blob: 0a2344c2a6661c05ac60ee36e87b24b9aacb8aa5 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/ec_private_key.h"
#include <stddef.h>
#include <stdint.h>
#include <utility>
#include "base/logging.h"
#include "crypto/openssl_util.h"
#include "third_party/boringssl/src/include/openssl/bio.h"
#include "third_party/boringssl/src/include/openssl/bn.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/ec_key.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/mem.h"
#include "third_party/boringssl/src/include/openssl/pkcs12.h"
#include "third_party/boringssl/src/include/openssl/x509.h"
namespace crypto {
namespace {
// Function pointer definition, for injecting the required key export function
// into ExportKeyWithBio, below. |bio| is a temporary memory BIO object, and
// |key| is a handle to the input key object. Return 1 on success, 0 otherwise.
// NOTE: Used with OpenSSL functions, which do not comply with the Chromium
// style guide, hence the unusual parameter placement / types.
typedef int (*ExportBioFunction)(BIO* bio, const void* key);
// Helper to export |key| into |output| via the specified ExportBioFunction.
bool ExportKeyWithBio(const void* key,
ExportBioFunction export_fn,
std::vector<uint8_t>* output) {
if (!key)
return false;
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
if (!bio)
return false;
if (!export_fn(bio.get(), key))
return false;
char* data = nullptr;
long len = BIO_get_mem_data(bio.get(), &data);
if (!data || len < 0)
return false;
output->assign(data, data + len);
return true;
}
} // namespace
ECPrivateKey::~ECPrivateKey() {}
// static
std::unique_ptr<ECPrivateKey> ECPrivateKey::Create() {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
bssl::UniquePtr<EC_KEY> ec_key(
EC_KEY_new_by_curve_name(NID_X9_62_prime256v1));
if (!ec_key || !EC_KEY_generate_key(ec_key.get()))
return nullptr;
std::unique_ptr<ECPrivateKey> result(new ECPrivateKey());
result->key_.reset(EVP_PKEY_new());
if (!result->key_ || !EVP_PKEY_set1_EC_KEY(result->key_.get(), ec_key.get()))
return nullptr;
CHECK_EQ(EVP_PKEY_EC, EVP_PKEY_id(result->key_.get()));
return result;
}
// static
std::unique_ptr<ECPrivateKey> ECPrivateKey::CreateFromPrivateKeyInfo(
const std::vector<uint8_t>& input) {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
CBS cbs;
CBS_init(&cbs, input.data(), input.size());
bssl::UniquePtr<EVP_PKEY> pkey(EVP_parse_private_key(&cbs));
if (!pkey || CBS_len(&cbs) != 0 || EVP_PKEY_id(pkey.get()) != EVP_PKEY_EC)
return nullptr;
std::unique_ptr<ECPrivateKey> result(new ECPrivateKey());
result->key_ = std::move(pkey);
return result;
}
// static
std::unique_ptr<ECPrivateKey> ECPrivateKey::CreateFromEncryptedPrivateKeyInfo(
const std::string& password,
const std::vector<uint8_t>& encrypted_private_key_info,
const std::vector<uint8_t>& subject_public_key_info) {
// NOTE: The |subject_public_key_info| can be ignored here, it is only
// useful for the NSS implementation (which uses the public key's SHA1
// as a lookup key when storing the private one in its store).
if (encrypted_private_key_info.empty())
return nullptr;
OpenSSLErrStackTracer err_tracer(FROM_HERE);
const uint8_t* data = &encrypted_private_key_info[0];
const uint8_t* ptr = data;
bssl::UniquePtr<X509_SIG> p8_encrypted(
d2i_X509_SIG(nullptr, &ptr, encrypted_private_key_info.size()));
if (!p8_encrypted || ptr != data + encrypted_private_key_info.size())
return nullptr;
bssl::UniquePtr<PKCS8_PRIV_KEY_INFO> p8_decrypted;
if (password.empty()) {
// Hack for reading keys generated by an older version of the OpenSSL
// code. OpenSSL used to use "\0\0" rather than the empty string because it
// would treat the password as an ASCII string to be converted to UCS-2
// while NSS used a byte string.
