blob: 1bcd43f8b504ba246989bfdfc9390a2d3b1f9763 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/json/json_writer.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/trace_event.h"
#include "ui/events/latency_info.h"
#include <algorithm>
namespace {
const size_t kMaxLatencyInfoNumber = 100;
const char* GetComponentName(ui::LatencyComponentType type) {
#define CASE_TYPE(t) case ui::t: return #t
switch (type) {
CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_SCROLL_UPDATE_MAIN_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_FIRST_SCROLL_UPDATE_ORIGINAL_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_FORWARD_SCROLL_UPDATE_TO_MAIN_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_ACK_RWH_COMPONENT);
CASE_TYPE(WINDOW_SNAPSHOT_FRAME_NUMBER_COMPONENT);
CASE_TYPE(WINDOW_OLD_SNAPSHOT_FRAME_NUMBER_COMPONENT);
CASE_TYPE(INPUT_EVENT_BROWSER_RECEIVED_RENDERER_SWAP_COMPONENT);
CASE_TYPE(INPUT_EVENT_GPU_SWAP_BUFFER_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT);
CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT);
default:
DLOG(WARNING) << "Unhandled LatencyComponentType.\n";
break;
}
#undef CASE_TYPE
return "unknown";
}
bool IsTerminalComponent(ui::LatencyComponentType type) {
switch (type) {
case ui::INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT:
case ui::INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT:
return true;
default:
return false;
}
}
bool IsBeginComponent(ui::LatencyComponentType type) {
return (type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT ||
type == ui::INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT ||
type == ui::INPUT_EVENT_LATENCY_BEGIN_SCROLL_UPDATE_MAIN_COMPONENT);
}
// This class is for converting latency info to trace buffer friendly format.
class LatencyInfoTracedValue
: public base::trace_event::ConvertableToTraceFormat {
public:
static scoped_refptr<ConvertableToTraceFormat> FromValue(
scoped_ptr<base::Value> value);
void AppendAsTraceFormat(std::string* out) const override;
private:
explicit LatencyInfoTracedValue(base::Value* value);
~LatencyInfoTracedValue() override;
scoped_ptr<base::Value> value_;
DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue);
};
scoped_refptr<base::trace_event::ConvertableToTraceFormat>
LatencyInfoTracedValue::FromValue(scoped_ptr<base::Value> value) {
return scoped_refptr<base::trace_event::ConvertableToTraceFormat>(
new LatencyInfoTracedValue(value.release()));
}
LatencyInfoTracedValue::~LatencyInfoTracedValue() {
}
void LatencyInfoTracedValue::AppendAsTraceFormat(std::string* out) const {
std::string tmp;
base::JSONWriter::Write(value_.get(), &tmp);
*out += tmp;
}
LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value* value)
: value_(value) {
}
// Converts latencyinfo into format that can be dumped into trace buffer.
scoped_refptr<base::trace_event::ConvertableToTraceFormat> AsTraceableData(
const ui::LatencyInfo& latency) {
scoped_ptr<base::DictionaryValue> record_data(new base::DictionaryValue());
for (ui::LatencyInfo::LatencyMap::const_iterator it =
latency.latency_components.begin();
it != latency.latency_components.end(); ++it) {
base::DictionaryValue* component_info = new base::DictionaryValue();
component_info->SetDouble("comp_id", static_cast<double>(it->first.second));
component_info->SetDouble(
"time", static_cast<double>(it->second.event_time.ToInternalValue()));
component_info->SetDouble("count", it->second.event_count);
record_data->Set(GetComponentName(it->first.first), component_info);
}
record_data->SetDouble("trace_id", static_cast<double>(latency.trace_id));
scoped_ptr<base::ListValue> coordinates(new base::ListValue());
for (size_t i = 0; i < latency.input_coordinates_size; i++) {
scoped_ptr<base::DictionaryValue> coordinate_pair(
new base::DictionaryValue());
coordinate_pair->SetDouble("x", latency.input_coordinates[i].x);
coordinate_pair->SetDouble("y", latency.input_coordinates[i].y);
coordinates->Append(coordinate_pair.release());
}
record_data->Set("coordinates", coordinates.release());
return LatencyInfoTracedValue::FromValue(record_data.Pass());
}
} // namespace
namespace ui {
LatencyInfo::InputCoordinate::InputCoordinate() : x(0), y(0) {
}
LatencyInfo::InputCoordinate::InputCoordinate(float x, float y) : x(x), y(y) {
}
LatencyInfo::LatencyInfo()
: input_coordinates_size(0), trace_id(-1), terminated(false) {
}
LatencyInfo::~LatencyInfo() {
}
bool LatencyInfo::Verify(const std::vector<LatencyInfo>& latency_info,
const char* referring_msg) {
if (latency_info.size() > kMaxLatencyInfoNumber) {
LOG(ERROR) << referring_msg << ", LatencyInfo vector size "
<< latency_info.size() << " is too big.";
return false;
}
for (size_t i = 0; i < latency_info.size(); i++) {
if (latency_info[i].input_coordinates_size > kMaxInputCoordinates) {
LOG(ERROR) << referring_msg << ", coordinate vector size "
<< latency_info[i].input_coordinates_size << " is too big.";
return false;
}
}
return true;
}
void LatencyInfo::CopyLatencyFrom(const LatencyInfo& other,
LatencyComponentType type) {
for (LatencyMap::const_iterator it = other.latency_components.begin();
it != other.latency_components.end();
++it) {
if (it->first.first == type) {
AddLatencyNumberWithTimestamp(it->first.first,
it->first.second,
it->second.sequence_number,
it->second.event_time,
it->second.event_count);
}
}
}
void LatencyInfo::AddNewLatencyFrom(const LatencyInfo& other) {
for (LatencyMap::const_iterator it = other.latency_components.begin();
it != other.latency_components.end();
++it) {
if (!FindLatency(it->first.first, it->first.second, NULL)) {
AddLatencyNumberWithTimestamp(it->first.first,
it->first.second,
it->second.sequence_number,
it->second.event_time,
it->second.event_count);
}
}
}
void LatencyInfo::AddLatencyNumber(LatencyComponentType component,
int64 id,
int64 component_sequence_number) {
AddLatencyNumberWithTimestamp(component, id, component_sequence_number,
base::TimeTicks::Now(), 1);
}
void LatencyInfo::AddLatencyNumberWithTimestamp(LatencyComponentType component,
int64 id,
int64 component_sequence_number,
base::TimeTicks time,
uint32 event_count) {
static const unsigned char* benchmark_enabled =
TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED("benchmark");
if (IsBeginComponent(component)) {
// Should only ever add begin component once.
