| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "sandbox/linux/seccomp-bpf/syscall.h" |
| |
| #include <asm/unistd.h> |
| #include <fcntl.h> |
| #include <sys/mman.h> |
| #include <sys/syscall.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <vector> |
| |
| #include "base/basictypes.h" |
| #include "base/posix/eintr_wrapper.h" |
| #include "build/build_config.h" |
| #include "sandbox/linux/bpf_dsl/bpf_dsl.h" |
| #include "sandbox/linux/bpf_dsl/policy.h" |
| #include "sandbox/linux/seccomp-bpf/bpf_tests.h" |
| #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" |
| #include "sandbox/linux/tests/unit_tests.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using sandbox::bpf_dsl::Allow; |
| using sandbox::bpf_dsl::ResultExpr; |
| using sandbox::bpf_dsl::Trap; |
| |
| namespace sandbox { |
| |
| namespace { |
| |
| // Different platforms use different symbols for the six-argument version |
| // of the mmap() system call. Test for the correct symbol at compile time. |
| #ifdef __NR_mmap2 |
| const int kMMapNr = __NR_mmap2; |
| #else |
| const int kMMapNr = __NR_mmap; |
| #endif |
| |
| TEST(Syscall, InvalidCallReturnsENOSYS) { |
| EXPECT_EQ(-ENOSYS, Syscall::InvalidCall()); |
| } |
| |
| TEST(Syscall, WellKnownEntryPoint) { |
| // Test that Syscall::Call(-1) is handled specially. Don't do this on ARM, |
| // where syscall(-1) crashes with SIGILL. Not running the test is fine, as we |
| // are still testing ARM code in the next set of tests. |
| #if !defined(__arm__) && !defined(__aarch64__) |
| EXPECT_NE(Syscall::Call(-1), syscall(-1)); |
| #endif |
| |
| // If possible, test that Syscall::Call(-1) returns the address right |
| // after |
| // a kernel entry point. |
| #if defined(__i386__) |
| EXPECT_EQ(0x80CDu, ((uint16_t*)Syscall::Call(-1))[-1]); // INT 0x80 |
| #elif defined(__x86_64__) |
| EXPECT_EQ(0x050Fu, ((uint16_t*)Syscall::Call(-1))[-1]); // SYSCALL |
| #elif defined(__arm__) |
| #if defined(__thumb__) |
| EXPECT_EQ(0xDF00u, ((uint16_t*)Syscall::Call(-1))[-1]); // SWI 0 |
| #else |
| EXPECT_EQ(0xEF000000u, ((uint32_t*)Syscall::Call(-1))[-1]); // SVC 0 |
| #endif |
| #elif defined(__mips__) |
| // Opcode for MIPS sycall is in the lower 16-bits |
| EXPECT_EQ(0x0cu, (((uint32_t*)Syscall::Call(-1))[-1]) & 0x0000FFFF); |
| #elif defined(__aarch64__) |
| EXPECT_EQ(0xD4000001u, ((uint32_t*)Syscall::Call(-1))[-1]); // SVC 0 |
| #else |
| #warning Incomplete test case; need port for target platform |
| #endif |
| } |
| |
| TEST(Syscall, TrivialSyscallNoArgs) { |
| // Test that we can do basic system calls |
| EXPECT_EQ(Syscall::Call(__NR_getpid), syscall(__NR_getpid)); |
| } |
| |
| TEST(Syscall, TrivialSyscallOneArg) { |
| int new_fd; |
| // Duplicate standard error and close it. |
| ASSERT_GE(new_fd = Syscall::Call(__NR_dup, 2), 0); |
| int close_return_value = IGNORE_EINTR(Syscall::Call(__NR_close, new_fd)); |
| ASSERT_EQ(close_return_value, 0); |
| } |
| |
| TEST(Syscall, TrivialFailingSyscall) { |
| errno = -42; |
| int ret = Syscall::Call(__NR_dup, -1); |
| ASSERT_EQ(-EBADF, ret); |
| // Verify that Syscall::Call does not touch errno. |
| ASSERT_EQ(-42, errno); |
| } |
| |
| // SIGSYS trap handler that will be called on __NR_uname. |
| intptr_t CopySyscallArgsToAux(const struct arch_seccomp_data& args, void* aux) { |
| // |aux| is our BPF_AUX pointer. |
| std::vector<uint64_t>* const seen_syscall_args = |
| static_cast<std::vector<uint64_t>*>(aux); |
| BPF_ASSERT(arraysize(args.args) == 6); |
| seen_syscall_args->assign(args.args, args.args + arraysize(args.args)); |
| return -ENOMEM; |
| } |
| |
| class CopyAllArgsOnUnamePolicy : public bpf_dsl::Policy { |
| public: |
| explicit CopyAllArgsOnUnamePolicy(std::vector<uint64_t>* aux) : aux_(aux) {} |
| virtual ~CopyAllArgsOnUnamePolicy() {} |
| |
| virtual ResultExpr EvaluateSyscall(int sysno) const override { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
| if (sysno == __NR_uname) { |
| return Trap(CopySyscallArgsToAux, aux_); |
| } else { |
