blob: 8367fdf18ef6a8321bdf83fd47cf6145332af462 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "base/bind.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/run_loop.h"
#include "base/stl_util.h"
#include "base/test/task_environment.h"
#include "build/build_config.h"
#include "mojo/core/embedder/embedder.h"
#include "mojo/core/test/mojo_test_base.h"
#include "mojo/core/test_utils.h"
#include "mojo/public/c/system/data_pipe.h"
#include "mojo/public/c/system/functions.h"
#include "mojo/public/c/system/message_pipe.h"
#include "mojo/public/cpp/system/message_pipe.h"
#include "mojo/public/cpp/system/simple_watcher.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace mojo {
namespace core {
namespace {
const uint32_t kSizeOfOptions =
static_cast<uint32_t>(sizeof(MojoCreateDataPipeOptions));
// In various places, we have to poll (since, e.g., we can't yet wait for a
// certain amount of data to be available). This is the maximum number of
// iterations (separated by a short sleep).
// TODO(vtl): Get rid of this.
const size_t kMaxPoll = 100;
// Used in Multiprocess test.
const size_t kMultiprocessCapacity = 37;
const char kMultiprocessTestData[] = "hello i'm a string that is 36 bytes";
const int kMultiprocessMaxIter = 5;
// Capacity that will cause data pipe creation to fail.
constexpr size_t kOversizedCapacity = std::numeric_limits<uint32_t>::max();
// TODO(rockot): There are many uses of ASSERT where EXPECT would be more
// appropriate. Fix this.
class DataPipeTest : public test::MojoTestBase {
public:
DataPipeTest()
: producer_(MOJO_HANDLE_INVALID), consumer_(MOJO_HANDLE_INVALID) {}
~DataPipeTest() override {
if (producer_ != MOJO_HANDLE_INVALID)
CHECK_EQ(MOJO_RESULT_OK, MojoClose(producer_));
if (consumer_ != MOJO_HANDLE_INVALID)
CHECK_EQ(MOJO_RESULT_OK, MojoClose(consumer_));
}
MojoResult ReadEmptyMessageWithHandles(MojoHandle pipe,
MojoHandle* out_handles,
uint32_t num_handles) {
std::vector<uint8_t> bytes;
std::vector<ScopedHandle> handles;
MojoResult rv = ReadMessageRaw(MessagePipeHandle(pipe), &bytes, &handles,
MOJO_READ_MESSAGE_FLAG_NONE);
if (rv == MOJO_RESULT_OK) {
CHECK_EQ(0u, bytes.size());
CHECK_EQ(num_handles, handles.size());
for (size_t i = 0; i < num_handles; ++i)
out_handles[i] = handles[i].release().value();
}
return rv;
}
MojoResult Create(const MojoCreateDataPipeOptions* options) {
return MojoCreateDataPipe(options, &producer_, &consumer_);
}
MojoResult WriteData(const void* elements,
uint32_t* num_bytes,
bool all_or_none = false) {
MojoWriteDataOptions options;
options.struct_size = sizeof(options);
options.flags = all_or_none ? MOJO_WRITE_DATA_FLAG_ALL_OR_NONE
: MOJO_WRITE_DATA_FLAG_NONE;
return MojoWriteData(producer_, elements, num_bytes, &options);
}
MojoResult ReadData(void* elements,
uint32_t* num_bytes,
bool all_or_none = false,
bool peek = false) {
MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_NONE;
if (all_or_none)
flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE;
if (peek)
flags |= MOJO_READ_DATA_FLAG_PEEK;
MojoReadDataOptions options;
options.struct_size = sizeof(options);
options.flags = flags;
return MojoReadData(consumer_, &options, elements, num_bytes);
}
MojoResult QueryData(uint32_t* num_bytes) {
MojoReadDataOptions options;
options.struct_size = sizeof(options);
options.flags = MOJO_READ_DATA_FLAG_QUERY;
return MojoReadData(consumer_, &options, nullptr, num_bytes);
}
MojoResult DiscardData(uint32_t* num_bytes, bool all_or_none = false) {
MojoReadDataFlags flags = MOJO_READ_DATA_FLAG_DISCARD;
if (all_or_none)
flags |= MOJO_READ_DATA_FLAG_ALL_OR_NONE;
MojoReadDataOptions options;
options.struct_size = sizeof(options);
options.flags = flags;
return MojoReadData(consumer_, &options, nullptr, num_bytes);
}
MojoResult BeginReadData(const void** elements, uint32_t* num_bytes) {
return MojoBeginReadData(consumer_, nullptr, elements, num_bytes);
}
MojoResult EndReadData(uint32_t num_bytes_read) {
return MojoEndReadData(consumer_, num_bytes_read, nullptr);
}
MojoResult BeginWriteData(void** elements, uint32_t* num_bytes) {
return MojoBeginWriteData(producer_, nullptr, elements, num_bytes);
}
MojoResult EndWriteData(uint32_t num_bytes_written) {
return MojoEndWriteData(producer_, num_bytes_written, nullptr);
}
MojoResult CloseProducer() {
MojoResult rv = MojoClose(producer_);
producer_ = MOJO_HANDLE_INVALID;
return rv;
}
MojoResult CloseConsumer() {
MojoResult rv = MojoClose(consumer_);
consumer_ = MOJO_HANDLE_INVALID;
return rv;
}
MojoHandle producer_, consumer_;
private:
DISALLOW_COPY_AND_ASSIGN(DataPipeTest);
};
TEST_F(DataPipeTest, Basic) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
// We can write to a data pipe handle immediately.
int32_t elements[10] = {};
uint32_t num_bytes = 0;
num_bytes = static_cast<uint32_t>(base::size(elements) * sizeof(elements[0]));
elements[0] = 123;
elements[1] = 456;
num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, WriteData(&elements[0], &num_bytes));
// Now wait for the other side to become readable.
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
state.satisfied_signals);
elements[0] = -1;
elements[1] = -1;
ASSERT_EQ(MOJO_RESULT_OK, ReadData(&elements[0], &num_bytes));
ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes);
ASSERT_EQ(elements[0], 123);
ASSERT_EQ(elements[1], 456);
}
// Tests creation of data pipes with various (valid) options.
TEST_F(DataPipeTest, CreateAndMaybeTransfer) {
MojoCreateDataPipeOptions test_options[] = {
// Default options.
{},
// Trivial element size, non-default capacity.
{kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1, // |element_num_bytes|.
1000}, // |capacity_num_bytes|.
