blob: cd561683b3a0ca767e0211960b64b9018e64842b [file] [log] [blame]
* Copyright (C) 2000 Lars Knoll (
* (C) 2000 Antti Koivisto (
* (C) 2000 Dirk Mueller (
* (C) 2004 Allan Sandfeld Jensen (
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2012 Apple Inc.
* All rights reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* Library General Public License for more details.
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
#include <utility>
#include "base/auto_reset.h"
#include "base/macros.h"
#include "third_party/blink/renderer/core/core_export.h"
#include "third_party/blink/renderer/core/display_lock/display_lock_context.h"
#include "third_party/blink/renderer/core/dom/document.h"
#include "third_party/blink/renderer/core/dom/document_lifecycle.h"
#include "third_party/blink/renderer/core/dom/element.h"
#include "third_party/blink/renderer/core/editing/forward.h"
#include "third_party/blink/renderer/core/html_names.h"
#include "third_party/blink/renderer/core/layout/api/hit_test_action.h"
#include "third_party/blink/renderer/core/layout/api/selection_state.h"
#include "third_party/blink/renderer/core/layout/hit_test_result.h"
#include "third_party/blink/renderer/core/layout/layout_object_child_list.h"
#include "third_party/blink/renderer/core/layout/map_coordinates_flags.h"
#include "third_party/blink/renderer/core/layout/ng/ng_outline_type.h"
#include "third_party/blink/renderer/core/layout/subtree_layout_scope.h"
#include "third_party/blink/renderer/core/loader/resource/image_resource_observer.h"
#include "third_party/blink/renderer/core/paint/compositing/compositing_state.h"
#include "third_party/blink/renderer/core/paint/fragment_data.h"
#include "third_party/blink/renderer/core/paint/paint_phase.h"
#include "third_party/blink/renderer/core/style/computed_style.h"
#include "third_party/blink/renderer/core/style/style_difference.h"
#include "third_party/blink/renderer/platform/geometry/float_quad.h"
#include "third_party/blink/renderer/platform/geometry/layout_rect.h"
#include "third_party/blink/renderer/platform/graphics/compositing_reasons.h"
#include "third_party/blink/renderer/platform/graphics/image_orientation.h"
#include "third_party/blink/renderer/platform/graphics/paint/display_item_client.h"
#include "third_party/blink/renderer/platform/graphics/paint_invalidation_reason.h"
#include "third_party/blink/renderer/platform/graphics/subtree_paint_property_update_reason.h"
#include "third_party/blink/renderer/platform/transforms/transform_state.h"
#include "third_party/blink/renderer/platform/transforms/transformation_matrix.h"
#include "third_party/blink/renderer/platform/wtf/allocator.h"
namespace blink {
class AffineTransform;
class Cursor;
class HitTestLocation;
class HitTestRequest;
class InlineBox;
class LayoutBoxModelObject;
class LayoutBlock;
class LayoutBlockFlow;
class LayoutFlowThread;
class LayoutGeometryMap;
class LayoutMultiColumnSpannerPlaceholder;
class LayoutView;
class LocalFrameView;
class NGPaintFragment;
class NGPhysicalBoxFragment;
class PaintLayer;
class PseudoStyleRequest;
struct PaintInfo;
struct PaintInvalidatorContext;
struct WebScrollIntoViewParams;
enum VisualRectFlags {
kDefaultVisualRectFlags = 0,
kEdgeInclusive = 1 << 0,
// Use the GeometryMapper fast-path, if possible.
kUseGeometryMapper = 1 << 1,
enum CursorDirective { kSetCursorBasedOnStyle, kSetCursor, kDoNotSetCursor };
enum HitTestFilter { kHitTestAll, kHitTestSelf, kHitTestDescendants };
enum MarkingBehavior {
enum ScheduleRelayoutBehavior { kScheduleRelayout, kDontScheduleRelayout };
enum {
kBackgroundPaintInGraphicsLayer = 1 << 0,
kBackgroundPaintInScrollingContents = 1 << 1
using BackgroundPaintLocation = uint8_t;
struct AnnotatedRegionValue {
bool operator==(const AnnotatedRegionValue& o) const {
return draggable == o.draggable && bounds == o.bounds;
LayoutRect bounds;
bool draggable;
#ifndef NDEBUG
const int kShowTreeCharacterOffset = 39;
// LayoutObject is the base class for all layout tree objects.
// LayoutObjects form a tree structure that is a close mapping of the DOM tree.
// The root of the LayoutObject tree is the LayoutView, which is the
// LayoutObject associated with the Document.
// Some LayoutObjects don't have an associated Node and are called "anonymous"
// (see the constructor below). Anonymous LayoutObjects exist for several
// purposes but are usually required by CSS. A good example is anonymous table
// parts (see LayoutTable for the expected structure). Anonymous LayoutObjects
// are generated when a new child is added to the tree in addChild(). See the
// function for some important information on this.
// Also some Node don't have an associated LayoutObjects e.g. if display: none
// or display: contents is set. For more detail, see LayoutObject::createObject
// that creates the right LayoutObject based on the style.
// Because the SVG and CSS classes both inherit from this object, functions can
// belong to either realm and sometimes to both.
// The purpose of the layout tree is to do layout (aka reflow) and store its
// results for painting and hit-testing. Layout is the process of sizing and
// positioning Nodes on the page. In Blink, layouts always start from a relayout
// boundary (see objectIsRelayoutBoundary in LayoutObject.cpp). As such, we
// need to mark the ancestors all the way to the enclosing relayout boundary in
// order to do a correct layout.
// Due to the high cost of layout, a lot of effort is done to avoid doing full
// layouts of nodes. This is why there are several types of layout available to
// bypass the complex operations. See the comments on the layout booleans in
// LayoutObjectBitfields below about the different layouts.
// To save memory, especially for the common child class LayoutText,
// LayoutObject doesn't provide storage for children. Descendant classes that do
// allow children have to have a LayoutObjectChildList member that stores the
// actual children and override virtualChildren().
// LayoutObject is an ImageResourceObserver, which means that it gets notified
// when associated images are changed. This is used for 2 main use cases:
// - reply to 'background-image' as we need to invalidate the background in this
// case.
// (See
// - image (LayoutImage, LayoutSVGImage) or video (LayoutVideo) objects that are
// placeholders for displaying them.
// ***** LIFETIME *****
// LayoutObjects are fully owned by their associated DOM node. In other words,
// it's the DOM node's responsibility to free its LayoutObject, this is why
// LayoutObjects are not and SHOULD NOT be RefCounted.
// LayoutObjects are created during the DOM attachment. This phase computes
// the style and create the LayoutObject associated with the Node (see
// Node::attachLayoutTree). LayoutObjects are destructed during detachment (see
// Node::detachLayoutTree), which can happen when the DOM node is removed from
// the
// DOM tree, during page tear down or when the style is changed to contain
// 'display: none'.
// Anonymous LayoutObjects are owned by their enclosing DOM node. This means
// that if the DOM node is detached, it has to destroy any anonymous
// descendants. This is done in LayoutObject::destroy().
// Note that for correctness, destroy() is expected to clean any anonymous
// wrappers as sequences of insertion / removal could make them visible to
// the page. This is done by LayoutObject::destroyAndCleanupAnonymousWrappers()
// which is the preferred way to destroy an object.
// The preferred logical widths are the intrinsic sizes of this element
// ( Intrinsic sizes depend
// mostly on the content and a limited set of style properties (e.g. any
// font-related property for text, 'min-width'/'max-width',
// 'min-height'/'max-height').
// Those widths are used to determine the final layout logical width, which
// depends on the layout algorithm used and the available logical width.
// LayoutObject only has getters for the widths (MinPreferredLogicalWidth and
// MaxPreferredLogicalWidth). However the storage for them is in LayoutBox (see
// min_preferred_logical_width_ and max_preferred_logical_width_). This is
// because only boxes implementing the full box model have a need for them.
// Because LayoutBlockFlow's intrinsic widths rely on the underlying text
// content, LayoutBlockFlow may call LayoutText::ComputePreferredLogicalWidths.
// The 2 widths are computed lazily during layout when the getters are called.
// The computation is done by calling ComputePreferredLogicalWidths() behind the
// scene. The boolean used to control the lazy recomputation is
// PreferredLogicalWidthsDirty.