CHECK_EQ(-1, trace_id);
trace_id = component_sequence_number;
if (*benchmark_enabled) {
// The timestamp for ASYNC_BEGIN trace event is used for drawing the
// beginning of the trace event in trace viewer. For better visualization,
// for an input event, we want to draw the beginning as when the event is
// originally created, e.g. the timestamp of its ORIGINAL/UI_COMPONENT,
// not when we actually issue the ASYNC_BEGIN trace event.
LatencyComponent component;
int64 ts = 0;
if (FindLatency(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT,
0,
&component) ||
FindLatency(INPUT_EVENT_LATENCY_UI_COMPONENT,
0,
&component)) {
// The timestamp stored in ORIGINAL/UI_COMPONENT is using clock
// CLOCK_MONOTONIC while TRACE_EVENT_ASYNC_BEGIN_WITH_TIMESTAMP0
// expects timestamp using CLOCK_MONOTONIC or CLOCK_SYSTEM_TRACE (on
// CrOS). So we need to adjust the diff between in CLOCK_MONOTONIC and
// CLOCK_SYSTEM_TRACE. Note that the diff is drifting overtime so we
// can't use a static value.
int64 diff = base::TimeTicks::Now().ToInternalValue() -
base::TimeTicks::NowFromSystemTraceTime().ToInternalValue();
ts = component.event_time.ToInternalValue() - diff;
} else {
ts = base::TimeTicks::NowFromSystemTraceTime().ToInternalValue();
}
TRACE_EVENT_ASYNC_BEGIN_WITH_TIMESTAMP0(
"benchmark",
"InputLatency",
TRACE_ID_DONT_MANGLE(trace_id),
ts);
}
TRACE_EVENT_FLOW_BEGIN0(
"input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id));
}
LatencyMap::key_type key = std::make_pair(component, id);
LatencyMap::iterator it = latency_components.find(key);
if (it == latency_components.end()) {
LatencyComponent info = {component_sequence_number, time, event_count};
latency_components[key] = info;
} else {
it->second.sequence_number = std::max(component_sequence_number,
it->second.sequence_number);
uint32 new_count = event_count + it->second.event_count;
if (event_count > 0 && new_count != 0) {
// Do a weighted average, so that the new event_time is the average of
// the times of events currently in this structure with the time passed
// into this method.
it->second.event_time += (time - it->second.event_time) * event_count /
new_count;
it->second.event_count = new_count;
}
}
if (IsTerminalComponent(component) && trace_id != -1) {
// Should only ever add terminal component once.
CHECK(!terminated);
terminated = true;
if (*benchmark_enabled) {
TRACE_EVENT_ASYNC_END1("benchmark",
"InputLatency",
TRACE_ID_DONT_MANGLE(trace_id),
"data", AsTraceableData(*this));
}
TRACE_EVENT_FLOW_END0(
"input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id));
}
}
bool LatencyInfo::FindLatency(LatencyComponentType type,
int64 id,
LatencyComponent* output) const {
LatencyMap::const_iterator it = latency_components.find(
std::make_pair(type, id));
if (it == latency_components.end())
return false;
if (output)
*output = it->second;
return true;
}
void LatencyInfo::RemoveLatency(LatencyComponentType type) {
LatencyMap::iterator it = latency_components.begin();
while (it != latency_components.end()) {
if (it->first.first == type) {
LatencyMap::iterator tmp = it;
++it;
latency_components.erase(tmp);
} else {
it++;
}
}
}
void LatencyInfo::Clear() {
latency_components.clear();
}
void LatencyInfo::TraceEventType(const char* event_type) {
TRACE_EVENT_ASYNC_STEP_INTO0("benchmark",
"InputLatency",
TRACE_ID_DONT_MANGLE(trace_id),
event_type);
}
} // namespace ui