// Nontrivial element size, non-default capacity.
{kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
4, // |element_num_bytes|.
4000}, // |capacity_num_bytes|.
// Nontrivial element size, default capacity.
{kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
100, // |element_num_bytes|.
0} // |capacity_num_bytes|.
};
for (size_t i = 0; i < base::size(test_options); i++) {
MojoHandle producer_handle, consumer_handle;
MojoCreateDataPipeOptions* options = i ? &test_options[i] : nullptr;
ASSERT_EQ(MOJO_RESULT_OK,
MojoCreateDataPipe(options, &producer_handle, &consumer_handle));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(producer_handle));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(consumer_handle));
}
}
TEST_F(DataPipeTest, SimpleReadWrite) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
int32_t elements[10] = {};
uint32_t num_bytes = 0;
// Try reading; nothing there yet.
num_bytes = static_cast<uint32_t>(base::size(elements) * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, ReadData(elements, &num_bytes));
// Query; nothing there yet.
num_bytes = 0;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(0u, num_bytes);
// Discard; nothing there yet.
num_bytes = static_cast<uint32_t>(5u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, DiscardData(&num_bytes));
// Read with invalid |num_bytes|.
num_bytes = sizeof(elements[0]) + 1;
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, ReadData(elements, &num_bytes));
// Write two elements.
elements[0] = 123;
elements[1] = 456;
num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes));
// It should have written everything (even without "all or none").
ASSERT_EQ(2u * sizeof(elements[0]), num_bytes);
// Wait.
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Query.
// TODO(vtl): It's theoretically possible (though not with the current
// implementation/configured limits) that not all the data has arrived yet.
// (The theoretically-correct assertion here is that |num_bytes| is |1 * ...|
// or |2 * ...|.)
num_bytes = 0;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(2 * sizeof(elements[0]), num_bytes);
// Read one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes));
ASSERT_EQ(1u * sizeof(elements[0]), num_bytes);
ASSERT_EQ(123, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Query.
// TODO(vtl): See previous TODO. (If we got 2 elements there, however, we
// should get 1 here.)
num_bytes = 0;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(1 * sizeof(elements[0]), num_bytes);
// Peek one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, false, true));
ASSERT_EQ(1u * sizeof(elements[0]), num_bytes);
ASSERT_EQ(456, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Query. Still has 1 element remaining.
num_bytes = 0;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(1 * sizeof(elements[0]), num_bytes);
// Try to read two elements, with "all or none".
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE,
ReadData(elements, &num_bytes, true, false));
ASSERT_EQ(-1, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Try to read two elements, without "all or none".
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, false, false));
ASSERT_EQ(1u * sizeof(elements[0]), num_bytes);
ASSERT_EQ(456, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Query.
num_bytes = 0;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(0u, num_bytes);
}
// Note: The "basic" waiting tests test that the "wait states" are correct in
// various situations; they don't test that waiters are properly awoken on state
// changes. (For that, we need to use multiple threads.)
TEST_F(DataPipeTest, BasicProducerWaiting) {
// Note: We take advantage of the fact that current for current
// implementations capacities are strict maximums. This is not guaranteed by
// the API.
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
2 * sizeof(int32_t) // |capacity_num_bytes|.
};
Create(&options);
MojoHandleSignalsState hss;
// Never readable. Already writable.
hss = GetSignalsState(producer_);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Write two elements.
int32_t elements[2] = {123, 456};
uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes);
// Wait for data to become available to the consumer.
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Peek one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, true));
ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
ASSERT_EQ(123, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Read one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, false));
ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
ASSERT_EQ(123, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Try writing, using a two-phase write.
void* buffer = nullptr;
num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&buffer, &num_bytes));
EXPECT_TRUE(buffer);
ASSERT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(elements[0])));
static_cast<int32_t*>(buffer)[0] = 789;
ASSERT_EQ(MOJO_RESULT_OK,
EndWriteData(static_cast<uint32_t>(1u * sizeof(elements[0]))));
// Read one element, using a two-phase read.
const void* read_buffer = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes));
EXPECT_TRUE(read_buffer);
// The two-phase read should be able to read at least one element.
ASSERT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(elements[0])));
ASSERT_EQ(456, static_cast<const int32_t*>(read_buffer)[0]);
ASSERT_EQ(MOJO_RESULT_OK,
EndReadData(static_cast<uint32_t>(1u * sizeof(elements[0]))));
// Write one element.
elements[0] = 123;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes));
ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
// Close the consumer.
CloseConsumer();
// It should now be never-writable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
}
TEST_F(DataPipeTest, PeerClosedProducerWaiting) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
2 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Close the consumer.
CloseConsumer();
// It should be signaled.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
}
TEST_F(DataPipeTest, PeerClosedConsumerWaiting) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
2 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Close the producer.
CloseProducer();
// It should be signaled.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
}
TEST_F(DataPipeTest, BasicConsumerWaiting) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Never writable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_WRITABLE, &hss));
EXPECT_EQ(0u, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Write two elements.
int32_t elements[2] = {123, 456};
uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
// Wait for readability.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Discard one element.
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true));
ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
// Should still be readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Peek one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true, true));
ASSERT_EQ(456, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Should still be readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Read one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true));
ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
ASSERT_EQ(456, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Write one element.
elements[0] = 789;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
// Waiting should now succeed.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Close the producer.
CloseProducer();
// Should still be readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_TRUE(hss.satisfied_signals & (MOJO_HANDLE_SIGNAL_READABLE |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfiable_signals);
// Wait for the peer closed signal.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfiable_signals);
// Read one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(elements, &num_bytes, true));
ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
ASSERT_EQ(789, elements[0]);
ASSERT_EQ(-1, elements[1]);
// Should be never-readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
}
TEST_F(DataPipeTest, ConsumerNewDataReadable) {
const MojoCreateDataPipeOptions create_options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
EXPECT_EQ(MOJO_RESULT_OK, Create(&create_options));
int32_t elements[2] = {123, 456};
uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
// The consumer handle should appear to be readable and have new data.
EXPECT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE));
EXPECT_TRUE(GetSignalsState(consumer_).satisfied_signals &
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE);
// Now try to read a minimum of 6 elements.
int32_t read_elements[6];
uint32_t num_read_bytes = sizeof(read_elements);
MojoReadDataOptions read_options;
read_options.struct_size = sizeof(read_options);
read_options.flags = MOJO_READ_DATA_FLAG_ALL_OR_NONE;
EXPECT_EQ(
MOJO_RESULT_OUT_OF_RANGE,
MojoReadData(consumer_, &read_options, read_elements, &num_read_bytes));
// The consumer should still appear to be readable but not with new data.
