 Sign in 

chromium / chromium / src / 4178e190e9da409b055e5dff469911ec6f6b716f / . / pdf / paint_aggregator.h
blob: 5bb4ea72251f68e3d45b2f8fa175f297af8803ab [file] [log] [blame]
		// Copyright (c) 2010 The Chromium Authors. All rights reserved.
		// Use of this source code is governed by a BSD-style license that can be
		// found in the LICENSE file.
		
		#ifndef PDF_PAINT_AGGREGATOR_H_
		#define PDF_PAINT_AGGREGATOR_H_
		
		#include <vector>
		
		#include "ppapi/cpp/image_data.h"
		#include "ppapi/cpp/rect.h"
		
		// This class is responsible for aggregating multiple invalidation and scroll
		// commands to produce a scroll and repaint sequence. You can use this manually
		// to track your updates, but most applications will use the PaintManager to
		// additionally handle the necessary callbacks on top of the PaintAggregator
		// functionality.
		//
		// See http://code.google.com/p/ppapi/wiki/2DPaintingModel
		class PaintAggregator {
		 public:
		  // Stores information about a rectangle that has finished painting.  The
		  // PaintManager will paint it only when everything else on the screen is also
		  // ready.
		  struct ReadyRect {
		    pp::Point offset;
		    pp::Rect rect;
		    pp::ImageData image_data;
		  };
		
		  struct PaintUpdate {
		    PaintUpdate();
		    PaintUpdate(const PaintUpdate& that);
		    ~PaintUpdate();
		
		    // True if there is a scroll applied. This indicates that the scroll delta
		    // and scroll_rect are nonzero (just as a convenience).
		    bool has_scroll;
		
		    // The amount to scroll by. Either the X or Y may be nonzero to indicate a
		    // scroll in that direction, but there will never be a scroll in both
		    // directions at the same time (this will be converted to a paint of the
		    // region instead).
		    //
		    // If there is no scroll, this will be (0, 0).
		    pp::Point scroll_delta;
		
		    // The rectangle that should be scrolled by the scroll_delta. If there is no
		    // scroll, this will be (0, 0, 0, 0). We only track one scroll command at
		    // once. If there are multiple ones, they will be converted to invalidates.
		    pp::Rect scroll_rect;
		
		    // A list of all the individual dirty rectangles. This is an aggregated list
		    // of all invalidate calls. Different rectangles may be unified to produce a
		    // minimal list with no overlap that is more efficient to paint. This list
		    // also contains the region exposed by any scroll command.
		    std::vector<pp::Rect> paint_rects;
		  };
		
		  PaintAggregator();
		
		  // There is a PendingUpdate if InvalidateRect or ScrollRect were called and
		  // ClearPendingUpdate was not called.
		  bool HasPendingUpdate() const;
		  void ClearPendingUpdate();
		
		  PaintUpdate GetPendingUpdate();
		
		  // Sets the result of a call to the plugin to paint.  This includes rects that
		  // are finished painting (ready), and ones that are still in-progress
		  // (pending).
		  void SetIntermediateResults(const std::vector<ReadyRect>& ready,
		                              const std::vector<pp::Rect>& pending);
		
		  // Returns the rectangles that are ready to be painted.
		  std::vector<ReadyRect> GetReadyRects() const;
		
		  // The given rect should be repainted.
		  void InvalidateRect(const pp::Rect& rect);
		
		  // The given rect should be scrolled by the given amounts.
		  void ScrollRect(const pp::Rect& clip_rect, const pp::Point& amount);
		
		 private:
		  // This structure is an internal version of PaintUpdate. It's different in
		  // two respects:
		  //
		  //  - The scroll damange (area exposed by the scroll operation, if any) is
		  //    maintained separately from the dirty rects generated by calling
		  //    InvalidateRect. We need to know this distinction for some operations.
		  //
		  //  - The paint bounds union is computed on the fly so we don't have to keep
		  //    a rectangle up to date as we do different operations.
		  class InternalPaintUpdate {
		   public:
		    InternalPaintUpdate();
		    ~InternalPaintUpdate();
		
		    // Computes the rect damaged by scrolling within |scroll_rect| by
		    // |scroll_delta|. This rect must be repainted. It is not included in
		    // paint_rects.
		    pp::Rect GetScrollDamage() const;
		
		    pp::Point scroll_delta;
		    pp::Rect scroll_rect;
		
		    // Does not include the scroll damage rect unless
		    // synthesized_scroll_damage_rect_ is set.
		    std::vector<pp::Rect> paint_rects;
		
		    // Rectangles that are finished painting.
		    std::vector<ReadyRect> ready_rects;
		
		    // Whether we have added the scroll damage rect to paint_rects yet or not.
		    bool synthesized_scroll_damage_rect_;
		  };
		
		  pp::Rect ScrollPaintRect(const pp::Rect& paint_rect,
		                           const pp::Point& amount) const;
		  void InvalidateScrollRect();
		
		  // Internal method used by InvalidateRect. If |check_scroll| is true, then the
		  // method checks if there's a pending scroll and if so also invalidates |rect|
		  // in the new scroll position.
		  void InvalidateRectInternal(const pp::Rect& rect, bool check_scroll);
		
		  InternalPaintUpdate update_;
		};
		
		#endif  // PDF_PAINT_AGGREGATOR_H_


 
 Powered by Gitiles| Privacy| Termstxt json
