
| }else{ |
| return SQLITE_NOMEM; |
| } |
| }else{ |
| int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR); |
| char *aMerge = aDoclist; |
| int nMerge = nDoclist; |
| int iOut; |
| |
| for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){ |
| char *aNew; |
| int nNew; |
| if( pTS->aaOutput[iOut]==0 ){ |
| assert( iOut>0 ); |
| pTS->aaOutput[iOut] = aMerge; |
| pTS->anOutput[iOut] = nMerge; |
| break; |
| } |
| |
| nNew = nMerge + pTS->anOutput[iOut]; |
| aNew = sqlite3_malloc(nNew); |
| if( !aNew ){ |
| if( aMerge!=aDoclist ){ |
| sqlite3_free(aMerge); |
| } |
| return SQLITE_NOMEM; |
| } |
| fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew, |
| pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0 |
| ); |
| |
| if( iOut>0 ) sqlite3_free(aMerge); |
| sqlite3_free(pTS->aaOutput[iOut]); |
| pTS->aaOutput[iOut] = 0; |
| |
| aMerge = aNew; |
| nMerge = nNew; |
| if( (iOut+1)==SizeofArray(pTS->aaOutput) ){ |
| pTS->aaOutput[iOut] = aMerge; |
| pTS->anOutput[iOut] = nMerge; |
| } |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| static int fts3DeferredTermSelect( |
| Fts3DeferredToken *pToken, /* Phrase token */ |
| int isTermPos, /* True to include positions */ |
| int *pnOut, /* OUT: Size of list */ |
| char **ppOut /* OUT: Body of list */ |
| ){ |
| char *aSource; |
| int nSource; |
| |
| aSource = sqlite3Fts3DeferredDoclist(pToken, &nSource); |
| if( !aSource ){ |
| *pnOut = 0; |
| *ppOut = 0; |
| }else if( isTermPos ){ |
| *ppOut = sqlite3_malloc(nSource); |
| if( !*ppOut ) return SQLITE_NOMEM; |
| memcpy(*ppOut, aSource, nSource); |
| *pnOut = nSource; |
| }else{ |
| sqlite3_int64 docid; |
| *pnOut = sqlite3Fts3GetVarint(aSource, &docid); |
| *ppOut = sqlite3_malloc(*pnOut); |
| if( !*ppOut ) return SQLITE_NOMEM; |
| sqlite3Fts3PutVarint(*ppOut, docid); |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| int sqlite3Fts3SegReaderCursor( |
| Fts3Table *p, /* FTS3 table handle */ |
| int iLevel, /* Level of segments to scan */ |
| const char *zTerm, /* Term to query for */ |
| int nTerm, /* Size of zTerm in bytes */ |
| int isPrefix, /* True for a prefix search */ |
| int isScan, /* True to scan from zTerm to EOF */ |
| Fts3SegReaderCursor *pCsr /* Cursor object to populate */ |
| ){ |
| int rc = SQLITE_OK; |
| int rc2; |
| int iAge = 0; |
| sqlite3_stmt *pStmt = 0; |
| Fts3SegReader *pPending = 0; |
| |
| assert( iLevel==FTS3_SEGCURSOR_ALL |
| || iLevel==FTS3_SEGCURSOR_PENDING |
| || iLevel>=0 |
| ); |
| assert( FTS3_SEGCURSOR_PENDING<0 ); |
| assert( FTS3_SEGCURSOR_ALL<0 ); |
| assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) ); |
| assert( isPrefix==0 || isScan==0 ); |
| |
| |
| memset(pCsr, 0, sizeof(Fts3SegReaderCursor)); |
| |
| /* If iLevel is less than 0, include a seg-reader for the pending-terms. */ |
| assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 ); |
| if( iLevel<0 && isScan==0 ){ |
| rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending); |
| if( rc==SQLITE_OK && pPending ){ |
| int nByte = (sizeof(Fts3SegReader *) * 16); |
| pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte); |
| if( pCsr->apSegment==0 ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| pCsr->apSegment[0] = pPending; |
| pCsr->nSegment = 1; |
| pPending = 0; |
| } |
| } |
| } |
| |
| if( iLevel!=FTS3_SEGCURSOR_PENDING ){ |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt); |
| } |
| while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ |
| |
| /* Read the values returned by the SELECT into local variables. */ |
| sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); |
| sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); |
| sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); |
| int nRoot = sqlite3_column_bytes(pStmt, 4); |
| char const *zRoot = sqlite3_column_blob(pStmt, 4); |
| |
| /* If nSegment is a multiple of 16 the array needs to be extended. */ |
| if( (pCsr->nSegment%16)==0 ){ |
| Fts3SegReader **apNew; |
| int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); |
| apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte); |
| if( !apNew ){ |
| rc = SQLITE_NOMEM; |
| goto finished; |
| } |
| pCsr->apSegment = apNew; |
| } |
| |