// See the individual getters below for more details about what each width is.
class CORE_EXPORT LayoutObject : public ImageResourceObserver,
public DisplayItemClient {
friend class LayoutObjectChildList;
FRIEND_TEST_ALL_PREFIXES(LayoutObjectTest, MutableForPaintingClearPaintFlags);
friend class VisualRectMappingTest;
// Anonymous objects should pass the document as their node, and they will
// then automatically be marked as anonymous in the constructor.
explicit LayoutObject(Node*);
~LayoutObject() override;
// Returns the name of the layout object.
virtual const char* GetName() const = 0;
// Returns the decorated name used by run-layout-tests. The name contains the
// name of the object along with extra information about the layout object
// state (e.g. positioning).
String DecoratedName() const;
// This is an inexact determination of whether the display of this objects is
// altered or obscured by CSS effects.
bool HasDistortingVisualEffects() const;
// Returns false iff this object or one of its ancestors has opacity:0.
bool HasNonZeroEffectiveOpacity() const;
void EnsureIdForTesting() { fragment_.EnsureIdForTesting(); }
// DisplayItemClient methods.
// Hide DisplayItemClient's methods whose names are too generic for
// LayoutObjects. Should use LayoutObject's methods instead.
using DisplayItemClient::Invalidate;
using DisplayItemClient::IsValid;
using DisplayItemClient::GetPaintInvalidationReason;
// Do not call VisualRect directly outside of the DisplayItemClient
// interface, use a per-fragment one on FragmentData instead.
IntRect VisualRect() const final;
void ClearPartialInvalidationVisualRect() const final {
return GetMutableForPainting()
DOMNodeId OwnerNodeId() const final;
IntRect PartialInvalidationVisualRect() const final {
return FirstFragment().PartialInvalidationVisualRect();
IntRect VisualRectForInlineBox() const {
return AdjustVisualRectForInlineBox(VisualRect());
IntRect PartialInvalidationVisualRectForInlineBox() const {
return AdjustVisualRectForInlineBox(PartialInvalidationVisualRect());
String DebugName() const final;
// End of DisplayItemClient methods.
LayoutObject* Parent() const { return parent_; }
bool IsDescendantOf(const LayoutObject*) const;
LayoutObject* PreviousSibling() const { return previous_; }
LayoutObject* NextSibling() const { return next_; }
LayoutObject* SlowFirstChild() const {
if (const LayoutObjectChildList* children = VirtualChildren())
return children->FirstChild();
return nullptr;
LayoutObject* SlowLastChild() const {
if (const LayoutObjectChildList* children = VirtualChildren())
return children->LastChild();
return nullptr;
// See comment in the class description as to why there is no child.
virtual LayoutObjectChildList* VirtualChildren() { return nullptr; }
virtual const LayoutObjectChildList* VirtualChildren() const {
return nullptr;
LayoutObject* NextInPreOrder() const;
LayoutObject* NextInPreOrder(const LayoutObject* stay_within) const;
LayoutObject* NextInPreOrderAfterChildren() const;
LayoutObject* NextInPreOrderAfterChildren(
const LayoutObject* stay_within) const;
// Traverse in the exact reverse of the preorder traversal. In order words,
// they traverse in the last child -> first child -> root ordering.
LayoutObject* PreviousInPreOrder() const;
LayoutObject* PreviousInPreOrder(const LayoutObject* stay_within) const;
// Traverse in the exact reverse of the postorder traversal. In other words,
// they traverse in the root -> last child -> first child ordering.
LayoutObject* PreviousInPostOrder(const LayoutObject* stay_within) const;
LayoutObject* PreviousInPostOrderBeforeChildren(
const LayoutObject* stay_within) const;
LayoutObject* LastLeafChild() const;
// The following functions are used when the layout tree hierarchy changes to
// make sure layers get properly added and removed. Since containership can be
// implemented by any subclass, and since a hierarchy can contain a mixture of
// boxes and other object types, these functions need to be in the base class.
PaintLayer* EnclosingLayer() const;
void AddLayers(PaintLayer* parent_layer);
void RemoveLayers(PaintLayer* parent_layer);
void MoveLayers(PaintLayer* old_parent, PaintLayer* new_parent);
PaintLayer* FindNextLayer(PaintLayer* parent_layer,
LayoutObject* start_point,
bool check_parent = true);
// Returns the layer that will paint this object. During paint invalidation,
// we should use the faster PaintInvalidatorContext::painting_layer instead.
PaintLayer* PaintingLayer() const;
bool IsFixedPositionObjectInPagedMedia() const;
// Takes the given rect, assumed to be in absolute coordinates, and scrolls
// this Element and all it's containers such that the child content of this
// Element at that rect is visible in the viewport. Returns the new absolute
// rect of the target rect after all scrolls are completed, in the coordinate
// space of the local root frame.
LayoutRect ScrollRectToVisible(const LayoutRect&,
const WebScrollIntoViewParams&);
// Convenience function for getting to the nearest enclosing box of a
// LayoutObject.
LayoutBox* EnclosingBox() const;
LayoutBox* EnclosingScrollableBox() const;
// Returns the containing block flow if it's a LayoutNGBlockFlow, or nullptr
// otherwise. Note that the semantics is different from |EnclosingBox| for
// atomic inlines that this function returns the container, while
// |EnclosingBox| returns the atomic inline itself.
LayoutBlockFlow* ContainingNGBlockFlow() const;
// Returns |NGPhysicalBoxFragment| for |ContainingNGBlockFlow()| or nullptr
// otherwise.
const NGPhysicalBoxFragment* ContainingBlockFlowFragment() const;
// Function to return our enclosing flow thread if we are contained inside
// one. This function follows the containing block chain.
LayoutFlowThread* FlowThreadContainingBlock() const {
if (!IsInsideFlowThread())
return nullptr;
return LocateFlowThreadContainingBlock();
void SetHasAXObject(bool flag) { has_ax_object_ = flag; }
bool HasAXObject() const { return has_ax_object_; }
// Helper class forbidding calls to setNeedsLayout() during its lifetime.
class SetLayoutNeededForbiddenScope {
explicit SetLayoutNeededForbiddenScope(LayoutObject&);
LayoutObject& layout_object_;
bool preexisting_forbidden_;
void AssertLaidOut() const {
#ifndef NDEBUG
if (NeedsLayout() && !LayoutBlockedByDisplayLock())
SECURITY_DCHECK(!NeedsLayout() || LayoutBlockedByDisplayLock());
void AssertSubtreeIsLaidOut() const {
for (const LayoutObject* layout_object = this; layout_object;
layout_object = layout_object->LayoutBlockedByDisplayLock()
? layout_object->NextInPreOrderAfterChildren()
: layout_object->NextInPreOrder()) {
void AssertClearedPaintInvalidationFlags() const {
#ifndef NDEBUG
if (PaintInvalidationStateIsDirty() && !PrePaintBlockedByDisplayLock()) {
void AssertSubtreeClearedPaintInvalidationFlags() const {
for (const LayoutObject* layout_object = this; layout_object;
layout_object = layout_object->PrePaintBlockedByDisplayLock()
? layout_object->NextInPreOrderAfterChildren()
: layout_object->NextInPreOrder()) {
// LayoutObject tree manipulation
DISABLE_CFI_PERF virtual bool CanHaveChildren() const {
return VirtualChildren();
virtual bool IsChildAllowed(LayoutObject*, const ComputedStyle&) const {
return true;
// This function is called whenever a child is inserted under |this|.
// The main purpose of this function is to generate a consistent layout
// tree, which means generating the missing anonymous objects. Most of the
// time there'll be no anonymous objects to generate.
// The following invariants are true on the input:
// - |newChild->node()| is a child of |node()|, if |this| is not
// anonymous. If |this| is anonymous, the invariant holds with the
// enclosing non-anonymous LayoutObject.
// - |beforeChild->node()| (if |beforeChild| is provided and not anonymous)
// is a sibling of |newChild->node()| (if |newChild| is not anonymous).
// The reason for these invariants is that insertions are performed on the
// DOM tree. Because the layout tree may insert extra anonymous renderers,
// the previous invariants are only guaranteed for the DOM tree. In
// particular, |beforeChild| may not be a direct child when it's wrapped in
// anonymous wrappers.