EXPECT_TRUE(GetSignalsState(consumer_).satisfied_signals &
MOJO_HANDLE_SIGNAL_READABLE);
EXPECT_FALSE(GetSignalsState(consumer_).satisfied_signals &
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE);
// Write four more elements.
EXPECT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
EXPECT_EQ(MOJO_RESULT_OK, WriteData(elements, &num_bytes, true));
// The consumer handle should once again appear to be readable.
EXPECT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE));
// Try again to read a minimum of 6 elements. Should succeed this time.
EXPECT_EQ(MOJO_RESULT_OK, MojoReadData(consumer_, &read_options,
read_elements, &num_read_bytes));
// And now the consumer is unreadable.
EXPECT_FALSE(GetSignalsState(consumer_).satisfied_signals &
MOJO_HANDLE_SIGNAL_READABLE);
EXPECT_FALSE(GetSignalsState(consumer_).satisfied_signals &
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE);
}
// Test with two-phase APIs and also closing the producer with an active
// consumer waiter.
TEST_F(DataPipeTest, ConsumerWaitingTwoPhase) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Write two elements.
int32_t* elements = nullptr;
void* buffer = nullptr;
// Request room for three (but we'll only write two).
uint32_t num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&buffer, &num_bytes));
EXPECT_TRUE(buffer);
EXPECT_GE(num_bytes, static_cast<uint32_t>(3u * sizeof(elements[0])));
elements = static_cast<int32_t*>(buffer);
elements[0] = 123;
elements[1] = 456;
ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(2u * sizeof(elements[0])));
// Wait for readability.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Read one element.
// Two should be available, but only read one.
const void* read_buffer = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes));
EXPECT_TRUE(read_buffer);
ASSERT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes);
const int32_t* read_elements = static_cast<const int32_t*>(read_buffer);
ASSERT_EQ(123, read_elements[0]);
ASSERT_EQ(MOJO_RESULT_OK, EndReadData(1u * sizeof(elements[0])));
// Should still be readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Read one element.
// Request three, but not in all-or-none mode.
read_buffer = nullptr;
num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes));
EXPECT_TRUE(read_buffer);
ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
read_elements = static_cast<const int32_t*>(read_buffer);
ASSERT_EQ(456, read_elements[0]);
ASSERT_EQ(MOJO_RESULT_OK, EndReadData(1u * sizeof(elements[0])));
// Close the producer.
CloseProducer();
// Should be never-readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
}
// Tests that data pipes aren't writable/readable during two-phase writes/reads.
TEST_F(DataPipeTest, BasicTwoPhaseWaiting) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// It should be writable.
hss = GetSignalsState(producer_);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
uint32_t num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
void* write_ptr = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes));
EXPECT_TRUE(write_ptr);
EXPECT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(int32_t)));
// At this point, it shouldn't be writable.
hss = GetSignalsState(producer_);
ASSERT_EQ(0u, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// It shouldn't be readable yet either (we'll wait later).
hss = GetSignalsState(consumer_);
ASSERT_EQ(0u, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
static_cast<int32_t*>(write_ptr)[0] = 123;
ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(1u * sizeof(int32_t)));
// It should immediately be writable again.
hss = GetSignalsState(producer_);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// It should become readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Start another two-phase write and check that it's readable even in the
// middle of it.
num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
write_ptr = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes));
EXPECT_TRUE(write_ptr);
EXPECT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(int32_t)));
// It should be readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// End the two-phase write without writing anything.
ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(0u));
// Start a two-phase read.
num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
const void* read_ptr = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes));
EXPECT_TRUE(read_ptr);
ASSERT_EQ(static_cast<uint32_t>(1u * sizeof(int32_t)), num_bytes);
// At this point, it should still be writable.
hss = GetSignalsState(producer_);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// But not readable.
hss = GetSignalsState(consumer_);
ASSERT_EQ(0u, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// End the two-phase read without reading anything.
ASSERT_EQ(MOJO_RESULT_OK, EndReadData(0u));
// It should be readable again.
hss = GetSignalsState(consumer_);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
}
void Seq(int32_t start, size_t count, int32_t* out) {
for (size_t i = 0; i < count; i++)
out[i] = start + static_cast<int32_t>(i);
}
TEST_F(DataPipeTest, AllOrNone) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
10 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Try writing more than the total capacity of the pipe.
uint32_t num_bytes = 20u * sizeof(int32_t);
int32_t buffer[100];
Seq(0, base::size(buffer), buffer);
ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, WriteData(buffer, &num_bytes, true));
// Should still be empty.
num_bytes = ~0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(0u, num_bytes);
// Write some data.
num_bytes = 5u * sizeof(int32_t);
Seq(100, base::size(buffer), buffer);
ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true));
ASSERT_EQ(5u * sizeof(int32_t), num_bytes);
// Wait for data.
// TODO(vtl): There's no real guarantee that all the data will become
// available at once (except that in current implementations, with reasonable
// limits, it will). Eventually, we'll be able to wait for a specified amount
// of data to become available.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED | MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Half full.
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(5u * sizeof(int32_t), num_bytes);
// Try writing more than the available capacity of the pipe, but less than the
// total capacity.
num_bytes = 6u * sizeof(int32_t);
Seq(200, base::size(buffer), buffer);
ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, WriteData(buffer, &num_bytes, true));
// Try reading too much.
num_bytes = 11u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, ReadData(buffer, &num_bytes, true));
int32_t expected_buffer[100];
memset(expected_buffer, 0xab, sizeof(expected_buffer));
ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try discarding too much.
num_bytes = 11u * sizeof(int32_t);
ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, DiscardData(&num_bytes, true));
// Just a little.
num_bytes = 2u * sizeof(int32_t);
Seq(300, base::size(buffer), buffer);
ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true));
ASSERT_EQ(2u * sizeof(int32_t), num_bytes);
// Just right.
num_bytes = 3u * sizeof(int32_t);
Seq(400, base::size(buffer), buffer);
ASSERT_EQ(MOJO_RESULT_OK, WriteData(buffer, &num_bytes, true));
ASSERT_EQ(3u * sizeof(int32_t), num_bytes);
// TODO(vtl): Hack (see also the TODO above): We can't currently wait for a
// specified amount of data to be available, so poll.
for (size_t i = 0; i < kMaxPoll; i++) {
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
if (num_bytes >= 10u * sizeof(int32_t))
break;
test::Sleep(test::EpsilonDeadline());
}
ASSERT_EQ(10u * sizeof(int32_t), num_bytes);
// Read half.
num_bytes = 5u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, true));
ASSERT_EQ(5u * sizeof(int32_t), num_bytes);
memset(expected_buffer, 0xab, sizeof(expected_buffer));
Seq(100, 5, expected_buffer);
ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try reading too much again.
num_bytes = 6u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, ReadData(buffer, &num_bytes, true));
memset(expected_buffer, 0xab, sizeof(expected_buffer));
ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try discarding too much again.
num_bytes = 6u * sizeof(int32_t);
ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE, DiscardData(&num_bytes, true));
// Discard a little.
num_bytes = 2u * sizeof(int32_t);
ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true));
ASSERT_EQ(2u * sizeof(int32_t), num_bytes);
// Three left.