| /* If zTerm is not NULL, and this segment is not stored entirely on its |
| ** root node, the range of leaves scanned can be reduced. Do this. */ |
| if( iStartBlock && zTerm ){ |
| sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); |
| rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); |
| if( rc!=SQLITE_OK ) goto finished; |
| if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; |
| } |
| |
| rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock, |
| iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment] |
| ); |
| if( rc!=SQLITE_OK ) goto finished; |
| pCsr->nSegment++; |
| iAge++; |
| } |
| } |
| |
| finished: |
| rc2 = sqlite3_reset(pStmt); |
| if( rc==SQLITE_DONE ) rc = rc2; |
| sqlite3Fts3SegReaderFree(pPending); |
| |
| return rc; |
| } |
| |
| |
| static int fts3TermSegReaderCursor( |
| Fts3Cursor *pCsr, /* Virtual table cursor handle */ |
| const char *zTerm, /* Term to query for */ |
| int nTerm, /* Size of zTerm in bytes */ |
| int isPrefix, /* True for a prefix search */ |
| Fts3SegReaderCursor **ppSegcsr /* OUT: Allocated seg-reader cursor */ |
| ){ |
| Fts3SegReaderCursor *pSegcsr; /* Object to allocate and return */ |
| int rc = SQLITE_NOMEM; /* Return code */ |
| |
| pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor)); |
| if( pSegcsr ){ |
| Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
| int i; |
| int nCost = 0; |
| rc = sqlite3Fts3SegReaderCursor( |
| p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr); |
| |
| for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){ |
| rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost); |
| } |
| pSegcsr->nCost = nCost; |
| } |
| |
| *ppSegcsr = pSegcsr; |
| return rc; |
| } |
| |
| static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){ |
| sqlite3Fts3SegReaderFinish(pSegcsr); |
| sqlite3_free(pSegcsr); |
| } |
| |
| /* |
| ** This function retreives the doclist for the specified term (or term |
| ** prefix) from the database. |
| ** |
| ** The returned doclist may be in one of two formats, depending on the |
| ** value of parameter isReqPos. If isReqPos is zero, then the doclist is |
| ** a sorted list of delta-compressed docids (a bare doclist). If isReqPos |
| ** is non-zero, then the returned list is in the same format as is stored |
| ** in the database without the found length specifier at the start of on-disk |
| ** doclists. |
| */ |
| static int fts3TermSelect( |
| Fts3Table *p, /* Virtual table handle */ |
| Fts3PhraseToken *pTok, /* Token to query for */ |
| int iColumn, /* Column to query (or -ve for all columns) */ |
| int isReqPos, /* True to include position lists in output */ |
| int *pnOut, /* OUT: Size of buffer at *ppOut */ |
| char **ppOut /* OUT: Malloced result buffer */ |
| ){ |
| int rc; /* Return code */ |
| Fts3SegReaderCursor *pSegcsr; /* Seg-reader cursor for this term */ |
| TermSelect tsc; /* Context object for fts3TermSelectCb() */ |
| Fts3SegFilter filter; /* Segment term filter configuration */ |
| |
| pSegcsr = pTok->pSegcsr; |
| memset(&tsc, 0, sizeof(TermSelect)); |
| tsc.isReqPos = isReqPos; |
| |
| filter.flags = FTS3_SEGMENT_IGNORE_EMPTY |
| | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) |
| | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0) |
| | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); |
| filter.iCol = iColumn; |
| filter.zTerm = pTok->z; |
| filter.nTerm = pTok->n; |
| |
| rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); |
| while( SQLITE_OK==rc |
| && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) |
| ){ |
| rc = fts3TermSelectCb(p, (void *)&tsc, |
| pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist |
| ); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = fts3TermSelectMerge(&tsc); |
| } |
| if( rc==SQLITE_OK ){ |
| *ppOut = tsc.aaOutput[0]; |
| *pnOut = tsc.anOutput[0]; |
| }else{ |
| int i; |
| for(i=0; i<SizeofArray(tsc.aaOutput); i++){ |
| sqlite3_free(tsc.aaOutput[i]); |
| } |
| } |
| |
| fts3SegReaderCursorFree(pSegcsr); |
| pTok->pSegcsr = 0; |
| return rc; |
| } |
| |
| /* |
| ** This function counts the total number of docids in the doclist stored |
| ** in buffer aList[], size nList bytes. |
| ** |