// Classes inserting anonymous LayoutObjects in the tree are expected to
// check for the anonymous wrapper case with:
// beforeChild->parent() != this
// The usage of |child/parent/sibling| in this comment actually means
// |child/parent/sibling| in a flat tree because a layout tree is generated
// from a structure of a flat tree if Shadow DOM is used.
// See LayoutTreeBuilderTraversal and FlatTreeTraversal.
// See LayoutTable::addChild and LayoutBlock::addChild.
// TODO(jchaffraix): |newChild| cannot be nullptr and should be a reference.
virtual void AddChild(LayoutObject* new_child,
LayoutObject* before_child = nullptr);
virtual void AddChildIgnoringContinuation(
LayoutObject* new_child,
LayoutObject* before_child = nullptr) {
return AddChild(new_child, before_child);
virtual void RemoveChild(LayoutObject*);
virtual bool CreatesAnonymousWrapper() const { return false; }
// Sets the parent of this object but doesn't add it as a child of the parent.
void SetDangerousOneWayParent(LayoutObject*);
UniqueObjectId UniqueId() const { return fragment_.UniqueId(); }
inline bool ShouldApplyPaintContainment(const ComputedStyle& style) const {
return style.ContainsPaint() && (!IsInline() || IsAtomicInlineLevel()) &&
!IsRubyText() && (!IsTablePart() || IsLayoutBlockFlow());
inline bool ShouldApplyPaintContainment() const {
return ShouldApplyPaintContainment(StyleRef());
inline bool ShouldApplyLayoutContainment(const ComputedStyle& style) const {
return style.ContainsLayout() && (!IsInline() || IsAtomicInlineLevel()) &&
!IsRubyText() && (!IsTablePart() || IsLayoutBlockFlow());
inline bool ShouldApplyLayoutContainment() const {
return ShouldApplyLayoutContainment(StyleRef());
inline bool ShouldApplySizeContainment() const {
return StyleRef().ContainsSize() &&
(!IsInline() || IsAtomicInlineLevel()) && !IsRubyText() &&
(!IsTablePart() || IsTableCaption()) && !IsTable();
inline bool ShouldApplyStyleContainment() const {
return StyleRef().ContainsStyle();
inline bool ShouldApplyContentContainment() const {
return ShouldApplyPaintContainment() && ShouldApplyLayoutContainment() &&
inline bool ShouldApplyStrictContainment() const {
return ShouldApplyPaintContainment() && ShouldApplyLayoutContainment() &&
ShouldApplyStyleContainment() && ShouldApplySizeContainment();
// Helper functions. Dangerous to use!
void SetPreviousSibling(LayoutObject* previous) { previous_ = previous; }
void SetNextSibling(LayoutObject* next) { next_ = next; }
void SetParent(LayoutObject* parent) {
parent_ = parent;
// Only update if our flow thread state is different from our new parent and
// if we're not a LayoutFlowThread.
// A LayoutFlowThread is always considered to be inside itself, so it never
// has to change its state in response to parent changes.
bool inside_flow_thread = parent && parent->IsInsideFlowThread();
if (inside_flow_thread != IsInsideFlowThread() && !IsLayoutFlowThread())
bool IsSetNeedsLayoutForbidden() const { return set_needs_layout_forbidden_; }
void SetNeedsLayoutIsForbidden(bool flag) {
set_needs_layout_forbidden_ = flag;
void AddAbsoluteRectForLayer(IntRect& result);
bool RequiresAnonymousTableWrappers(const LayoutObject*) const;
// Dump this layout object to the specified string builder.
void DumpLayoutObject(StringBuilder&,
bool dump_address,
unsigned show_tree_character_offset) const;
#ifndef NDEBUG
void ShowTreeForThis() const;
void ShowLayoutTreeForThis() const;
void ShowLineTreeForThis() const;
void ShowLayoutObject() const;
// Dump the subtree established by this layout object to the specified string
// builder. There will be one object per line, and descendants will be
// indented according to their tree level. The optional "marked_foo"
// parameters can be used to mark up to two objects in the subtree with a
// label.
void DumpLayoutTreeAndMark(StringBuilder&,
const LayoutObject* marked_object1 = nullptr,
const char* marked_label1 = nullptr,
const LayoutObject* marked_object2 = nullptr,
const char* marked_label2 = nullptr,
unsigned depth = 0) const;
// This function is used to create the appropriate LayoutObject based
// on the style, in particular 'display' and 'content'.
// "display: none" or "display: contents" are the only times this function
// will return nullptr.
// For renderer creation, the inline-* values create the same renderer
// as the non-inline version. The difference is that inline-* sets
// is_inline_ during initialization. This means that
// "display: inline-table" creates a LayoutTable, like "display: table".
// Ideally every Element::createLayoutObject would call this function to
// respond to 'display' but there are deep rooted assumptions about
// which LayoutObject is created on a fair number of Elements. This
// function also doesn't handle the default association between a tag
// and its renderer (e.g. <iframe> creates a LayoutIFrame even if the
// initial 'display' value is inline).
static LayoutObject* CreateObject(Element*,
const ComputedStyle&,
// LayoutObjects are allocated out of the rendering partition.
void* operator new(size_t);
void operator delete(void*);
bool IsPseudoElement() const {
return GetNode() && GetNode()->IsPseudoElement();
virtual bool IsBoxModelObject() const { return false; }
bool IsBR() const { return IsOfType(kLayoutObjectBr); }
bool IsCanvas() const { return IsOfType(kLayoutObjectCanvas); }
bool IsCounter() const { return IsOfType(kLayoutObjectCounter); }
bool IsDetailsMarker() const { return IsOfType(kLayoutObjectDetailsMarker); }
bool IsEmbeddedObject() const {
return IsOfType(kLayoutObjectEmbeddedObject);
bool IsFieldset() const { return IsOfType(kLayoutObjectFieldset); }
bool IsLayoutNGFieldset() const { return IsOfType(kLayoutObjectNGFieldset); }
bool IsFieldsetIncludingNG() const {
return IsFieldset() || IsLayoutNGFieldset();
bool IsFileUploadControl() const {
return IsOfType(kLayoutObjectFileUploadControl);
bool IsFrame() const { return IsOfType(kLayoutObjectFrame); }
bool IsFrameSet() const { return IsOfType(kLayoutObjectFrameSet); }
bool IsLayoutNGBlockFlow() const {
return IsOfType(kLayoutObjectNGBlockFlow);
bool IsLayoutNGFlexibleBox() const {
return IsOfType(kLayoutObjectNGFlexibleBox);
bool IsLayoutNGMixin() const { return IsOfType(kLayoutObjectNGMixin); }
bool IsLayoutNGListItem() const { return IsOfType(kLayoutObjectNGListItem); }
bool IsLayoutNGListMarker() const {
return IsOfType(kLayoutObjectNGListMarker);
bool IsLayoutNGListMarkerImage() const {
return IsOfType(kLayoutObjectNGListMarkerImage);
bool IsLayoutNGText() const { return IsOfType(kLayoutObjectNGText); }
bool IsLayoutTableCol() const {
return IsOfType(kLayoutObjectLayoutTableCol);
bool IsListBox() const { return IsOfType(kLayoutObjectListBox); }
bool IsListItem() const { return IsOfType(kLayoutObjectListItem); }
bool IsListMarker() const { return IsOfType(kLayoutObjectListMarker); }
bool IsMedia() const { return IsOfType(kLayoutObjectMedia); }
bool IsMenuList() const { return IsOfType(kLayoutObjectMenuList); }
bool IsProgress() const { return IsOfType(kLayoutObjectProgress); }
bool IsQuote() const { return IsOfType(kLayoutObjectQuote); }
bool IsLayoutButton() const { return IsOfType(kLayoutObjectLayoutButton); }
bool IsLayoutCustom() const { return IsOfType(kLayoutObjectLayoutCustom); }
bool IsLayoutGrid() const { return IsOfType(kLayoutObjectLayoutGrid); }
bool IsLayoutIFrame() const { return IsOfType(kLayoutObjectLayoutIFrame); }
bool IsLayoutImage() const { return IsOfType(kLayoutObjectLayoutImage); }
bool IsLayoutMultiColumnSet() const {
return IsOfType(kLayoutObjectLayoutMultiColumnSet);
bool IsLayoutMultiColumnSpannerPlaceholder() const {
return IsOfType(kLayoutObjectLayoutMultiColumnSpannerPlaceholder);
bool IsLayoutReplaced() const {
return IsOfType(kLayoutObjectLayoutReplaced);
bool IsLayoutScrollbarPart() const {
return IsOfType(kLayoutObjectLayoutScrollbarPart);
bool IsLayoutView() const { return IsOfType(kLayoutObjectLayoutView); }
bool IsRuby() const { return IsOfType(kLayoutObjectRuby); }
bool IsRubyBase() const { return IsOfType(kLayoutObjectRubyBase); }
bool IsRubyRun() const { return IsOfType(kLayoutObjectRubyRun); }
bool IsRubyText() const { return IsOfType(kLayoutObjectRubyText); }
bool IsSlider() const { return IsOfType(kLayoutObjectSlider); }
bool IsSliderThumb() const { return IsOfType(kLayoutObjectSliderThumb); }
bool IsTable() const { return IsOfType(kLayoutObjectTable); }
bool IsTableCaption() const { return IsOfType(kLayoutObjectTableCaption); }
bool IsTableCell() const { return IsOfType(kLayoutObjectTableCell); }
bool IsTableRow() const { return IsOfType(kLayoutObjectTableRow); }
bool IsTableSection() const { return IsOfType(kLayoutObjectTableSection); }
bool IsTextArea() const { return IsOfType(kLayoutObjectTextArea); }
bool IsTextControl() const { return IsOfType(kLayoutObjectTextControl); }
bool IsTextField() const { return IsOfType(kLayoutObjectTextField); }
bool IsVideo() const { return IsOfType(kLayoutObjectVideo); }
bool IsWidget() const { return IsOfType(kLayoutObjectWidget); }
virtual bool IsImage() const { return false; }
virtual bool IsInlineBlockOrInlineTable() const { return false; }
virtual bool IsLayoutBlock() const { return false; }
virtual bool IsLayoutBlockFlow() const { return false; }
virtual bool IsLayoutFlowThread() const { return false; }
virtual bool IsLayoutInline() const { return false; }
virtual bool IsLayoutEmbeddedContent() const { return false; }
virtual bool IsLayoutNGObject() const { return false; }
bool IsDocumentElement() const {
return GetDocument().documentElement() == node_;
// isBody is called from LayoutBox::styleWillChange and is thus quite hot.
