blob: 661c09524924d085fb043676fefe80203a3dbed2 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MEDIA_CAST_CAST_DEFINES_H_
#define MEDIA_CAST_CAST_DEFINES_H_
#include <stdint.h>
#include <cmath>
#include <map>
#include <set>
#include "base/basictypes.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/time/time.h"
#include "media/cast/net/cast_transport_config.h"
namespace media {
namespace cast {
const int64 kDontShowTimeoutMs = 33;
const float kDefaultCongestionControlBackOff = 0.875f;
const uint32 kVideoFrequency = 90000;
const uint32 kStartFrameId = UINT32_C(0xffffffff);
// This is an important system-wide constant. This limits how much history the
// implementation must retain in order to process the acknowledgements of past
// frames.
// This value is carefully choosen such that it fits in the 8-bits range for
// frame IDs. It is also less than half of the full 8-bits range such that we
// can handle wrap around and compare two frame IDs.
const int kMaxUnackedFrames = 120;
const int64 kCastMessageUpdateIntervalMs = 33;
const int64 kNackRepeatIntervalMs = 30;
enum CastInitializationStatus {
STATUS_AUDIO_UNINITIALIZED,
STATUS_VIDEO_UNINITIALIZED,
STATUS_AUDIO_INITIALIZED,
STATUS_VIDEO_INITIALIZED,
STATUS_INVALID_CAST_ENVIRONMENT,
STATUS_INVALID_CRYPTO_CONFIGURATION,
STATUS_UNSUPPORTED_AUDIO_CODEC,
STATUS_UNSUPPORTED_VIDEO_CODEC,
STATUS_INVALID_AUDIO_CONFIGURATION,
STATUS_INVALID_VIDEO_CONFIGURATION,
STATUS_HW_VIDEO_ENCODER_NOT_SUPPORTED,
};
enum DefaultSettings {
kDefaultAudioEncoderBitrate = 0, // This means "auto," and may mean VBR.
kDefaultAudioSamplingRate = 48000,
kDefaultMaxQp = 56,
kDefaultMinQp = 4,
kDefaultMaxFrameRate = 30,
kDefaultNumberOfVideoBuffers = 1,
kDefaultRtcpIntervalMs = 500,
kDefaultRtpHistoryMs = 1000,
kDefaultRtpMaxDelayMs = 100,
};
enum PacketType {
kNewPacket,
kNewPacketCompletingFrame,
kDuplicatePacket,
kTooOldPacket,
};
// kRtcpCastAllPacketsLost is used in PacketIDSet and
// on the wire to mean that ALL packets for a particular
// frame are lost.
const uint16 kRtcpCastAllPacketsLost = 0xffff;
// kRtcpCastLastPacket is used in PacketIDSet to ask for
// the last packet of a frame to be retransmitted.
const uint16 kRtcpCastLastPacket = 0xfffe;
const size_t kMinLengthOfRtcp = 8;
// Basic RTP header + cast header.
const size_t kMinLengthOfRtp = 12 + 6;
// Each uint16 represents one packet id within a cast frame.
// Can also contain kRtcpCastAllPacketsLost and kRtcpCastLastPacket.
typedef std::set<uint16> PacketIdSet;
// Each uint8 represents one cast frame.
typedef std::map<uint8, PacketIdSet> MissingFramesAndPacketsMap;
// TODO(pwestin): Re-factor the functions bellow into a class with static
// methods.
// January 1970, in NTP seconds.
// Network Time Protocol (NTP), which is in seconds relative to 0h UTC on
// 1 January 1900.
static const int64 kUnixEpochInNtpSeconds = INT64_C(2208988800);
// Magic fractional unit. Used to convert time (in microseconds) to/from
// fractional NTP seconds.
static const double kMagicFractionalUnit = 4.294967296E3;
// The maximum number of Cast receiver events to keep in history for the
// purpose of sending the events through RTCP.