| ** If the isPoslist argument is true, then it is assumed that the doclist |
| ** contains a position-list following each docid. Otherwise, it is assumed |
| ** that the doclist is simply a list of docids stored as delta encoded |
| ** varints. |
| */ |
| static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){ |
| int nDoc = 0; /* Return value */ |
| if( aList ){ |
| char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ |
| char *p = aList; /* Cursor */ |
| if( !isPoslist ){ |
| /* The number of docids in the list is the same as the number of |
| ** varints. In FTS3 a varint consists of a single byte with the 0x80 |
| ** bit cleared and zero or more bytes with the 0x80 bit set. So to |
| ** count the varints in the buffer, just count the number of bytes |
| ** with the 0x80 bit clear. */ |
| while( p<aEnd ) nDoc += (((*p++)&0x80)==0); |
| }else{ |
| while( p<aEnd ){ |
| nDoc++; |
| while( (*p++)&0x80 ); /* Skip docid varint */ |
| fts3PoslistCopy(0, &p); /* Skip over position list */ |
| } |
| } |
| } |
| |
| return nDoc; |
| } |
| |
| /* |
| ** Call sqlite3Fts3DeferToken() for each token in the expression pExpr. |
| */ |
| static int fts3DeferExpression(Fts3Cursor *pCsr, Fts3Expr *pExpr){ |
| int rc = SQLITE_OK; |
| if( pExpr ){ |
| rc = fts3DeferExpression(pCsr, pExpr->pLeft); |
| if( rc==SQLITE_OK ){ |
| rc = fts3DeferExpression(pCsr, pExpr->pRight); |
| } |
| if( pExpr->eType==FTSQUERY_PHRASE ){ |
| int iCol = pExpr->pPhrase->iColumn; |
| int i; |
| for(i=0; rc==SQLITE_OK && i<pExpr->pPhrase->nToken; i++){ |
| Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i]; |
| if( pToken->pDeferred==0 ){ |
| rc = sqlite3Fts3DeferToken(pCsr, pToken, iCol); |
| } |
| } |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** This function removes the position information from a doclist. When |
| ** called, buffer aList (size *pnList bytes) contains a doclist that includes |
| ** position information. This function removes the position information so |
| ** that aList contains only docids, and adjusts *pnList to reflect the new |
| ** (possibly reduced) size of the doclist. |
| */ |
| static void fts3DoclistStripPositions( |
| char *aList, /* IN/OUT: Buffer containing doclist */ |
| int *pnList /* IN/OUT: Size of doclist in bytes */ |
| ){ |
| if( aList ){ |
| char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */ |
| char *p = aList; /* Input cursor */ |
| char *pOut = aList; /* Output cursor */ |
| |
| while( p<aEnd ){ |
| sqlite3_int64 delta; |
| p += sqlite3Fts3GetVarint(p, &delta); |
| fts3PoslistCopy(0, &p); |
| pOut += sqlite3Fts3PutVarint(pOut, delta); |
| } |
| |
| *pnList = (int)(pOut - aList); |
| } |
| } |
| |
| /* |
| ** Return a DocList corresponding to the phrase *pPhrase. |
| ** |
| ** If this function returns SQLITE_OK, but *pnOut is set to a negative value, |
| ** then no tokens in the phrase were looked up in the full-text index. This |
| ** is only possible when this function is called from within xFilter(). The |
| ** caller should assume that all documents match the phrase. The actual |
| ** filtering will take place in xNext(). |
| */ |
| static int fts3PhraseSelect( |
| Fts3Cursor *pCsr, /* Virtual table cursor handle */ |
| Fts3Phrase *pPhrase, /* Phrase to return a doclist for */ |
| int isReqPos, /* True if output should contain positions */ |
| char **paOut, /* OUT: Pointer to malloc'd result buffer */ |
| int *pnOut /* OUT: Size of buffer at *paOut */ |
| ){ |
| char *pOut = 0; |
| int nOut = 0; |
| int rc = SQLITE_OK; |
| int ii; |
| int iCol = pPhrase->iColumn; |
| int isTermPos = (pPhrase->nToken>1 || isReqPos); |
| Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
| int isFirst = 1; |
| |
| int iPrevTok = 0; |
| int nDoc = 0; |
| |
| /* If this is an xFilter() evaluation, create a segment-reader for each |
| ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo |
| ** evaluation, only create segment-readers if there are no Fts3DeferredToken |
| ** objects attached to the phrase-tokens. |
| */ |
| for(ii=0; ii<pPhrase->nToken; ii++){ |
| Fts3PhraseToken *pTok = &pPhrase->aToken[ii]; |
| if( pTok->pSegcsr==0 ){ |
| if( (pCsr->eEvalmode==FTS3_EVAL_FILTER) |
| || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0) |
| || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext) |
| ){ |
| rc = fts3TermSegReaderCursor( |
| pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr |
| ); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| } |
| } |
| |
| for(ii=0; ii<pPhrase->nToken; ii++){ |
| Fts3PhraseToken *pTok; /* Token to find doclist for */ |
| int iTok = 0; /* The token being queried this iteration */ |
| char *pList = 0; /* Pointer to token doclist */ |
| int nList = 0; /* Size of buffer at pList */ |
| |
| /* Select a token to process. If this is an xFilter() call, then tokens |
| ** are processed in order from least to most costly. Otherwise, tokens |
| ** are processed in the order in which they occur in the phrase. |
| */ |
| if( pCsr->eEvalmode==FTS3_EVAL_MATCHINFO ){ |
| assert( isReqPos ); |
| iTok = ii; |
| pTok = &pPhrase->aToken[iTok]; |
| if( pTok->bFulltext==0 ) continue; |
| }else if( pCsr->eEvalmode==FTS3_EVAL_NEXT || isReqPos ){ |
| iTok = ii; |
| pTok = &pPhrase->aToken[iTok]; |
| }else{ |
| int nMinCost = 0x7FFFFFFF; |
| int jj; |
| |
| /* Find the remaining token with the lowest cost. */ |
| for(jj=0; jj<pPhrase->nToken; jj++){ |
| Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr; |
| if( pSegcsr && pSegcsr->nCost<nMinCost ){ |
| iTok = jj; |
| nMinCost = pSegcsr->nCost; |
| } |
| } |
| pTok = &pPhrase->aToken[iTok]; |
| |
| /* This branch is taken if it is determined that loading the doclist |
| ** for the next token would require more IO than loading all documents |
| ** currently identified by doclist pOut/nOut. No further doclists will |
| ** be loaded from the full-text index for this phrase. |
| */ |
| if( nMinCost>nDoc && ii>0 ){ |
| rc = fts3DeferExpression(pCsr, pCsr->pExpr); |
| break; |
| } |
| } |
| |
| if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){ |
| rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList); |
| }else{ |
| if( pTok->pSegcsr ){ |
| rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList); |
| } |
| pTok->bFulltext = 1; |
| } |
| assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 ); |
| if( rc!=SQLITE_OK ) break; |
| |
| if( isFirst ){ |
| pOut = pList; |
| nOut = nList; |
| if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){ |
| nDoc = fts3DoclistCountDocids(1, pOut, nOut); |
| } |
| isFirst = 0; |
| iPrevTok = iTok; |
| }else{ |
| /* Merge the new term list and the current output. */ |
| char *aLeft, *aRight; |
| int nLeft, nRight; |
| int nDist; |
| int mt; |
| |
| /* If this is the final token of the phrase, and positions were not |
| ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE. |
| ** This drops the position information from the output list. |
| */ |
| mt = MERGE_POS_PHRASE; |
| if( ii==pPhrase->nToken-1 && !isReqPos ) mt = MERGE_PHRASE; |
| |
| assert( iPrevTok!=iTok ); |
| if( iPrevTok<iTok ){ |
| aLeft = pOut; |
| nLeft = nOut; |
| aRight = pList; |
| nRight = nList; |
| nDist = iTok-iPrevTok; |
| iPrevTok = iTok; |
| }else{ |
| aRight = pOut; |
| nRight = nOut; |
| aLeft = pList; |
| nLeft = nList; |
| nDist = iPrevTok-iTok; |
| } |
| pOut = aRight; |
| fts3DoclistMerge( |
| mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc |
| ); |
| sqlite3_free(aLeft); |
| } |
| assert( nOut==0 || pOut!=0 ); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| if( ii!=pPhrase->nToken ){ |
| assert( pCsr->eEvalmode==FTS3_EVAL_FILTER && isReqPos==0 ); |
| fts3DoclistStripPositions(pOut, &nOut); |
| } |
| *paOut = pOut; |
| *pnOut = nOut; |
| }else{ |
| sqlite3_free(pOut); |
| } |
| return rc; |
| } |
| |
| /* |
| ** This function merges two doclists according to the requirements of a |
| ** NEAR operator. |
| ** |
| ** Both input doclists must include position information. The output doclist |
| ** includes position information if the first argument to this function |
| ** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR. |
| */ |
| static int fts3NearMerge( |
| int mergetype, /* MERGE_POS_NEAR or MERGE_NEAR */ |
| int nNear, /* Parameter to NEAR operator */ |
| int nTokenLeft, /* Number of tokens in LHS phrase arg */ |
| char *aLeft, /* Doclist for LHS (incl. positions) */ |
| int nLeft, /* Size of LHS doclist in bytes */ |