bool IsBody() const {
return GetNode() && GetNode()->HasTagName(html_names::kBodyTag);
bool IsHR() const;
bool IsTablePart() const {
return IsTableCell() || IsLayoutTableCol() || IsTableCaption() ||
IsTableRow() || IsTableSection();
inline bool IsBeforeContent() const;
inline bool IsAfterContent() const;
inline bool IsBeforeOrAfterContent() const;
static inline bool IsAfterContent(const LayoutObject* obj) {
return obj && obj->IsAfterContent();
bool HasCounterNodeMap() const { return bitfields_.HasCounterNodeMap(); }
void SetHasCounterNodeMap(bool has_counter_node_map) {
bool IsTruncated() const { return bitfields_.IsTruncated(); }
void SetIsTruncated(bool is_truncated) {
bool EverHadLayout() const { return bitfields_.EverHadLayout(); }
bool ChildrenInline() const { return bitfields_.ChildrenInline(); }
void SetChildrenInline(bool b) { bitfields_.SetChildrenInline(b); }
bool AlwaysCreateLineBoxesForLayoutInline() const {
return bitfields_.AlwaysCreateLineBoxesForLayoutInline();
void SetAlwaysCreateLineBoxesForLayoutInline(bool always_create_line_boxes) {
bool AncestorLineBoxDirty() const {
return bitfields_.AncestorLineBoxDirty();
void SetAncestorLineBoxDirty(bool value = true) {
if (value) {
void SetIsInsideFlowThreadIncludingDescendants(bool);
bool IsInsideFlowThread() const { return bitfields_.IsInsideFlowThread(); }
void SetIsInsideFlowThread(bool inside_flow_thread) {
// FIXME: Until all SVG layoutObjects can be subclasses of
// LayoutSVGModelObject we have to add SVG layoutObject methods to
// LayoutObject with an NOTREACHED() default implementation.
bool IsSVG() const { return IsOfType(kLayoutObjectSVG); }
bool IsSVGRoot() const { return IsOfType(kLayoutObjectSVGRoot); }
bool IsSVGChild() const { return IsSVG() && !IsSVGRoot(); }
bool IsSVGContainer() const { return IsOfType(kLayoutObjectSVGContainer); }
bool IsSVGTransformableContainer() const {
return IsOfType(kLayoutObjectSVGTransformableContainer);
bool IsSVGViewportContainer() const {
return IsOfType(kLayoutObjectSVGViewportContainer);
bool IsSVGHiddenContainer() const {
return IsOfType(kLayoutObjectSVGHiddenContainer);
bool IsSVGShape() const { return IsOfType(kLayoutObjectSVGShape); }
bool IsSVGText() const { return IsOfType(kLayoutObjectSVGText); }
bool IsSVGTextPath() const { return IsOfType(kLayoutObjectSVGTextPath); }
bool IsSVGInline() const { return IsOfType(kLayoutObjectSVGInline); }
bool IsSVGInlineText() const { return IsOfType(kLayoutObjectSVGInlineText); }
bool IsSVGImage() const { return IsOfType(kLayoutObjectSVGImage); }
bool IsSVGForeignObject() const {
return IsOfType(kLayoutObjectSVGForeignObject);
bool IsSVGResourceContainer() const {
return IsOfType(kLayoutObjectSVGResourceContainer);
bool IsSVGResourceFilter() const {
return IsOfType(kLayoutObjectSVGResourceFilter);
bool IsSVGResourceFilterPrimitive() const {
return IsOfType(kLayoutObjectSVGResourceFilterPrimitive);
// FIXME: Those belong into a SVG specific base-class for all layoutObjects
// (see above). Unfortunately we don't have such a class yet, because it's not
// possible for all layoutObjects to inherit from LayoutSVGObject ->
// LayoutObject (some need LayoutBlock inheritance for instance)
virtual void SetNeedsTransformUpdate() {}
virtual void SetNeedsBoundariesUpdate();
// Per the spec, mix-blend-mode applies to all non-SVG elements, and SVG
// elements that are container elements, graphics elements or graphics
// referencing elements.
bool IsBlendingAllowed() const {
return !IsSVG() || IsSVGShape() || IsSVGImage() || IsSVGText() ||
IsSVGInline() || IsSVGRoot() || IsSVGForeignObject() ||
// Blending does not apply to non-renderable elements such as
// patterns (see:
(IsSVGContainer() && !IsSVGHiddenContainer());
virtual bool HasNonIsolatedBlendingDescendants() const {
// This is only implemented for layout objects that containt SVG flow.
// For HTML/CSS layout objects, use the PaintLayer version instead.
return false;
enum DescendantIsolationState {
virtual void DescendantIsolationRequirementsChanged(
DescendantIsolationState) {}
// Per SVG 1.1 objectBoundingBox ignores clipping, masking, filter effects,
// opacity and stroke-width.
// This is used for all computation of objectBoundingBox relative units and by
// SVGGraphicsElement::getBBox().
// NOTE: Markers are not specifically ignored here by SVG 1.1 spec, but we
// ignore them since stroke-width is ignored (and marker size can depend on
// stroke-width). objectBoundingBox is returned local coordinates.
// The name objectBoundingBox is taken from the SVG 1.1 spec.
virtual FloatRect ObjectBoundingBox() const;
virtual FloatRect StrokeBoundingBox() const;
// Returns the smallest rectangle enclosing all of the painted content
// respecting clipping, masking, filters, opacity, stroke-width and markers.
// The local SVG coordinate space is the space where localSVGTransform
// applies. For SVG objects defining viewports (e.g.
// LayoutSVGViewportContainer and LayoutSVGResourceMarker), the local SVG
// coordinate space is the viewport space.
virtual FloatRect VisualRectInLocalSVGCoordinates() const;
// This returns the transform applying to the local SVG coordinate space,
// which combines the CSS transform properties and animation motion transform.
// See SVGElement::calculateTransform().
// Most callsites want localToSVGParentTransform() instead.
virtual AffineTransform LocalSVGTransform() const;
// Returns the full transform mapping from local coordinates to parent's local
// coordinates. For most SVG objects, this is the same as localSVGTransform.