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(3u * sizeof(int32_t), num_bytes);
// Close the producer, then test producer-closed cases.
CloseProducer();
// Wait.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
hss.satisfiable_signals);
// Try reading too much; "failed precondition" since the producer is closed.
num_bytes = 4u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
ReadData(buffer, &num_bytes, true));
memset(expected_buffer, 0xab, sizeof(expected_buffer));
ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try discarding too much; "failed precondition" again.
num_bytes = 4u * sizeof(int32_t);
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, DiscardData(&num_bytes, true));
// Read a little.
num_bytes = 2u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, true));
ASSERT_EQ(2u * sizeof(int32_t), num_bytes);
memset(expected_buffer, 0xab, sizeof(expected_buffer));
Seq(400, 2, expected_buffer);
ASSERT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Discard the remaining element.
num_bytes = 1u * sizeof(int32_t);
ASSERT_EQ(MOJO_RESULT_OK, DiscardData(&num_bytes, true));
ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
// Empty again.
num_bytes = ~0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(0u, num_bytes);
}
// Tests that |ProducerWriteData()| and |ConsumerReadData()| writes and reads,
// respectively, as much as possible, even if it may have to "wrap around" the
// internal circular buffer. (Note that the two-phase write and read need not do
// this.)
TEST_F(DataPipeTest, WrapAround) {
unsigned char test_data[1000];
for (size_t i = 0; i < base::size(test_data); i++)
test_data[i] = static_cast<unsigned char>(i);
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
100u // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Write 20 bytes.
uint32_t num_bytes = 20u;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(&test_data[0], &num_bytes, true));
ASSERT_EQ(20u, num_bytes);
// Wait for data.
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_TRUE(hss.satisfied_signals & MOJO_HANDLE_SIGNAL_READABLE);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Read 10 bytes.
unsigned char read_buffer[1000] = {0};
num_bytes = 10u;
ASSERT_EQ(MOJO_RESULT_OK, ReadData(read_buffer, &num_bytes, true));
ASSERT_EQ(10u, num_bytes);
ASSERT_EQ(0, memcmp(read_buffer, &test_data[0], 10u));
// Check that a two-phase write can now only write (at most) 80 bytes. (This
// checks an implementation detail; this behavior is not guaranteed.)
void* write_buffer_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_buffer_ptr, &num_bytes));
EXPECT_TRUE(write_buffer_ptr);
ASSERT_EQ(80u, num_bytes);
ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(0));
size_t total_num_bytes = 0;
while (total_num_bytes < 90) {
// Wait to write.
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(producer_, MOJO_HANDLE_SIGNAL_WRITABLE, &hss));
ASSERT_EQ(hss.satisfied_signals, MOJO_HANDLE_SIGNAL_WRITABLE);
ASSERT_EQ(hss.satisfiable_signals, MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_PEER_REMOTE);
// Write as much as we can.
num_bytes = 100;
ASSERT_EQ(MOJO_RESULT_OK,
WriteData(&test_data[20 + total_num_bytes], &num_bytes, false));
total_num_bytes += num_bytes;
}
ASSERT_EQ(90u, total_num_bytes);
num_bytes = 0;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(100u, num_bytes);
// Check that a two-phase read can now only read (at most) 90 bytes. (This
// checks an implementation detail; this behavior is not guaranteed.)
const void* read_buffer_ptr = nullptr;
num_bytes = 0;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer_ptr, &num_bytes));
EXPECT_TRUE(read_buffer_ptr);
ASSERT_EQ(90u, num_bytes);
ASSERT_EQ(MOJO_RESULT_OK, EndReadData(0));
// Read as much as possible. We should read 100 bytes.
num_bytes =
static_cast<uint32_t>(base::size(read_buffer) * sizeof(read_buffer[0]));
memset(read_buffer, 0, num_bytes);
ASSERT_EQ(MOJO_RESULT_OK, ReadData(read_buffer, &num_bytes));
ASSERT_EQ(100u, num_bytes);
ASSERT_EQ(0, memcmp(read_buffer, &test_data[10], 100u));
}
// Tests the behavior of writing (simple and two-phase), closing the producer,
// then reading (simple and two-phase).
TEST_F(DataPipeTest, WriteCloseProducerRead) {
const char kTestData[] = "hello world";
const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
1000u // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
// Write some data, so we'll have something to read.
uint32_t num_bytes = kTestDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes, false));
ASSERT_EQ(kTestDataSize, num_bytes);
// Write it again, so we'll have something left over.
num_bytes = kTestDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes, false));
ASSERT_EQ(kTestDataSize, num_bytes);
// Start two-phase write.
void* write_buffer_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_buffer_ptr, &num_bytes));
EXPECT_TRUE(write_buffer_ptr);
EXPECT_GT(num_bytes, 0u);
// TODO(vtl): (See corresponding TODO in TwoPhaseAllOrNone.)
for (size_t i = 0; i < kMaxPoll; i++) {
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
if (num_bytes >= 2u * kTestDataSize)
break;
test::Sleep(test::EpsilonDeadline());
}
ASSERT_EQ(2u * kTestDataSize, num_bytes);
// Start two-phase read.
const void* read_buffer_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer_ptr, &num_bytes));
EXPECT_TRUE(read_buffer_ptr);
ASSERT_EQ(2u * kTestDataSize, num_bytes);
// Close the producer.
CloseProducer();
// The consumer can finish its two-phase read.
ASSERT_EQ(0, memcmp(read_buffer_ptr, kTestData, kTestDataSize));
ASSERT_EQ(MOJO_RESULT_OK, EndReadData(kTestDataSize));
// And start another.
read_buffer_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer_ptr, &num_bytes));
EXPECT_TRUE(read_buffer_ptr);
ASSERT_EQ(kTestDataSize, num_bytes);
}
// Tests the behavior of interrupting a two-phase read and write by closing the
// consumer.