// The number chosen should be more than the number of events that can be
// stored in a RTCP packet.
static const size_t kReceiverRtcpEventHistorySize = 512;
inline bool IsNewerFrameId(uint32 frame_id, uint32 prev_frame_id) {
return (frame_id != prev_frame_id) &&
static_cast<uint32>(frame_id - prev_frame_id) < 0x80000000;
}
inline bool IsNewerRtpTimestamp(uint32 timestamp, uint32 prev_timestamp) {
return (timestamp != prev_timestamp) &&
static_cast<uint32>(timestamp - prev_timestamp) < 0x80000000;
}
inline bool IsOlderFrameId(uint32 frame_id, uint32 prev_frame_id) {
return (frame_id == prev_frame_id) || IsNewerFrameId(prev_frame_id, frame_id);
}
inline bool IsNewerPacketId(uint16 packet_id, uint16 prev_packet_id) {
return (packet_id != prev_packet_id) &&
static_cast<uint16>(packet_id - prev_packet_id) < 0x8000;
}
inline bool IsNewerSequenceNumber(uint16 sequence_number,
uint16 prev_sequence_number) {
// Same function as IsNewerPacketId just different data and name.
return IsNewerPacketId(sequence_number, prev_sequence_number);
}
// Create a NTP diff from seconds and fractions of seconds; delay_fraction is
// fractions of a second where 0x80000000 is half a second.
inline uint32 ConvertToNtpDiff(uint32 delay_seconds, uint32 delay_fraction) {
return ((delay_seconds & 0x0000FFFF) << 16) +
((delay_fraction & 0xFFFF0000) >> 16);
}
inline base::TimeDelta ConvertFromNtpDiff(uint32 ntp_delay) {
uint32 delay_ms = (ntp_delay & 0x0000ffff) * 1000;
delay_ms >>= 16;
delay_ms += ((ntp_delay & 0xffff0000) >> 16) * 1000;
return base::TimeDelta::FromMilliseconds(delay_ms);
}
inline void ConvertTimeToFractions(int64 ntp_time_us,
uint32* seconds,
uint32* fractions) {
DCHECK_GE(ntp_time_us, 0) << "Time must NOT be negative";
const int64 seconds_component =
ntp_time_us / base::Time::kMicrosecondsPerSecond;
// NTP time will overflow in the year 2036. Also, make sure unit tests don't
// regress and use an origin past the year 2036. If this overflows here, the
// inverse calculation fails to compute the correct TimeTicks value, throwing
// off the entire system.
DCHECK_LT(seconds_component, INT64_C(4263431296))
<< "One year left to fix the NTP year 2036 wrap-around issue!";
*seconds = static_cast<uint32>(seconds_component);
*fractions = static_cast<uint32>(
(ntp_time_us % base::Time::kMicrosecondsPerSecond) *
kMagicFractionalUnit);
}
inline void ConvertTimeTicksToNtp(const base::TimeTicks& time,
uint32* ntp_seconds,
uint32* ntp_fractions) {
base::TimeDelta elapsed_since_unix_epoch =
time - base::TimeTicks::UnixEpoch();
int64 ntp_time_us =
elapsed_since_unix_epoch.InMicroseconds() +
(kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond);
ConvertTimeToFractions(ntp_time_us, ntp_seconds, ntp_fractions);
}
inline base::TimeTicks ConvertNtpToTimeTicks(uint32 ntp_seconds,
uint32 ntp_fractions) {
// We need to ceil() here because the calculation of |fractions| in
// ConvertTimeToFractions() effectively does a floor().
int64 ntp_time_us = ntp_seconds * base::Time::kMicrosecondsPerSecond +
static_cast<int64>(std::ceil(ntp_fractions / kMagicFractionalUnit));
base::TimeDelta elapsed_since_unix_epoch = base::TimeDelta::FromMicroseconds(
ntp_time_us -
(kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond));
return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch;
}
inline base::TimeDelta RtpDeltaToTimeDelta(int64 rtp_delta, int rtp_timebase) {
DCHECK_GT(rtp_timebase, 0);
return rtp_delta * base::TimeDelta::FromSeconds(1) / rtp_timebase;
}
inline int64 TimeDeltaToRtpDelta(base::TimeDelta delta, int rtp_timebase) {
DCHECK_GT(rtp_timebase, 0);
return delta * rtp_timebase / base::TimeDelta::FromSeconds(1);
}
} // namespace cast
} // namespace media
#endif // MEDIA_CAST_CAST_DEFINES_H_