// For SVG objects defining viewports (see visualRectInLocalSVGCoordinates),
// this includes any viewport transforms and x/y offsets as well as
// localSVGTransform.
virtual AffineTransform LocalToSVGParentTransform() const {
return LocalSVGTransform();
// End of SVG-specific methods.
bool IsAnonymous() const { return bitfields_.IsAnonymous(); }
bool IsAnonymousBlock() const {
// This function is kept in sync with anonymous block creation conditions in
// LayoutBlock::createAnonymousBlock(). This includes creating an anonymous
// LayoutBlock having a BLOCK or BOX display. Other classes such as
// LayoutTextFragment are not LayoutBlocks and will return false.
// See
return IsAnonymous() &&
(StyleRef().Display() == EDisplay::kBlock ||
StyleRef().Display() == EDisplay::kWebkitBox) &&
StyleRef().StyleType() == kPseudoIdNone && IsLayoutBlock() &&
!IsListMarker() && !IsLayoutFlowThread() &&
bool IsElementContinuation() const {
return GetNode() && GetNode()->GetLayoutObject() != this;
bool IsInlineElementContinuation() const {
return IsElementContinuation() && IsInline();
virtual LayoutBoxModelObject* VirtualContinuation() const { return nullptr; }
bool IsFloating() const { return bitfields_.Floating(); }
bool IsFloatingWithNonContainingBlockParent() const {
return IsFloating() && Parent() && !Parent()->IsLayoutBlockFlow();
// absolute or fixed positioning
bool IsOutOfFlowPositioned() const {
return bitfields_.IsOutOfFlowPositioned();
// relative or sticky positioning
bool IsInFlowPositioned() const { return bitfields_.IsInFlowPositioned(); }
bool IsRelPositioned() const { return bitfields_.IsRelPositioned(); }
bool IsStickyPositioned() const { return bitfields_.IsStickyPositioned(); }
bool IsFixedPositioned() const {
return IsOutOfFlowPositioned() &&
StyleRef().GetPosition() == EPosition::kFixed;
bool IsAbsolutePositioned() const {
return IsOutOfFlowPositioned() &&
StyleRef().GetPosition() == EPosition::kAbsolute;
bool IsPositioned() const { return bitfields_.IsPositioned(); }
bool IsText() const { return bitfields_.IsText(); }
bool IsBox() const { return bitfields_.IsBox(); }
bool IsInline() const { return bitfields_.IsInline(); } // inline object
bool IsInLayoutNGInlineFormattingContext() const {
return bitfields_.IsInLayoutNGInlineFormattingContext();
bool ForceLegacyLayout() const { return bitfields_.ForceLegacyLayout(); }
bool IsAtomicInlineLevel() const { return bitfields_.IsAtomicInlineLevel(); }
bool IsHorizontalWritingMode() const {
return bitfields_.HorizontalWritingMode();
bool HasFlippedBlocksWritingMode() const {
return StyleRef().IsFlippedBlocksWritingMode();
bool HasLayer() const { return bitfields_.HasLayer(); }
// This may be different from StyleRef().hasBoxDecorationBackground() because
// some objects may have box decoration background other than from their own
// style.
bool HasBoxDecorationBackground() const {
return bitfields_.HasBoxDecorationBackground();
bool NeedsLayout() const {
return bitfields_.SelfNeedsLayoutForStyle() ||
bitfields_.SelfNeedsLayoutForAvailableSpace() ||
bitfields_.NormalChildNeedsLayout() ||
bitfields_.PosChildNeedsLayout() ||
bitfields_.NeedsSimplifiedNormalFlowLayout() ||
bool NeedsPositionedMovementLayoutOnly() const {
return bitfields_.NeedsPositionedMovementLayout() &&
!bitfields_.SelfNeedsLayoutForStyle() &&
!bitfields_.SelfNeedsLayoutForAvailableSpace() &&
!bitfields_.NormalChildNeedsLayout() &&
!bitfields_.PosChildNeedsLayout() &&
bool SelfNeedsLayout() const {
return bitfields_.SelfNeedsLayoutForStyle() ||
bool SelfNeedsLayoutForStyle() const {
return bitfields_.SelfNeedsLayoutForStyle();
bool SelfNeedsLayoutForAvailableSpace() const {
return bitfields_.SelfNeedsLayoutForAvailableSpace();
bool NeedsPositionedMovementLayout() const {
return bitfields_.NeedsPositionedMovementLayout();
bool PosChildNeedsLayout() const { return bitfields_.PosChildNeedsLayout(); }
bool NeedsSimplifiedNormalFlowLayout() const {
return bitfields_.NeedsSimplifiedNormalFlowLayout();
bool NormalChildNeedsLayout() const {
return bitfields_.NormalChildNeedsLayout();
bool NeedsCollectInlines() const { return bitfields_.NeedsCollectInlines(); }
bool PreferredLogicalWidthsDirty() const {
return bitfields_.PreferredLogicalWidthsDirty();
bool NeedsLayoutOverflowRecalc() const {
return bitfields_.SelfNeedsLayoutOverflowRecalc() ||
bool SelfNeedsLayoutOverflowRecalc() const {
return bitfields_.SelfNeedsLayoutOverflowRecalc();
bool ChildNeedsLayoutOverflowRecalc() const {
return bitfields_.ChildNeedsLayoutOverflowRecalc();
void SetSelfNeedsLayoutOverflowRecalc() {
void SetChildNeedsLayoutOverflowRecalc() {
void ClearSelfNeedsLayoutOverflowRecalc() {
void ClearChildNeedsLayoutOverflowRecalc() {
// CSS clip only applies when position is absolute or fixed. Prefer this check
// over !StyleRef().HasAutoClip().
bool HasClip() const {
return IsOutOfFlowPositioned() && !StyleRef().HasAutoClip();
bool HasOverflowClip() const { return bitfields_.HasOverflowClip(); }
bool ShouldClipOverflow() const { return bitfields_.ShouldClipOverflow(); }
bool HasClipRelatedProperty() const;
bool HasTransformRelatedProperty() const {
return bitfields_.HasTransformRelatedProperty();
bool IsTransformApplicable() const { return IsBox() || IsSVG(); }
bool HasMask() const { return StyleRef().HasMask(); }
bool HasClipPath() const { return StyleRef().ClipPath(); }
bool HasHiddenBackface() const {
return StyleRef().BackfaceVisibility() == EBackfaceVisibility::kHidden;
bool HasBackdropFilter() const { return StyleRef().HasBackdropFilter(); }
// Returns |true| if any property that renders using filter operations is
// used (including, but not limited to, 'filter' and 'box-reflect').
// Not calling style()->hasFilterInducingProperty because some objects force
// to ignore reflection style (e.g. LayoutInline).
bool HasFilterInducingProperty() const {
return StyleRef().HasFilter() || HasReflection();
bool HasShapeOutside() const { return StyleRef().ShapeOutside(); }
// Return true if the given object is the effective root scroller in its
// Document. See |effective root scroller| in page/scrolling/
// Note: a root scroller always establishes a PaintLayer.
// This bit is updated in
// RootScrollerController::RecomputeEffectiveRootScroller in the LayoutClean
// document lifecycle phase.
bool IsEffectiveRootScroller() const {
return bitfields_.IsEffectiveRootScroller();
// Returns true if the given object is the global root scroller. See
// |global root scroller| in page/scrolling/
bool IsGlobalRootScroller() const {
return bitfields_.IsGlobalRootScroller();
bool IsHTMLLegendElement() const { return bitfields_.IsHTMLLegendElement(); }
// Return true if this is the "rendered legend" of a fieldset. They get
// special treatment, in that they establish a new formatting context, and
// shrink to fit if no logical width is specified.
// This function is performance sensitive.
inline bool IsRenderedLegend() const {
if (LIKELY(!IsHTMLLegendElement()))
return false;
return IsRenderedLegendInternal();
bool IsRenderedLegendInternal() const;
// The pseudo element style can be cached or uncached. Use the cached method
// if the pseudo element doesn't respect any pseudo classes (and therefore
// has no concept of changing state).
const ComputedStyle* GetCachedPseudoStyle(
const ComputedStyle* parent_style = nullptr) const;
scoped_refptr<ComputedStyle> GetUncachedPseudoStyle(
const PseudoStyleRequest&,
const ComputedStyle* parent_style = nullptr) const;
LayoutView* View() const { return GetDocument().GetLayoutView(); }
LocalFrameView* GetFrameView() const { return GetDocument().View(); }
bool IsRooted() const;
Node* GetNode() const { return IsAnonymous() ? nullptr : node_; }
Node* NonPseudoNode() const {
return IsPseudoElement() ? nullptr : GetNode();
void ClearNode() { node_ = nullptr; }
// Returns the styled node that caused the generation of this layoutObject.