TEST_F(DataPipeTest, TwoPhaseWriteReadCloseConsumer) {
const char kTestData[] = "hello world";
const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
1000u // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Write some data, so we'll have something to read.
uint32_t num_bytes = kTestDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes));
ASSERT_EQ(kTestDataSize, num_bytes);
// Start two-phase write.
void* write_buffer_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_buffer_ptr, &num_bytes));
EXPECT_TRUE(write_buffer_ptr);
ASSERT_GT(num_bytes, kTestDataSize);
// Wait for data.
// TODO(vtl): (See corresponding TODO in AllOrNone.)
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Start two-phase read.
const void* read_buffer_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer_ptr, &num_bytes));
EXPECT_TRUE(read_buffer_ptr);
ASSERT_EQ(kTestDataSize, num_bytes);
// Close the consumer.
CloseConsumer();
// Wait for producer to know that the consumer is closed.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(producer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
// Actually write some data. (Note: Premature freeing of the buffer would
// probably only be detected under ASAN or similar.)
memcpy(write_buffer_ptr, kTestData, kTestDataSize);
// Note: Even though the consumer has been closed, ending the two-phase
// write will report success.
ASSERT_EQ(MOJO_RESULT_OK, EndWriteData(kTestDataSize));
// But trying to write should result in failure.
num_bytes = kTestDataSize;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, WriteData(kTestData, &num_bytes));
// As will trying to start another two-phase write.
write_buffer_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
BeginWriteData(&write_buffer_ptr, &num_bytes));
}
// Tests the behavior of "interrupting" a two-phase write by closing both the
// producer and the consumer.
TEST_F(DataPipeTest, TwoPhaseWriteCloseBoth) {
const uint32_t kTestDataSize = 15u;
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
1000u // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
// Start two-phase write.
void* write_buffer_ptr = nullptr;
uint32_t num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_buffer_ptr, &num_bytes));
EXPECT_TRUE(write_buffer_ptr);
ASSERT_GT(num_bytes, kTestDataSize);
}
// Tests the behavior of writing, closing the producer, and then reading (with
// and without data remaining).
TEST_F(DataPipeTest, WriteCloseProducerReadNoData) {
const char kTestData[] = "hello world";
const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
1000u // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Write some data, so we'll have something to read.
uint32_t num_bytes = kTestDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes));
ASSERT_EQ(kTestDataSize, num_bytes);
// Close the producer.
CloseProducer();
// Wait. (Note that once the consumer knows that the producer is closed, it
// must also know about all the data that was sent.)
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfiable_signals);
// Peek that data.
char buffer[1000];
num_bytes = static_cast<uint32_t>(sizeof(buffer));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes, false, true));
ASSERT_EQ(kTestDataSize, num_bytes);
ASSERT_EQ(0, memcmp(buffer, kTestData, kTestDataSize));
// Read that data.
memset(buffer, 0, 1000);
num_bytes = static_cast<uint32_t>(sizeof(buffer));
ASSERT_EQ(MOJO_RESULT_OK, ReadData(buffer, &num_bytes));
ASSERT_EQ(kTestDataSize, num_bytes);
ASSERT_EQ(0, memcmp(buffer, kTestData, kTestDataSize));
// A second read should fail.
num_bytes = static_cast<uint32_t>(sizeof(buffer));
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, ReadData(buffer, &num_bytes));
// A two-phase read should also fail.
const void* read_buffer_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
BeginReadData(&read_buffer_ptr, &num_bytes));
// Ditto for discard.
num_bytes = 10u;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, DiscardData(&num_bytes));
}
// Test that during a two phase read the memory stays valid even if more data
// comes in.
TEST_F(DataPipeTest, TwoPhaseReadMemoryStable) {
const char kTestData[] = "hello world";
const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
1000u // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Write some data.
uint32_t num_bytes = kTestDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes));
ASSERT_EQ(kTestDataSize, num_bytes);
// Wait for the data.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Begin a two-phase read.
const void* read_buffer_ptr = nullptr;
uint32_t read_buffer_size = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer_ptr, &read_buffer_size));
// Write more data.
const char kExtraData[] = "bye world";
const uint32_t kExtraDataSize = static_cast<uint32_t>(sizeof(kExtraData));
num_bytes = kExtraDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kExtraData, &num_bytes));
ASSERT_EQ(kExtraDataSize, num_bytes);
// Close the producer.
CloseProducer();
// Wait. (Note that once the consumer knows that the producer is closed, it
// must also have received the extra data).
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfiable_signals);
// Read the two phase memory to check it's still valid.
ASSERT_EQ(0, memcmp(read_buffer_ptr, kTestData, kTestDataSize));
EndReadData(read_buffer_size);
}
// Test that two-phase reads/writes behave correctly when given invalid
// arguments.
TEST_F(DataPipeTest, TwoPhaseMoreInvalidArguments) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
10 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// No data.
uint32_t num_bytes = 1000u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(0u, num_bytes);
// Try "ending" a two-phase write when one isn't active.
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
EndWriteData(1u * sizeof(int32_t)));
// Wait a bit, to make sure that if a signal were (incorrectly) sent, it'd
// have time to propagate.
test::Sleep(test::EpsilonDeadline());
// Still no data.
num_bytes = 1000u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(0u, num_bytes);
// Try ending a two-phase write with an invalid amount (too much).
num_bytes = 0u;
void* write_ptr = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes));
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
EndWriteData(num_bytes + static_cast<uint32_t>(sizeof(int32_t))));
// But the two-phase write still ended.
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndWriteData(0u));
// Wait a bit (as above).
test::Sleep(test::EpsilonDeadline());
// Still no data.
num_bytes = 1000u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(0u, num_bytes);
// Try ending a two-phase write with an invalid amount (not a multiple of the
// element size).
num_bytes = 0u;
write_ptr = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, BeginWriteData(&write_ptr, &num_bytes));
EXPECT_GE(num_bytes, 1u);
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, EndWriteData(1u));
// But the two-phase write still ended.
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndWriteData(0u));
// Wait a bit (as above).
test::Sleep(test::EpsilonDeadline());
// Still no data.
num_bytes = 1000u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(0u, num_bytes);
// Now write some data, so we'll be able to try reading.
int32_t element = 123;
num_bytes = 1u * sizeof(int32_t);
ASSERT_EQ(MOJO_RESULT_OK, WriteData(&element, &num_bytes));
// Wait for data.