| return Allow(); |
| } |
| } |
| |
| private: |
| std::vector<uint64_t>* aux_; |
| |
| DISALLOW_COPY_AND_ASSIGN(CopyAllArgsOnUnamePolicy); |
| }; |
| |
| // We are testing Syscall::Call() by making use of a BPF filter that |
| // allows us |
| // to inspect the system call arguments that the kernel saw. |
| BPF_TEST(Syscall, |
| SyntheticSixArgs, |
| CopyAllArgsOnUnamePolicy, |
| std::vector<uint64_t> /* (*BPF_AUX) */) { |
| const int kExpectedValue = 42; |
| // In this test we only pass integers to the kernel. We might want to make |
| // additional tests to try other types. What we will see depends on |
| // implementation details of kernel BPF filters and we will need to document |
| // the expected behavior very clearly. |
| int syscall_args[6]; |
| for (size_t i = 0; i < arraysize(syscall_args); ++i) { |
| syscall_args[i] = kExpectedValue + i; |
| } |
| |
| // We could use pretty much any system call we don't need here. uname() is |
| // nice because it doesn't have any dangerous side effects. |
| BPF_ASSERT(Syscall::Call(__NR_uname, |
| syscall_args[0], |
| syscall_args[1], |
| syscall_args[2], |
| syscall_args[3], |
| syscall_args[4], |
| syscall_args[5]) == -ENOMEM); |
| |
| // We expect the trap handler to have copied the 6 arguments. |
| BPF_ASSERT(BPF_AUX->size() == 6); |
| |
| // Don't loop here so that we can see which argument does cause the failure |
| // easily from the failing line. |
| // uint64_t is the type passed to our SIGSYS handler. |
| BPF_ASSERT((*BPF_AUX)[0] == static_cast<uint64_t>(syscall_args[0])); |
| BPF_ASSERT((*BPF_AUX)[1] == static_cast<uint64_t>(syscall_args[1])); |
| BPF_ASSERT((*BPF_AUX)[2] == static_cast<uint64_t>(syscall_args[2])); |
| BPF_ASSERT((*BPF_AUX)[3] == static_cast<uint64_t>(syscall_args[3])); |
| BPF_ASSERT((*BPF_AUX)[4] == static_cast<uint64_t>(syscall_args[4])); |
| BPF_ASSERT((*BPF_AUX)[5] == static_cast<uint64_t>(syscall_args[5])); |
| } |
| |
| TEST(Syscall, ComplexSyscallSixArgs) { |
| int fd; |
| ASSERT_LE(0, |
| fd = Syscall::Call(__NR_openat, AT_FDCWD, "/dev/null", O_RDWR, 0L)); |
| |
| // Use mmap() to allocate some read-only memory |
| char* addr0; |
| ASSERT_NE( |
| (char*)NULL, |
| addr0 = reinterpret_cast<char*>(Syscall::Call(kMMapNr, |
| (void*)NULL, |
| 4096, |
| PROT_READ, |
| MAP_PRIVATE | MAP_ANONYMOUS, |
| fd, |
| 0L))); |
| |
| // Try to replace the existing mapping with a read-write mapping |
| char* addr1; |
| ASSERT_EQ(addr0, |
| addr1 = reinterpret_cast<char*>( |
| Syscall::Call(kMMapNr, |
| addr0, |
| 4096L, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, |
| fd, |
| 0L))); |
| ++*addr1; // This should not seg fault |
| |
| // Clean up |
| EXPECT_EQ(0, Syscall::Call(__NR_munmap, addr1, 4096L)); |
| EXPECT_EQ(0, IGNORE_EINTR(Syscall::Call(__NR_close, fd))); |
| |
| // Check that the offset argument (i.e. the sixth argument) is processed |
| // correctly. |
| ASSERT_GE( |
| fd = Syscall::Call(__NR_openat, AT_FDCWD, "/proc/self/exe", O_RDONLY, 0L), |
| 0); |
| char* addr2, *addr3; |
| ASSERT_NE((char*)NULL, |
| addr2 = reinterpret_cast<char*>(Syscall::Call( |
| kMMapNr, (void*)NULL, 8192L, PROT_READ, MAP_PRIVATE, fd, 0L))); |
| ASSERT_NE((char*)NULL, |
| addr3 = reinterpret_cast<char*>(Syscall::Call(kMMapNr, |
| (void*)NULL, |
| 4096L, |
| PROT_READ, |
| MAP_PRIVATE, |
| fd, |
| #if defined(__NR_mmap2) |
| 1L |
| #else |
| 4096L |
| #endif |
| ))); |
| EXPECT_EQ(0, memcmp(addr2 + 4096, addr3, 4096)); |
| |
| // Just to be absolutely on the safe side, also verify that the file |
| // contents matches what we are getting from a read() operation. |
| char buf[8192]; |
| EXPECT_EQ(8192, Syscall::Call(__NR_read, fd, buf, 8192L)); |
| EXPECT_EQ(0, memcmp(addr2, buf, 8192)); |
| |
| // Clean up |
| EXPECT_EQ(0, Syscall::Call(__NR_munmap, addr2, 8192L)); |
| EXPECT_EQ(0, Syscall::Call(__NR_munmap, addr3, 4096L)); |
| EXPECT_EQ(0, IGNORE_EINTR(Syscall::Call(__NR_close, fd))); |
| } |
| |
| } // namespace |
| |
| } // namespace sandbox |