// This is the same as node() except for layoutObjects of :before, :after and
// :first-letter pseudo elements for which their parent node is returned.
Node* GeneratingNode() const {
return IsPseudoElement() ? GetNode()->ParentOrShadowHostNode() : GetNode();
Document& GetDocument() const {
DCHECK(node_ || Parent()); //
return node_ ? node_->GetDocument() : Parent()->GetDocument();
LocalFrame* GetFrame() const { return GetDocument().GetFrame(); }
virtual LayoutMultiColumnSpannerPlaceholder* SpannerPlaceholder() const {
return nullptr;
bool IsColumnSpanAll() const {
return StyleRef().GetColumnSpan() == EColumnSpan::kAll &&
// We include isLayoutButton() in this check, because buttons are
// implemented using flex box but should still support things like
// first-line, first-letter and text-overflow.
// The flex box and grid specs require that flex box and grid do not
// support first-line|first-letter, though.
// When LayoutObject and display do not agree, allow first-line|first-letter
// only when both indicate it's a block container.
// TODO(cbiesinger): Remove when buttons are implemented with align-items
// instead of flex box.
bool BehavesLikeBlockContainer() const {
return (IsLayoutBlockFlow() && StyleRef().IsDisplayBlockContainer()) ||
// May be optionally passed to container() and various other similar methods
// that search the ancestry for some sort of containing block. Used to
// determine if we skipped certain objects while walking the ancestry.
class AncestorSkipInfo {
AncestorSkipInfo(const LayoutObject* ancestor,
bool check_for_filters = false)
: ancestor_(ancestor), check_for_filters_(check_for_filters) {}
// Update skip info output based on the layout object passed.
void Update(const LayoutObject& object) {
if (&object == ancestor_)
ancestor_skipped_ = true;
if (check_for_filters_ && object.HasFilterInducingProperty())
filter_skipped_ = true;
// TODO(mstensho): Get rid of this. It's just a temporary thing to retain
// old behavior in LayoutObject::container().
void ResetOutput() {
ancestor_skipped_ = false;
filter_skipped_ = false;
bool AncestorSkipped() const { return ancestor_skipped_; }
bool FilterSkipped() const {
return filter_skipped_;
// Input: A potential ancestor to look for. If we walk past this one while
// walking the ancestry in search of some containing block, ancestorSkipped
// will be set to true.
const LayoutObject* ancestor_;
// Input: When set, we'll check if we skip objects with filter inducing
// properties.
bool check_for_filters_;
// Output: Set to true if |ancestor| was walked past while walking the
// ancestry.
bool ancestor_skipped_ = false;
// Output: Set to true if we walked past a filter object. This will be set
// regardless of the value of |ancestor|.
bool filter_skipped_ = false;
// This function returns the containing block of the object.
// Due to CSS being inconsistent, a containing block can be a relatively
// positioned inline, thus we can't return a LayoutBlock from this function.
// This method is extremely similar to containingBlock(), but with a few
// notable exceptions.
// (1) For normal flow elements, it just returns the parent.
// (2) For absolute positioned elements, it will return a relative
// positioned inline. containingBlock() simply skips relpositioned inlines
// and lets an enclosing block handle the layout of the positioned object.
// This does mean that computePositionedLogicalWidth and
// computePositionedLogicalHeight have to use container().
// Note that floating objects don't belong to either of the above exceptions.
// This function should be used for any invalidation as it would correctly
// walk the containing block chain. See e.g. markContainerChainForLayout.
// It is also used for correctly sizing absolutely positioned elements
// (point 3 above).
LayoutObject* Container(AncestorSkipInfo* = nullptr) const;
// Finds the container as if this object is fixed-position.
LayoutObject* ContainerForAbsolutePosition(AncestorSkipInfo* = nullptr) const;
// Finds the container as if this object is absolute-position.
LayoutObject* ContainerForFixedPosition(AncestorSkipInfo* = nullptr) const;
// Returns ContainerForAbsolutePosition() if it's a LayoutBlock, or the
// containing LayoutBlock of it.
LayoutBlock* ContainingBlockForAbsolutePosition(
AncestorSkipInfo* = nullptr) const;
// Returns ContainerForFixedPosition() if it's a LayoutBlock, or the
// containing LayoutBlock of it.
LayoutBlock* ContainingBlockForFixedPosition(
AncestorSkipInfo* = nullptr) const;
bool CanContainOutOfFlowPositionedElement(EPosition position) const {
DCHECK(position == EPosition::kAbsolute || position == EPosition::kFixed);
return (position == EPosition::kAbsolute &&
CanContainAbsolutePositionObjects()) ||
(position == EPosition::kFixed && CanContainFixedPositionObjects());
// Returns true if style would make this object an absolute container.
bool ComputeIsAbsoluteContainer(const ComputedStyle* style) const;
// Returns true if style would make this object a fixed container.
// This value gets cached by bitfields_.can_contain_fixed_position_objects_.
bool ComputeIsFixedContainer(const ComputedStyle* style) const;
virtual LayoutObject* HoverAncestor() const { return Parent(); }
Element* OffsetParent(const Element* = nullptr) const;
// Mark this object needing to re-run |CollectInlines()|. Ancestors may be
// marked too if needed.
void SetNeedsCollectInlines();
void ClearNeedsCollectInlines() { SetNeedsCollectInlines(false); }
void MarkContainerChainForLayout(bool schedule_relayout = true,
SubtreeLayoutScope* = nullptr);
void MarkParentForOutOfFlowPositionedChange();
void SetNeedsLayout(LayoutInvalidationReasonForTracing,
MarkingBehavior = kMarkContainerChain,
SubtreeLayoutScope* = nullptr);
void SetNeedsLayoutAndFullPaintInvalidation(
MarkingBehavior = kMarkContainerChain,
SubtreeLayoutScope* = nullptr);
void ClearNeedsLayoutWithoutPaintInvalidation();
// |ClearNeedsLayout()| calls |SetShouldCheckForPaintInvalidation()|.
void ClearNeedsLayout();
void ClearNeedsLayoutWithFullPaintInvalidation();
void SetChildNeedsLayout(MarkingBehavior = kMarkContainerChain,
SubtreeLayoutScope* = nullptr);
void SetNeedsPositionedMovementLayout();
void SetPreferredLogicalWidthsDirty(MarkingBehavior = kMarkContainerChain);
void ClearPreferredLogicalWidthsDirty();
void SetNeedsLayoutAndPrefWidthsRecalc(
LayoutInvalidationReasonForTracing reason) {
void SetNeedsLayoutAndPrefWidthsRecalcAndFullPaintInvalidation(
LayoutInvalidationReasonForTracing reason) {
void SetPositionState(EPosition position) {
(position != EPosition::kAbsolute && position != EPosition::kFixed) ||
void ClearPositionedState() { bitfields_.ClearPositionedState(); }
void SetFloating(bool is_floating) { bitfields_.SetFloating(is_floating); }
void SetInline(bool is_inline) { bitfields_.SetIsInline(is_inline); }
// Returns the associated |NGPaintFragment|. When this is not a |nullptr|,
// this is the root of an inline formatting context, laid out by LayoutNG.
virtual NGPaintFragment* PaintFragment() const { return nullptr; }
void SetIsInLayoutNGInlineFormattingContext(bool);
virtual NGPaintFragment* FirstInlineFragment() const { return nullptr; }
virtual void SetFirstInlineFragment(NGPaintFragment*) {}
void SetForceLegacyLayout() { bitfields_.SetForceLegacyLayout(true); }
void SetHasBoxDecorationBackground(bool);
void SetIsText() { bitfields_.SetIsText(true); }
void SetIsBox() { bitfields_.SetIsBox(true); }
void SetIsAtomicInlineLevel(bool is_atomic_inline_level) {
void SetHorizontalWritingMode(bool has_horizontal_writing_mode) {
void SetHasOverflowClip(bool has_overflow_clip) {
void SetShouldClipOverflow(bool should_clip_overflow) {
void SetHasLayer(bool has_layer) { bitfields_.SetHasLayer(has_layer); }
void SetHasTransformRelatedProperty(bool has_transform) {
void SetHasReflection(bool has_reflection) {
void SetCanContainFixedPositionObjects(bool can_contain_fixed_position) {
void SetIsEffectiveRootScroller(bool is_effective_root_scroller) {
void SetIsGlobalRootScroller(bool is_global_root_scroller) {
void SetIsHTMLLegendElement() { bitfields_.SetIsHTMLLegendElement(true); }
virtual void Paint(const PaintInfo&) const;
virtual bool RecalcLayoutOverflow();
// Recalculates visual overflow for this object and non-self-painting
// PaintLayer descendants.
virtual void RecalcVisualOverflow();
// Subclasses must reimplement this method to compute the size and position
// of this object and all its descendants.