// TODO(vtl): (See corresponding TODO in AllOrNone.)
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// One element available.
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
// Try "ending" a two-phase read when one isn't active.
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, EndReadData(1u * sizeof(int32_t)));
// Still one element available.
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
// Try ending a two-phase read with an invalid amount (too much).
num_bytes = 0u;
const void* read_ptr = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes));
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
EndReadData(num_bytes + static_cast<uint32_t>(sizeof(int32_t))));
// Still one element available.
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
// Try ending a two-phase read with an invalid amount (not a multiple of the
// element size).
num_bytes = 0u;
read_ptr = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_ptr, &num_bytes));
ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
ASSERT_EQ(123, static_cast<const int32_t*>(read_ptr)[0]);
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, EndReadData(1u));
// Still one element available.
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, QueryData(&num_bytes));
ASSERT_EQ(1u * sizeof(int32_t), num_bytes);
}
// Test that a producer can be sent over a MP.
TEST_F(DataPipeTest, SendProducer) {
const char kTestData[] = "hello world";
const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
1000u // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
MojoHandleSignalsState hss;
// Write some data.
uint32_t num_bytes = kTestDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kTestData, &num_bytes));
ASSERT_EQ(kTestDataSize, num_bytes);
// Wait for the data.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Check the data.
const void* read_buffer = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes));
ASSERT_EQ(0, memcmp(read_buffer, kTestData, kTestDataSize));
EndReadData(num_bytes);
// Now send the producer over a MP so that it's serialized.
MojoHandle pipe0, pipe1;
ASSERT_EQ(MOJO_RESULT_OK, MojoCreateMessagePipe(nullptr, &pipe0, &pipe1));
ASSERT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(MessagePipeHandle(pipe0), nullptr, 0, &producer_, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
producer_ = MOJO_HANDLE_INVALID;
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_RESULT_OK, ReadEmptyMessageWithHandles(pipe1, &producer_, 1));
// Write more data.
const char kExtraData[] = "bye world";
const uint32_t kExtraDataSize = static_cast<uint32_t>(sizeof(kExtraData));
num_bytes = kExtraDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kExtraData, &num_bytes));
ASSERT_EQ(kExtraDataSize, num_bytes);
// Wait for it.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Check the second write.
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadData(&read_buffer, &num_bytes));
ASSERT_EQ(0, memcmp(read_buffer, kExtraData, kExtraDataSize));
EndReadData(num_bytes);
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(pipe0));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(pipe1));
}
// Ensures that if a data pipe consumer whose producer has closed is passed over
// a message pipe, the deserialized dispatcher is also marked as having a closed
// peer.
TEST_F(DataPipeTest, ConsumerWithClosedProducerSent) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
// We can write to a data pipe handle immediately.
int32_t data = 123;
uint32_t num_bytes = sizeof(data);
ASSERT_EQ(MOJO_RESULT_OK, WriteData(&data, &num_bytes));
ASSERT_EQ(MOJO_RESULT_OK, CloseProducer());
// Now wait for the other side to become readable and to see the peer closed.
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
state.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
state.satisfiable_signals);
// Now send the consumer over a MP so that it's serialized.
MojoHandle pipe0, pipe1;
ASSERT_EQ(MOJO_RESULT_OK, MojoCreateMessagePipe(nullptr, &pipe0, &pipe1));
ASSERT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(MessagePipeHandle(pipe0), nullptr, 0, &consumer_, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
consumer_ = MOJO_HANDLE_INVALID;
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1, MOJO_HANDLE_SIGNAL_READABLE, &state));
ASSERT_EQ(MOJO_RESULT_OK, ReadEmptyMessageWithHandles(pipe1, &consumer_, 1));
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumer_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
state.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
state.satisfiable_signals);
int32_t read_data;
ASSERT_EQ(MOJO_RESULT_OK, ReadData(&read_data, &num_bytes));
ASSERT_EQ(sizeof(read_data), num_bytes);
ASSERT_EQ(data, read_data);
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(pipe0));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(pipe1));
}
bool WriteAllData(MojoHandle producer,
const void* elements,
uint32_t num_bytes) {
for (size_t i = 0; i < kMaxPoll; i++) {
// Write as much data as we can.
uint32_t write_bytes = num_bytes;
MojoResult result =
MojoWriteData(producer, elements, &write_bytes, nullptr);
if (result == MOJO_RESULT_OK) {
num_bytes -= write_bytes;
elements = static_cast<const uint8_t*>(elements) + write_bytes;
if (num_bytes == 0)
return true;
} else {
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT, result);
}
MojoHandleSignalsState hss = MojoHandleSignalsState();
EXPECT_EQ(MOJO_RESULT_OK, test::MojoTestBase::WaitForSignals(
producer, MOJO_HANDLE_SIGNAL_WRITABLE, &hss));
EXPECT_TRUE(hss.satisfied_signals & MOJO_HANDLE_SIGNAL_WRITABLE);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
}
return false;
}
// If |expect_empty| is true, expect |consumer| to be empty after reading.
bool ReadAllData(MojoHandle consumer,
void* elements,
uint32_t num_bytes,
bool expect_empty) {
for (size_t i = 0; i < kMaxPoll; i++) {
// Read as much data as we can.
uint32_t read_bytes = num_bytes;
MojoResult result = MojoReadData(consumer, nullptr, elements, &read_bytes);
if (result == MOJO_RESULT_OK) {
num_bytes -= read_bytes;
elements = static_cast<uint8_t*>(elements) + read_bytes;
if (num_bytes == 0) {
if (expect_empty) {
// Expect no more data.
test::Sleep(test::TinyDeadline());
MojoReadDataOptions options;
options.struct_size = sizeof(options);
options.flags = MOJO_READ_DATA_FLAG_QUERY;
MojoReadData(consumer, &options, nullptr, &num_bytes);
EXPECT_EQ(0u, num_bytes);
}
return true;
}
} else {
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT, result);
}
MojoHandleSignalsState hss = MojoHandleSignalsState();
EXPECT_EQ(MOJO_RESULT_OK, test::MojoTestBase::WaitForSignals(
consumer, MOJO_HANDLE_SIGNAL_READABLE, &hss));
// Peer could have become closed while we're still waiting for data.
