blob: 17a1d8cf778a2d11b48e9b870e6dbc3679b927a3 [file] [log] [blame]
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CC_BASE_RTREE_H_
#define CC_BASE_RTREE_H_
#include <deque>
#include <vector>
#include "cc/base/cc_export.h"
#include "ui/gfx/geometry/rect_f.h"
namespace cc {
// The following description and most of the implementation is borrowed from
// Skia's SkRTree implementation.
// An R-Tree implementation. In short, it is a balanced n-ary tree containing a
// hierarchy of bounding rectangles.
// It only supports bulk-loading, i.e. creation from a batch of bounding
// rectangles. This performs a bottom-up bulk load using the STR
// (sort-tile-recursive) algorithm.
// Things to do: Experiment with other bulk-load algorithms (in particular the
// Hilbert pack variant, which groups rects by position on the Hilbert curve, is
// probably worth a look). There also exist top-down bulk load variants
// (VAMSplit, TopDownGreedy, etc).
// For more details see:
// Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990).
// "The R*-tree: an efficient and robust access method for points and
// rectangles"
class CC_EXPORT RTree {
void Build(const std::vector<gfx::RectF>& rects);
void Search(const gfx::RectF& query, std::vector<size_t>* results) const;
// These values were empirically determined to produce reasonable performance
// in most cases.
enum { MIN_CHILDREN = 6, MAX_CHILDREN = 11 };
struct Node;
struct Branch {
// When the node level is 0, then the node is a leaf and the branch has a
// valid index pointing to an element in the vector that was used to build
// this rtree. When the level is not 0, it's an internal node and it has a
// valid subtree pointer.
union {
Node* subtree;
size_t index;
gfx::RectF bounds;
struct Node {
uint16_t num_children;
uint16_t level;
Branch children[MAX_CHILDREN];
void SearchRecursive(Node* root,
const gfx::RectF& query,
std::vector<size_t>* results) const;
// Consumes the input array.
Branch BuildRecursive(std::vector<Branch>* branches, int level);
Node* AllocateNodeAtLevel(int level);
// This is the count of data elements (rather than total nodes in the tree)
size_t num_data_elements_;
Branch root_;
std::deque<Node> nodes_;
} // namespace cc
#endif // CC_BASE_RTREE_H_