// By default, layout only lays out the children that are marked for layout.
// In some cases, layout has to force laying out more children. An example is
// when the width of the LayoutObject changes as this impacts children with
// 'width' set to auto.
virtual void UpdateLayout() = 0;
virtual bool UpdateImageLoadingPriorities() { return false; }
void HandleSubtreeModifications();
virtual void SubtreeDidChange() {}
// Flags used to mark if an object consumes subtree change notifications.
bool ConsumesSubtreeChangeNotification() const {
return bitfields_.ConsumesSubtreeChangeNotification();
void SetConsumesSubtreeChangeNotification() {
// Flags used to mark if a descendant subtree of this object has changed.
void NotifyOfSubtreeChange();
void NotifyAncestorsOfSubtreeChange();
bool WasNotifiedOfSubtreeChange() const {
return bitfields_.NotifiedOfSubtreeChange();
// Flags used to signify that a layoutObject needs to be notified by its
// descendants that they have had their child subtree changed.
void RegisterSubtreeChangeListenerOnDescendants(bool);
bool HasSubtreeChangeListenerRegistered() const {
return bitfields_.SubtreeChangeListenerRegistered();
/* This function performs a layout only if one is needed. */
DISABLE_CFI_PERF void LayoutIfNeeded() {
if (NeedsLayout())
void ForceLayout();
void ForceLayoutWithPaintInvalidation() {
// Used for element state updates that cannot be fixed with a paint
// invalidation and do not need a relayout.
virtual void UpdateFromElement() {}
virtual void AddAnnotatedRegions(Vector<AnnotatedRegionValue>&);
CompositingState GetCompositingState() const;
virtual CompositingReasons AdditionalCompositingReasons() const;
virtual bool HitTestAllPhases(HitTestResult&,
const HitTestLocation& location_in_container,
const LayoutPoint& accumulated_offset,
HitTestFilter = kHitTestAll);
// Returns the node that is ultimately added to the hit test result. Some
// objects report a hit testing node that is not their own (such as
// continuations and some psuedo elements) and it is important that the
// node be consistent between point- and list-based hit test results.
virtual Node* NodeForHitTest() const;
virtual void UpdateHitTestResult(HitTestResult&, const LayoutPoint&) const;
virtual bool NodeAtPoint(HitTestResult&,
const HitTestLocation& location_in_container,
const LayoutPoint& accumulated_offset,
virtual PositionWithAffinity PositionForPoint(const LayoutPoint&) const;
PositionWithAffinity CreatePositionWithAffinity(int offset,
TextAffinity) const;
PositionWithAffinity CreatePositionWithAffinity(int offset) const;
PositionWithAffinity CreatePositionWithAffinity(const Position&) const;
virtual void DirtyLinesFromChangedChild(
MarkingBehavior marking_behaviour = kMarkContainerChain);
// Set the style of the object and update the state of the object accordingly.
// ApplyStyleChanges = kYes means we will apply any changes between the old
// and new ComputedStyle like paint and size invalidations. If kNo, just set
// the ComputedStyle member.
enum class ApplyStyleChanges { kNo, kYes };
void SetStyle(scoped_refptr<ComputedStyle>,
ApplyStyleChanges = ApplyStyleChanges::kYes);
// Set the style of the object if it's generated content.
void SetPseudoStyle(scoped_refptr<ComputedStyle>);
// In some cases we modify the ComputedStyle after the style recalc, either
// for updating anonymous style or doing layout hacks for special elements
// where we update the ComputedStyle during layout.
// If the LayoutObject has an associated node, we will SetComputedStyle on
// that node with the new ComputedStyle.
// ApplyStyleChanges = kNo means we will simply set the member object. If it's
// kYes, we will apply any changes from the previously set ComputedStyle to do
// visual invalidation etc.
// Do not use unless strictly necessary.
void SetModifiedStyleOutsideStyleRecalc(scoped_refptr<ComputedStyle>,
void SetStyleWithWritingModeOf(scoped_refptr<ComputedStyle>,
LayoutObject* parent);
void SetStyleWithWritingModeOfParent(scoped_refptr<ComputedStyle>);
void ClearBaseComputedStyle();
// This function returns an enclosing non-anonymous LayoutBlock for this
// element. This function is not always returning the containing block as
// defined by CSS. In particular:
// - if the CSS containing block is a relatively positioned inline,
// the function returns the inline's enclosing non-anonymous LayoutBlock.
// This means that a LayoutInline would be skipped (expected as it's not a
// LayoutBlock) but so would be an inline LayoutTable or LayoutBlockFlow.
// TODO(jchaffraix): Is that REALLY what we want here?
// - if the CSS containing block is anonymous, we find its enclosing
// non-anonymous LayoutBlock.
// Note that in the previous examples, the returned LayoutBlock has no
// logical relationship to the original element.
// LayoutBlocks are the one that handle laying out positioned elements,
// thus this function is important during layout, to insert the positioned
// elements into the correct LayoutBlock.
// See container() for the function that returns the containing block.
// See LayoutBlock.h for some extra explanations on containing blocks.
LayoutBlock* ContainingBlock(AncestorSkipInfo* = nullptr) const;
const LayoutBlock* InclusiveContainingBlock() const;
bool CanContainAbsolutePositionObjects() const {
return style_->CanContainAbsolutePositionObjects() ||
bool CanContainFixedPositionObjects() const {
return bitfields_.CanContainFixedPositionObjects();
// Convert the given local point to absolute coordinates
// FIXME: Temporary. If UseTransforms is true, take transforms into account.
// Eventually localToAbsolute() will always be transform-aware.
FloatPoint LocalToAbsolute(const FloatPoint& local_point = FloatPoint(),
MapCoordinatesFlags = 0) const;
// If the LayoutBoxModelObject ancestor is non-null, the input point is in the
// space of the ancestor.
// Otherwise:
// If TraverseDocumentBoundaries is specified, the input point is in the
// space of the local root frame.
// Otherwise, the input point is in the space of the containing frame.
FloatPoint AncestorToLocal(LayoutBoxModelObject*,
const FloatPoint&,
MapCoordinatesFlags = 0) const;
FloatPoint AbsoluteToLocal(const FloatPoint& point,
MapCoordinatesFlags mode = 0) const {
return AncestorToLocal(nullptr, point, mode);
// Convert a local quad to absolute coordinates, taking transforms into
// account.
FloatQuad LocalToAbsoluteQuad(const FloatQuad& quad,
MapCoordinatesFlags mode = 0) const {
return LocalToAncestorQuad(quad, nullptr, mode);
// Convert a quad in ancestor coordinates to local coordinates.
// If the LayoutBoxModelObject ancestor is non-null, the input quad is in the
// space of the ancestor.
// Otherwise:
// If TraverseDocumentBoundaries is specified, the input quad is in the
// space of the local root frame.
// Otherwise, the input quad is in the space of the containing frame.
FloatQuad AncestorToLocalQuad(LayoutBoxModelObject*,
const FloatQuad&,
MapCoordinatesFlags mode = 0) const;
FloatQuad AbsoluteToLocalQuad(const FloatQuad& quad,
MapCoordinatesFlags mode = 0) const {
return AncestorToLocalQuad(nullptr, quad, mode);
// Convert a local quad into the coordinate system of container, taking
// transforms into account.
// If the LayoutBoxModelObject ancestor is non-null, the result will be in the
// space of the ancestor.