p8_decrypted.reset(PKCS8_decrypt_pbe(
p8_encrypted.get(), reinterpret_cast<const uint8_t*>("\0\0"), 2));
}
if (!p8_decrypted) {
p8_decrypted.reset(PKCS8_decrypt_pbe(
p8_encrypted.get(),
reinterpret_cast<const uint8_t*>(password.data()),
password.size()));
}
if (!p8_decrypted)
return nullptr;
// Create a new EVP_PKEY for it.
std::unique_ptr<ECPrivateKey> result(new ECPrivateKey());
result->key_.reset(EVP_PKCS82PKEY(p8_decrypted.get()));
if (!result->key_ || EVP_PKEY_id(result->key_.get()) != EVP_PKEY_EC)
return nullptr;
return result;
}
std::unique_ptr<ECPrivateKey> ECPrivateKey::Copy() const {
std::unique_ptr<ECPrivateKey> copy(new ECPrivateKey());
if (key_) {
EVP_PKEY_up_ref(key_.get());
copy->key_.reset(key_.get());
}
return copy;
}
bool ECPrivateKey::ExportPrivateKey(std::vector<uint8_t>* output) const {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
uint8_t* der;
size_t der_len;
bssl::ScopedCBB cbb;
if (!CBB_init(cbb.get(), 0) ||
!EVP_marshal_private_key(cbb.get(), key_.get()) ||
!CBB_finish(cbb.get(), &der, &der_len)) {
return false;
}
output->assign(der, der + der_len);
OPENSSL_free(der);
return true;
}
bool ECPrivateKey::ExportEncryptedPrivateKey(
const std::string& password,
int iterations,
std::vector<uint8_t>* output) const {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
// Convert into a PKCS#8 object.
bssl::UniquePtr<PKCS8_PRIV_KEY_INFO> pkcs8(EVP_PKEY2PKCS8(key_.get()));
if (!pkcs8)
return false;
// Encrypt the object.
// NOTE: NSS uses SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_3KEY_TRIPLE_DES_CBC
// so use NID_pbe_WithSHA1And3_Key_TripleDES_CBC which should be the OpenSSL
// equivalent.
bssl::UniquePtr<X509_SIG> encrypted(
PKCS8_encrypt_pbe(NID_pbe_WithSHA1And3_Key_TripleDES_CBC, nullptr,
reinterpret_cast<const uint8_t*>(password.data()),
password.size(), nullptr, 0, iterations, pkcs8.get()));
if (!encrypted)
return false;
// Write it into |*output|
return ExportKeyWithBio(encrypted.get(),
reinterpret_cast<ExportBioFunction>(i2d_PKCS8_bio),
output);
}
bool ECPrivateKey::ExportPublicKey(std::vector<uint8_t>* output) const {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
uint8_t *der;
size_t der_len;
bssl::ScopedCBB cbb;
if (!CBB_init(cbb.get(), 0) ||
!EVP_marshal_public_key(cbb.get(), key_.get()) ||
!CBB_finish(cbb.get(), &der, &der_len)) {
return false;
}
output->assign(der, der + der_len);
OPENSSL_free(der);
return true;
}
bool ECPrivateKey::ExportRawPublicKey(std::string* output) const {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
// Export the x and y field elements as 32-byte, big-endian numbers. (This is
// the same as X9.62 uncompressed form without the leading 0x04 byte.)
EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(key_.get());
bssl::UniquePtr<BIGNUM> x(BN_new());
bssl::UniquePtr<BIGNUM> y(BN_new());
uint8_t buf[64];
if (!x || !y ||
!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(ec_key),
EC_KEY_get0_public_key(ec_key),
x.get(), y.get(), nullptr) ||
!BN_bn2bin_padded(buf, 32, x.get()) ||
!BN_bn2bin_padded(buf + 32, 32, y.get())) {
return false;
}
output->assign(reinterpret_cast<const char*>(buf), sizeof(buf));
return true;
}
ECPrivateKey::ECPrivateKey() {}
} // namespace crypto