EXPECT_TRUE(MOJO_HANDLE_SIGNAL_READABLE & hss.satisfied_signals);
EXPECT_TRUE(hss.satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE);
EXPECT_TRUE(hss.satisfiable_signals & MOJO_HANDLE_SIGNAL_PEER_CLOSED);
}
return num_bytes == 0;
}
TEST_F(DataPipeTest, CreateOversized) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1, // |element_num_bytes|.
kOversizedCapacity, // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_RESOURCE_EXHAUSTED, Create(&options));
}
#if !defined(OS_IOS)
TEST_F(DataPipeTest, Multiprocess) {
const uint32_t kTestDataSize =
static_cast<uint32_t>(sizeof(kMultiprocessTestData));
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1, // |element_num_bytes|.
kMultiprocessCapacity // |capacity_num_bytes|.
};
ASSERT_EQ(MOJO_RESULT_OK, Create(&options));
RunTestClient("MultiprocessClient", [&](MojoHandle server_mp) {
// Send some data before serialising and sending the data pipe over.
// This is the first write so we don't need to use WriteAllData.
uint32_t num_bytes = kTestDataSize;
ASSERT_EQ(MOJO_RESULT_OK, WriteData(kMultiprocessTestData, &num_bytes,
MOJO_WRITE_DATA_FLAG_ALL_OR_NONE));
ASSERT_EQ(kTestDataSize, num_bytes);
// Send child process the data pipe.
ASSERT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(MessagePipeHandle(server_mp), nullptr, 0,
&consumer_, 1, MOJO_WRITE_MESSAGE_FLAG_NONE));
// Send a bunch of data of varying sizes.
uint8_t buffer[100];
int seq = 0;
for (int i = 0; i < kMultiprocessMaxIter; ++i) {
for (uint32_t size = 1; size <= kMultiprocessCapacity; size++) {
for (unsigned int j = 0; j < size; ++j)
buffer[j] = seq + j;
EXPECT_TRUE(WriteAllData(producer_, buffer, size));
seq += size;
}
}
// Write the test string in again.
ASSERT_TRUE(WriteAllData(producer_, kMultiprocessTestData, kTestDataSize));
// Swap ends.
ASSERT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(MessagePipeHandle(server_mp), nullptr, 0,
&producer_, 1, MOJO_WRITE_MESSAGE_FLAG_NONE));
// Receive the consumer from the other side.
producer_ = MOJO_HANDLE_INVALID;
MojoHandleSignalsState hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(server_mp, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_RESULT_OK,
ReadEmptyMessageWithHandles(server_mp, &consumer_, 1));
// Read the test string twice. Once for when we sent it, and once for the
// other end sending it.
for (int i = 0; i < 2; ++i) {
EXPECT_TRUE(ReadAllData(consumer_, buffer, kTestDataSize, i == 1));
EXPECT_EQ(0, memcmp(buffer, kMultiprocessTestData, kTestDataSize));
}
WriteMessage(server_mp, "quit");
// Don't have to close the consumer here because it will be done for us.
});
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessClient, DataPipeTest, client_mp) {
const uint32_t kTestDataSize =
static_cast<uint32_t>(sizeof(kMultiprocessTestData));
// Receive the data pipe from the other side.
MojoHandle consumer = MOJO_HANDLE_INVALID;
MojoHandleSignalsState hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(client_mp, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_RESULT_OK,
ReadEmptyMessageWithHandles(client_mp, &consumer, 1));
// Read the initial string that was sent.
int32_t buffer[100];
EXPECT_TRUE(ReadAllData(consumer, buffer, kTestDataSize, false));
EXPECT_EQ(0, memcmp(buffer, kMultiprocessTestData, kTestDataSize));
// Receive the main data and check it is correct.
int seq = 0;
uint8_t expected_buffer[100];
for (int i = 0; i < kMultiprocessMaxIter; ++i) {
for (uint32_t size = 1; size <= kMultiprocessCapacity; ++size) {
for (unsigned int j = 0; j < size; ++j)
expected_buffer[j] = seq + j;
EXPECT_TRUE(ReadAllData(consumer, buffer, size, false));
EXPECT_EQ(0, memcmp(buffer, expected_buffer, size));
seq += size;
}
}
// Swap ends.
ASSERT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(MessagePipeHandle(client_mp), nullptr, 0, &consumer,
1, MOJO_WRITE_MESSAGE_FLAG_NONE));
// Receive the producer from the other side.
MojoHandle producer = MOJO_HANDLE_INVALID;
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(client_mp, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_RESULT_OK,
ReadEmptyMessageWithHandles(client_mp, &producer, 1));
// Write the test string one more time.
EXPECT_TRUE(WriteAllData(producer, kMultiprocessTestData, kTestDataSize));
// We swapped ends, so close the producer.
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(producer));
// Wait to receive a "quit" message before exiting.
EXPECT_EQ("quit", ReadMessage(client_mp));
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(WriteAndCloseProducer, DataPipeTest, h) {
MojoHandle p;
std::string message = ReadMessageWithHandles(h, &p, 1);
// Write some data to the producer and close it.
uint32_t num_bytes = static_cast<uint32_t>(message.size());
EXPECT_EQ(MOJO_RESULT_OK,
MojoWriteData(p, message.data(), &num_bytes, nullptr));
EXPECT_EQ(num_bytes, static_cast<uint32_t>(message.size()));
// Close the producer before quitting.
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(p));
// Wait for a quit message.
EXPECT_EQ("quit", ReadMessage(h));
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(ReadAndCloseConsumer, DataPipeTest, h) {
MojoHandle c;
std::string expected_message = ReadMessageWithHandles(h, &c, 1);
// Wait for the consumer to become readable.
EXPECT_EQ(MOJO_RESULT_OK, WaitForSignals(c, MOJO_HANDLE_SIGNAL_READABLE));
// Drain the consumer and expect to find the given message.
uint32_t num_bytes = static_cast<uint32_t>(expected_message.size());
std::vector<char> bytes(expected_message.size());
EXPECT_EQ(MOJO_RESULT_OK, MojoReadData(c, nullptr, bytes.data(), &num_bytes));
EXPECT_EQ(num_bytes, static_cast<uint32_t>(bytes.size()));
std::string message(bytes.data(), bytes.size());
EXPECT_EQ(expected_message, message);
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(c));
// Wait for a quit message.
EXPECT_EQ("quit", ReadMessage(h));
}
TEST_F(DataPipeTest, SendConsumerAndCloseProducer) {
// Create a new data pipe.