| int nTokenRight, /* As nTokenLeft */ |
| char *aRight, /* As aLeft */ |
| int nRight, /* As nRight */ |
| char **paOut, /* OUT: Results of merge (malloced) */ |
| int *pnOut /* OUT: Sized of output buffer */ |
| ){ |
| char *aOut; /* Buffer to write output doclist to */ |
| int rc; /* Return code */ |
| |
| assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR ); |
| |
| aOut = sqlite3_malloc(nLeft+nRight+1); |
| if( aOut==0 ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, |
| aOut, pnOut, aLeft, nLeft, aRight, nRight, 0 |
| ); |
| if( rc!=SQLITE_OK ){ |
| sqlite3_free(aOut); |
| aOut = 0; |
| } |
| } |
| |
| *paOut = aOut; |
| return rc; |
| } |
| |
| /* |
| ** This function is used as part of the processing for the snippet() and |
| ** offsets() functions. |
| ** |
| ** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both |
| ** have their respective doclists (including position information) loaded |
| ** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from |
| ** each doclist that are not within nNear tokens of a corresponding entry |
| ** in the other doclist. |
| */ |
| int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){ |
| int rc; /* Return code */ |
| |
| assert( pLeft->eType==FTSQUERY_PHRASE ); |
| assert( pRight->eType==FTSQUERY_PHRASE ); |
| assert( pLeft->isLoaded && pRight->isLoaded ); |
| |
| if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){ |
| sqlite3_free(pLeft->aDoclist); |
| sqlite3_free(pRight->aDoclist); |
| pRight->aDoclist = 0; |
| pLeft->aDoclist = 0; |
| rc = SQLITE_OK; |
| }else{ |
| char *aOut; /* Buffer in which to assemble new doclist */ |
| int nOut; /* Size of buffer aOut in bytes */ |
| |
| rc = fts3NearMerge(MERGE_POS_NEAR, nNear, |
| pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist, |
| pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist, |
| &aOut, &nOut |
| ); |
| if( rc!=SQLITE_OK ) return rc; |
| sqlite3_free(pRight->aDoclist); |
| pRight->aDoclist = aOut; |
| pRight->nDoclist = nOut; |
| |
| rc = fts3NearMerge(MERGE_POS_NEAR, nNear, |
| pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist, |
| pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist, |
| &aOut, &nOut |
| ); |
| sqlite3_free(pLeft->aDoclist); |
| pLeft->aDoclist = aOut; |
| pLeft->nDoclist = nOut; |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Allocate an Fts3SegReaderArray for each token in the expression pExpr. |
| ** The allocated objects are stored in the Fts3PhraseToken.pArray member |
| ** variables of each token structure. |
| */ |
| static int fts3ExprAllocateSegReaders( |
| Fts3Cursor *pCsr, /* FTS3 table */ |
| Fts3Expr *pExpr, /* Expression to create seg-readers for */ |
| int *pnExpr /* OUT: Number of AND'd expressions */ |
| ){ |
| int rc = SQLITE_OK; /* Return code */ |
| |
| assert( pCsr->eEvalmode==FTS3_EVAL_FILTER ); |
| if( pnExpr && pExpr->eType!=FTSQUERY_AND ){ |
| (*pnExpr)++; |
| pnExpr = 0; |
| } |
| |
| if( pExpr->eType==FTSQUERY_PHRASE ){ |
| Fts3Phrase *pPhrase = pExpr->pPhrase; |
| int ii; |
| |
| for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){ |
| Fts3PhraseToken *pTok = &pPhrase->aToken[ii]; |
| if( pTok->pSegcsr==0 ){ |
| rc = fts3TermSegReaderCursor( |
| pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr |
| ); |
| } |
| } |
| }else{ |
| rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr); |
| if( rc==SQLITE_OK ){ |
| rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Free the Fts3SegReaderArray objects associated with each token in the |
| ** expression pExpr. In other words, this function frees the resources |
| ** allocated by fts3ExprAllocateSegReaders(). |
| */ |
| static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){ |
| if( pExpr ){ |
| Fts3Phrase *pPhrase = pExpr->pPhrase; |
| if( pPhrase ){ |
| int kk; |
| for(kk=0; kk<pPhrase->nToken; kk++){ |
| fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr); |
| pPhrase->aToken[kk].pSegcsr = 0; |
| } |
| } |
| fts3ExprFreeSegReaders(pExpr->pLeft); |
| fts3ExprFreeSegReaders(pExpr->pRight); |
| } |
| } |
| |
| /* |
| ** Return the sum of the costs of all tokens in the expression pExpr. This |
| ** function must be called after Fts3SegReaderArrays have been allocated |
| ** for all tokens using fts3ExprAllocateSegReaders(). |
| */ |
| static int fts3ExprCost(Fts3Expr *pExpr){ |
| int nCost; /* Return value */ |
| if( pExpr->eType==FTSQUERY_PHRASE ){ |
| Fts3Phrase *pPhrase = pExpr->pPhrase; |
| int ii; |
| nCost = 0; |
| for(ii=0; ii<pPhrase->nToken; ii++){ |
| Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr; |
| if( pSegcsr ) nCost += pSegcsr->nCost; |
| } |
| }else{ |
| nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight); |
| } |
| return nCost; |
| } |
| |
| /* |
| ** The following is a helper function (and type) for fts3EvalExpr(). It |
| ** must be called after Fts3SegReaders have been allocated for every token |
| ** in the expression. See the context it is called from in fts3EvalExpr() |
| ** for further explanation. |
| */ |
| typedef struct ExprAndCost ExprAndCost; |
| struct ExprAndCost { |
| Fts3Expr *pExpr; |
| int nCost; |
| }; |
| static void fts3ExprAssignCosts( |
| Fts3Expr *pExpr, /* Expression to create seg-readers for */ |
| ExprAndCost **ppExprCost /* OUT: Write to *ppExprCost */ |
| ){ |
| if( pExpr->eType==FTSQUERY_AND ){ |
| fts3ExprAssignCosts(pExpr->pLeft, ppExprCost); |
| fts3ExprAssignCosts(pExpr->pRight, ppExprCost); |
| }else{ |
| (*ppExprCost)->pExpr = pExpr; |
| (*ppExprCost)->nCost = fts3ExprCost(pExpr); |
| (*ppExprCost)++; |
| } |
| } |
| |
| /* |
| ** Evaluate the full-text expression pExpr against FTS3 table pTab. Store |
| ** the resulting doclist in *paOut and *pnOut. This routine mallocs for |
| ** the space needed to store the output. The caller is responsible for |
| ** freeing the space when it has finished. |
| ** |
| ** This function is called in two distinct contexts: |
| ** |
| ** * From within the virtual table xFilter() method. In this case, the |
| ** output doclist contains entries for all rows in the table, based on |
| ** data read from the full-text index. |
| ** |
| ** In this case, if the query expression contains one or more tokens that |
| ** are very common, then the returned doclist may contain a superset of |
| ** the documents that actually match the expression. |
| ** |
| ** * From within the virtual table xNext() method. This call is only made |
| ** if the call from within xFilter() found that there were very common |
| ** tokens in the query expression and did return a superset of the |
| ** matching documents. In this case the returned doclist contains only |
| ** entries that correspond to the current row of the table. Instead of |
| ** reading the data for each token from the full-text index, the data is |
| ** already available in-memory in the Fts3PhraseToken.pDeferred structures. |
| ** See fts3EvalDeferred() for how it gets there. |
| ** |
| ** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is |
| ** required) Fts3Cursor.doDeferred==1. |
| ** |
| ** If the SQLite invokes the snippet(), offsets() or matchinfo() function |
| ** as part of a SELECT on an FTS3 table, this function is called on each |
| ** individual phrase expression in the query. If there were very common tokens |
| ** found in the xFilter() call, then this function is called once for phrase |
| ** for each row visited, and the returned doclist contains entries for the |
| ** current row only. Otherwise, if there were no very common tokens, then this |
| ** function is called once only for each phrase in the query and the returned |
| ** doclist contains entries for all rows of the table. |
| ** |
| ** Fts3Cursor.doDeferred==1 when this function is called on phrases as a |
| ** result of a snippet(), offsets() or matchinfo() invocation. |
| */ |
| static int fts3EvalExpr( |
| Fts3Cursor *p, /* Virtual table cursor handle */ |
| Fts3Expr *pExpr, /* Parsed fts3 expression */ |
| char **paOut, /* OUT: Pointer to malloc'd result buffer */ |
| int *pnOut, /* OUT: Size of buffer at *paOut */ |
| int isReqPos /* Require positions in output buffer */ |
| ){ |
| int rc = SQLITE_OK; /* Return code */ |
| |
| /* Zero the output parameters. */ |
| *paOut = 0; |
| *pnOut = 0; |
| |
| if( pExpr ){ |
| assert( pExpr->eType==FTSQUERY_NEAR || pExpr->eType==FTSQUERY_OR |
| || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NOT |