MojoHandle p, c;
EXPECT_EQ(MOJO_RESULT_OK, MojoCreateDataPipe(nullptr, &p, &c));
RunTestClient("WriteAndCloseProducer", [&](MojoHandle producer_client) {
RunTestClient("ReadAndCloseConsumer", [&](MojoHandle consumer_client) {
const std::string kMessage = "Hello, world!";
WriteMessageWithHandles(producer_client, kMessage, &p, 1);
WriteMessageWithHandles(consumer_client, kMessage, &c, 1);
WriteMessage(consumer_client, "quit");
});
WriteMessage(producer_client, "quit");
});
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(CreateAndWrite, DataPipeTest, h) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1, // |element_num_bytes|.
kMultiprocessCapacity // |capacity_num_bytes|.
};
MojoHandle p, c;
ASSERT_EQ(MOJO_RESULT_OK, MojoCreateDataPipe(&options, &p, &c));
const std::string kMessage = "Hello, world!";
WriteMessageWithHandles(h, kMessage, &c, 1);
// Write some data to the producer and close it.
uint32_t num_bytes = static_cast<uint32_t>(kMessage.size());
EXPECT_EQ(MOJO_RESULT_OK,
MojoWriteData(p, kMessage.data(), &num_bytes, nullptr));
EXPECT_EQ(num_bytes, static_cast<uint32_t>(kMessage.size()));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(p));
// Wait for a quit message.
EXPECT_EQ("quit", ReadMessage(h));
}
TEST_F(DataPipeTest, CreateInChild) {
RunTestClient("CreateAndWrite", [&](MojoHandle child) {
MojoHandle c;
std::string expected_message = ReadMessageWithHandles(child, &c, 1);
// Wait for the consumer to become readable.
EXPECT_EQ(MOJO_RESULT_OK, WaitForSignals(c, MOJO_HANDLE_SIGNAL_READABLE));
// Drain the consumer and expect to find the given message.
uint32_t num_bytes = static_cast<uint32_t>(expected_message.size());
std::vector<char> bytes(expected_message.size());
EXPECT_EQ(MOJO_RESULT_OK,
MojoReadData(c, nullptr, bytes.data(), &num_bytes));
EXPECT_EQ(num_bytes, static_cast<uint32_t>(bytes.size()));
std::string message(bytes.data(), bytes.size());
EXPECT_EQ(expected_message, message);
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(c));
WriteMessage(child, "quit");
});
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(DataPipeStatusChangeInTransitClient,
DataPipeTest,
parent) {
// This test verifies that peer closure is detectable through various
// mechanisms when it races with handle transfer.
MojoHandle handles[6];
EXPECT_EQ("o_O", ReadMessageWithHandles(parent, handles, 6));
MojoHandle* producers = &handles[0];
MojoHandle* consumers = &handles[3];
// Wait on producer 0
EXPECT_EQ(MOJO_RESULT_OK,
WaitForSignals(producers[0], MOJO_HANDLE_SIGNAL_PEER_CLOSED));
// Wait on consumer 0
EXPECT_EQ(MOJO_RESULT_OK,
WaitForSignals(consumers[0], MOJO_HANDLE_SIGNAL_PEER_CLOSED));
base::test::SingleThreadTaskEnvironment task_environment;
// Wait on producer 1 and consumer 1 using SimpleWatchers.
{
base::RunLoop run_loop;
int count = 0;
auto callback = base::Bind(
[](base::RunLoop* loop, int* count, MojoResult result) {
EXPECT_EQ(MOJO_RESULT_OK, result);
if (++*count == 2)
loop->Quit();
},
&run_loop, &count);
SimpleWatcher producer_watcher(FROM_HERE,
SimpleWatcher::ArmingPolicy::AUTOMATIC,
base::SequencedTaskRunnerHandle::Get());
SimpleWatcher consumer_watcher(FROM_HERE,
SimpleWatcher::ArmingPolicy::AUTOMATIC,
base::SequencedTaskRunnerHandle::Get());
producer_watcher.Watch(Handle(producers[1]), MOJO_HANDLE_SIGNAL_PEER_CLOSED,
callback);
consumer_watcher.Watch(Handle(consumers[1]), MOJO_HANDLE_SIGNAL_PEER_CLOSED,
callback);
run_loop.Run();
EXPECT_EQ(2, count);
}
// Wait on producer 2 by polling with MojoWriteData.
MojoResult result;
do {
uint32_t num_bytes = 0;
result = MojoWriteData(producers[2], nullptr, &num_bytes, nullptr);
} while (result == MOJO_RESULT_OK);
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, result);
// Wait on consumer 2 by polling with MojoReadData.
do {
char byte;
uint32_t num_bytes = 1;
result = MojoReadData(consumers[2], nullptr, &byte, &num_bytes);
} while (result == MOJO_RESULT_SHOULD_WAIT);
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, result);
for (size_t i = 0; i < 6; ++i)
CloseHandle(handles[i]);
}
TEST_F(DataPipeTest, StatusChangeInTransit) {
MojoHandle producers[6];
MojoHandle consumers[6];
for (size_t i = 0; i < 6; ++i)
CreateDataPipe(&producers[i], &consumers[i], 1);
RunTestClient("DataPipeStatusChangeInTransitClient", [&](MojoHandle child) {
MojoHandle handles[] = {producers[0], producers[1], producers[2],
consumers[3], consumers[4], consumers[5]};
// Send 3 producers and 3 consumers, and let their transfer race with their
// peers' closure.
WriteMessageWithHandles(child, "o_O", handles, 6);
for (size_t i = 0; i < 3; ++i)
CloseHandle(consumers[i]);
for (size_t i = 3; i < 6; ++i)
CloseHandle(producers[i]);
});
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(CreateOversizedChild, DataPipeTest, h) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_FLAG_NONE, // |flags|.
1, // |element_num_bytes|.
kOversizedCapacity // |capacity_num_bytes|.
};
MojoHandle p, c;
ASSERT_EQ(MOJO_RESULT_RESOURCE_EXHAUSTED,
MojoCreateDataPipe(&options, &p, &c));
WriteMessage(h, "success");
// Wait for a quit message.
EXPECT_EQ("quit", ReadMessage(h));
}
TEST_F(DataPipeTest, CreateOversizedInChild) {
RunTestClient("CreateOversizedChild", [&](MojoHandle child) {
// Wait for the child to finish the test.
std::string expected_message = ReadMessage(child);
EXPECT_EQ("success", expected_message);
WriteMessage(child, "quit");
});
}
#endif // !defined(OS_IOS)
} // namespace
} // namespace core
} // namespace mojo