| || pExpr->eType==FTSQUERY_PHRASE |
| ); |
| assert( pExpr->eType==FTSQUERY_PHRASE || isReqPos==0 ); |
| |
| if( pExpr->eType==FTSQUERY_PHRASE ){ |
| rc = fts3PhraseSelect(p, pExpr->pPhrase, |
| isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR), |
| paOut, pnOut |
| ); |
| fts3ExprFreeSegReaders(pExpr); |
| }else if( p->eEvalmode==FTS3_EVAL_FILTER && pExpr->eType==FTSQUERY_AND ){ |
| ExprAndCost *aExpr = 0; /* Array of AND'd expressions and costs */ |
| int nExpr = 0; /* Size of aExpr[] */ |
| char *aRet = 0; /* Doclist to return to caller */ |
| int nRet = 0; /* Length of aRet[] in bytes */ |
| int nDoc = 0x7FFFFFFF; |
| |
| assert( !isReqPos ); |
| |
| rc = fts3ExprAllocateSegReaders(p, pExpr, &nExpr); |
| if( rc==SQLITE_OK ){ |
| assert( nExpr>1 ); |
| aExpr = sqlite3_malloc(sizeof(ExprAndCost) * nExpr); |
| if( !aExpr ) rc = SQLITE_NOMEM; |
| } |
| if( rc==SQLITE_OK ){ |
| int ii; /* Used to iterate through expressions */ |
| |
| fts3ExprAssignCosts(pExpr, &aExpr); |
| aExpr -= nExpr; |
| for(ii=0; ii<nExpr; ii++){ |
| char *aNew; |
| int nNew; |
| int jj; |
| ExprAndCost *pBest = 0; |
| |
| for(jj=0; jj<nExpr; jj++){ |
| ExprAndCost *pCand = &aExpr[jj]; |
| if( pCand->pExpr && (pBest==0 || pCand->nCost<pBest->nCost) ){ |
| pBest = pCand; |
| } |
| } |
| |
| if( pBest->nCost>nDoc ){ |
| rc = fts3DeferExpression(p, p->pExpr); |
| break; |
| }else{ |
| rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0); |
| if( rc!=SQLITE_OK ) break; |
| pBest->pExpr = 0; |
| if( ii==0 ){ |
| aRet = aNew; |
| nRet = nNew; |
| nDoc = fts3DoclistCountDocids(0, aRet, nRet); |
| }else{ |
| fts3DoclistMerge( |
| MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc |
| ); |
| sqlite3_free(aNew); |
| } |
| } |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| *paOut = aRet; |
| *pnOut = nRet; |
| }else{ |
| assert( *paOut==0 ); |
| sqlite3_free(aRet); |
| } |
| sqlite3_free(aExpr); |
| fts3ExprFreeSegReaders(pExpr); |
| |
| }else{ |
| char *aLeft; |
| char *aRight; |
| int nLeft; |
| int nRight; |
| |
| assert( pExpr->eType==FTSQUERY_NEAR |
| || pExpr->eType==FTSQUERY_OR |
| || pExpr->eType==FTSQUERY_NOT |
| || (pExpr->eType==FTSQUERY_AND && p->eEvalmode==FTS3_EVAL_NEXT) |
| ); |
| |
| if( 0==(rc = fts3EvalExpr(p, pExpr->pRight, &aRight, &nRight, isReqPos)) |
| && 0==(rc = fts3EvalExpr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos)) |
| ){ |
| switch( pExpr->eType ){ |
| case FTSQUERY_NEAR: { |
| Fts3Expr *pLeft; |
| Fts3Expr *pRight; |
| int mergetype = MERGE_NEAR; |
| if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){ |
| mergetype = MERGE_POS_NEAR; |
| } |
| pLeft = pExpr->pLeft; |
| while( pLeft->eType==FTSQUERY_NEAR ){ |
| pLeft=pLeft->pRight; |
| } |
| pRight = pExpr->pRight; |
| assert( pRight->eType==FTSQUERY_PHRASE ); |
| assert( pLeft->eType==FTSQUERY_PHRASE ); |
| |
| rc = fts3NearMerge(mergetype, pExpr->nNear, |
| pLeft->pPhrase->nToken, aLeft, nLeft, |
| pRight->pPhrase->nToken, aRight, nRight, |
| paOut, pnOut |
| ); |
| sqlite3_free(aLeft); |
| break; |
| } |
| |
| case FTSQUERY_OR: { |
| /* Allocate a buffer for the output. The maximum size is the |
| ** sum of the sizes of the two input buffers. The +1 term is |
| ** so that a buffer of zero bytes is never allocated - this can |
| ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM. |
| */ |
| char *aBuffer = sqlite3_malloc(nRight+nLeft+1); |
| rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut, |
| aLeft, nLeft, aRight, nRight, 0 |
| ); |
| *paOut = aBuffer; |
| sqlite3_free(aLeft); |
| break; |
| } |
| |
| default: { |
| assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND ); |
| fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut, |
| aLeft, nLeft, aRight, nRight, 0 |
| ); |
| *paOut = aLeft; |
| break; |
| } |
| } |
| } |
| sqlite3_free(aRight); |
| } |
| } |
| |
| assert( rc==SQLITE_OK || *paOut==0 ); |
| return rc; |
| } |
| |
| /* |
| ** This function is called from within xNext() for each row visited by |
| ** an FTS3 query. If evaluating the FTS3 query expression within xFilter() |
| ** was able to determine the exact set of matching rows, this function sets |
| ** *pbRes to true and returns SQLITE_IO immediately. |
| ** |
| ** Otherwise, if evaluating the query expression within xFilter() returned a |
| ** superset of the matching documents instead of an exact set (this happens |
| ** when the query includes very common tokens and it is deemed too expensive to |
| ** load their doclists from disk), this function tests if the current row |
| ** really does match the FTS3 query. |
| ** |
| ** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK |
| ** is returned and *pbRes is set to true if the current row matches the |
| ** FTS3 query (and should be included in the results returned to SQLite), or |
| ** false otherwise. |
| */ |
| static int fts3EvalDeferred( |
| Fts3Cursor *pCsr, /* FTS3 cursor pointing at row to test */ |
| int *pbRes /* OUT: Set to true if row is a match */ |
| ){ |
| int rc = SQLITE_OK; |
| if( pCsr->pDeferred==0 ){ |
| *pbRes = 1; |
| }else{ |
| rc = fts3CursorSeek(0, pCsr); |
| if( rc==SQLITE_OK ){ |
| sqlite3Fts3FreeDeferredDoclists(pCsr); |
| rc = sqlite3Fts3CacheDeferredDoclists(pCsr); |
| } |
| if( rc==SQLITE_OK ){ |
| char *a = 0; |
| int n = 0; |
| rc = fts3EvalExpr(pCsr, pCsr->pExpr, &a, &n, 0); |
| assert( n>=0 ); |
| *pbRes = (n>0); |
| sqlite3_free(a); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Advance the cursor to the next row in the %_content table that |
| ** matches the search criteria. For a MATCH search, this will be |
| ** the next row that matches. For a full-table scan, this will be |
| ** simply the next row in the %_content table. For a docid lookup, |
| ** this routine simply sets the EOF flag. |
| ** |
| ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned |
| ** even if we reach end-of-file. The fts3EofMethod() will be called |
| ** subsequently to determine whether or not an EOF was hit. |
| */ |
| static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){ |
| int res; |
| int rc = SQLITE_OK; /* Return code */ |
| Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
| |
| pCsr->eEvalmode = FTS3_EVAL_NEXT; |
| do { |
| if( pCsr->aDoclist==0 ){ |
| if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ |
| pCsr->isEof = 1; |
| rc = sqlite3_reset(pCsr->pStmt); |
| break; |
| } |
| pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); |
| }else{ |
| if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){ |
| pCsr->isEof = 1; |
| break; |
| } |
| sqlite3_reset(pCsr->pStmt); |
| fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId); |
| pCsr->isRequireSeek = 1; |
| pCsr->isMatchinfoNeeded = 1; |
| } |
| }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 ); |
| |
| return rc; |
| } |
| |
| /* |
| ** This is the xFilter interface for the virtual table. See |
| ** the virtual table xFilter method documentation for additional |
| ** information. |
| ** |
| ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against |
| ** the %_content table. |
| ** |
| ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry |
| ** in the %_content table. |
| ** |
| ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The |
| ** column on the left-hand side of the MATCH operator is column |
| ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand |
| ** side of the MATCH operator. |
| */ |
| static int fts3FilterMethod( |
| sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ |
| int idxNum, /* Strategy index */ |
| const char *idxStr, /* Unused */ |
| int nVal, /* Number of elements in apVal */ |
| sqlite3_value **apVal /* Arguments for the indexing scheme */ |
| ){ |
| const char *azSql[] = { |
| "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */ |
| "SELECT %s FROM %Q.'%q_content' AS x ", /* full-scan */ |
| }; |
| int rc; /* Return code */ |
| char *zSql; /* SQL statement used to access %_content */ |
| Fts3Table *p = (Fts3Table *)pCursor->pVtab; |
| Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
| |
| UNUSED_PARAMETER(idxStr); |
| UNUSED_PARAMETER(nVal); |
| |
| assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); |
| assert( nVal==0 || nVal==1 ); |
| assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) ); |
| assert( p->pSegments==0 ); |
| |
| /* In case the cursor has been used before, clear it now. */ |
| sqlite3_finalize(
|