// Otherwise:
// If TraverseDocumentBoundaries is specified, the result will be in the
// space of the local root frame.
// Otherwise, the result will be in the space of the containing frame.
FloatQuad LocalToAncestorQuad(const FloatQuad&,
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = 0) const;
FloatPoint LocalToAncestorPoint(const FloatPoint&,
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = 0) const;
void LocalToAncestorRects(Vector<LayoutRect>&,
const LayoutBoxModelObject* ancestor,
const LayoutPoint& pre_offset,
const LayoutPoint& post_offset) const;
// Convert a local quad into the coordinate system of container, not
// include transforms. See localToAncestorQuad for details.
FloatQuad LocalToAncestorQuadWithoutTransforms(
const FloatQuad&,
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = 0) const;
// Return the transformation matrix to map points from local to the coordinate
// system of a container, taking transforms into account.
// Passing null for |ancestor| behaves the same as localToAncestorQuad.
TransformationMatrix LocalToAncestorTransform(
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = 0) const;
TransformationMatrix LocalToAbsoluteTransform(
MapCoordinatesFlags mode = 0) const {
return LocalToAncestorTransform(nullptr, mode);
// Return the offset from the container() layoutObject (excluding transforms
// and multicol).
LayoutSize OffsetFromContainer(const LayoutObject*,
bool ignore_scroll_offset = false) const;
// Return the offset from an object from the ancestor. The ancestor need
// not be on the containing block chain of |this|.
LayoutSize OffsetFromAncestor(const LayoutObject*) const;
virtual void AbsoluteRects(Vector<IntRect>&, const LayoutPoint&) const {}
FloatRect AbsoluteBoundingBoxFloatRect(MapCoordinatesFlags = 0) const;
// This returns an IntRect enclosing this object. If this object has an
// integral size and the position has fractional values, the resultant
// IntRect can be larger than the integral size.
IntRect AbsoluteBoundingBoxRect(MapCoordinatesFlags = 0) const;
// FIXME: This function should go away eventually
IntRect AbsoluteBoundingBoxRectIgnoringTransforms() const;
// These two handles inline anchors without content as well.
LayoutRect AbsoluteBoundingBoxRectHandlingEmptyAnchor() const;
// This returns an IntRect expanded from
// AbsoluteBoundingBoxRectHandlingEmptyAnchor by ScrollMargin.
LayoutRect AbsoluteBoundingBoxRectForScrollIntoView() const;
// Build an array of quads in absolute coords for line boxes
virtual void AbsoluteQuads(Vector<FloatQuad>&,
MapCoordinatesFlags mode = 0) const {}
static FloatRect AbsoluteBoundingBoxRectForRange(const EphemeralRange&);
// The bounding box (see: absoluteBoundingBoxRect) including all descendant
// bounding boxes.
IntRect AbsoluteBoundingBoxRectIncludingDescendants() const;
// For accessibility, we want the bounding box rect of this element
// in local coordinates, which can then be converted to coordinates relative
// to any ancestor using, e.g., localToAncestorTransform.
virtual FloatRect LocalBoundingBoxRectForAccessibility() const = 0;
// This function returns the minimal logical width this object can have
// without overflowing. This means that all the opportunities for wrapping
// have been taken.
// CSS 2.1 calls this width the "preferred minimum width" (thus this name)
// and "minimum content width" (for table).
// However CSS 3 calls it the "min-content inline size".
// TODO(jchaffraix): We will probably want to rename it to match CSS 3.
virtual LayoutUnit MinPreferredLogicalWidth() const { return LayoutUnit(); }
// This function returns the maximum logical width this object can have.
// CSS 2.1 calls this width the "preferred width". However CSS 3 calls it
// the "max-content inline size".
// TODO(jchaffraix): We will probably want to rename it to match CSS 3.
virtual LayoutUnit MaxPreferredLogicalWidth() const { return LayoutUnit(); }
const ComputedStyle* Style() const { return style_.get(); }
ComputedStyle* MutableStyle() const { return style_.get(); }
// style_ can only be nullptr before the first style is set, thus most
// callers will never see a nullptr style and should use StyleRef().
const ComputedStyle& StyleRef() const { return MutableStyleRef(); }
ComputedStyle& MutableStyleRef() const {
return *style_;
/* The following methods are inlined in LayoutObjectInlines.h */
inline const ComputedStyle* FirstLineStyle() const;
inline const ComputedStyle& FirstLineStyleRef() const;
inline const ComputedStyle* Style(bool first_line) const;
inline const ComputedStyle& StyleRef(bool first_line) const;
static inline Color ResolveColor(const ComputedStyle& style_to_use,
const CSSProperty& color_property) {
return style_to_use.VisitedDependentColor(color_property);
inline Color ResolveColor(const CSSProperty& color_property) const {
return StyleRef().VisitedDependentColor(color_property);
virtual CursorDirective GetCursor(const LayoutPoint&, Cursor&) const;
// Return the LayoutBoxModelObject in the container chain which is responsible
// for painting this object. The function crosses frames boundaries so the
// returned value can be in a different document.
// This is the container that should be passed to the '*forPaintInvalidation'
// methods.
const LayoutBoxModelObject& ContainerForPaintInvalidation() const;
bool IsPaintInvalidationContainer() const;
// Invalidate the raster of a specific sub-rectangle within the object. The
// rect is in the object's local coordinate space. This is useful e.g. when
// a small region of a canvas changes.
void InvalidatePaintRectangle(const LayoutRect&);
// Returns the rect that should have raster invalidated whenever this object
// changes. The rect is in the coordinate space of the document's scrolling
// contents. This method deals with outlines and overflow.
virtual LayoutRect VisualRectInDocument(
VisualRectFlags = kDefaultVisualRectFlags) const;
// Returns the rect that should have raster invalidated whenever this object
// changes. The rect is in the object's local coordinate space. This is for
// non-SVG objects and LayoutSVGRoot only. SVG objects (except LayoutSVGRoot)
// should use VisualRectInLocalSVGCoordinates() and map with SVG transforms
// instead.
LayoutRect LocalVisualRect() const {
if (StyleRef().Visibility() != EVisibility::kVisible &&
return LayoutRect();
return LocalVisualRectIgnoringVisibility();
// Given a rect in the object's coordinate space, mutates the rect into one
// representing the size of its visual painted output as if |ancestor| was the
// root of the page: the rect is modified by any intervening clips, transforms
// and scrolls between |this| and |ancestor| (not inclusive of |ancestor|),
// but not any above |ancestor|.
// The output is in the physical, painted coordinate pixel space of
// |ancestor|.
// Overflow clipping, CSS clipping and scrolling is *not* applied for
// |ancestor| itself if |ancestor| scrolls overflow.
// The output rect is suitable for purposes such as paint invalidation.
// The ancestor can be nullptr which, if |this| is not the root view, will map
// the rect to the main frame's space which includes the root view's scroll
// and clip. This is even true if the main frame is remote.
// If visualRectFlags has the EdgeInclusive bit set, clipping operations will
// use LayoutRect::InclusiveIntersect, and the return value of
// InclusiveIntersect will be propagated to the return value of this method.
// Otherwise, clipping operations will use LayoutRect::intersect, and the
// return value will be true only if the clipped rect has non-zero area.
// See the documentation for LayoutRect::InclusiveIntersect for more
// information.
bool MapToVisualRectInAncestorSpace(
const LayoutBoxModelObject* ancestor,
VisualRectFlags = kDefaultVisualRectFlags) const;
// Do not call this method directly. Call mapToVisualRectInAncestorSpace
// instead.
virtual bool MapToVisualRectInAncestorSpaceInternal(
const LayoutBoxModelObject* ancestor,
VisualRectFlags = kDefaultVisualRectFlags) const;
// Do a rect-based hit test with this object as the stop node.
HitTestResult HitTestForOcclusion(const LayoutRect&) const;
HitTestResult HitTestForOcclusion() const {
return HitTestForOcclusion(VisualRectInDocument());
// Return the offset to the column in which the specified point (in
// flow-thread coordinates) lives. This is used to convert a flow-thread point
// to a point in the containing coordinate space.
virtual LayoutSize ColumnOffset(const LayoutPoint&) const {
return LayoutSize();
virtual unsigned length() const { return 1; }
bool IsFloatingOrOutOfFlowPositioned() const {
return (IsFloating() || IsOutOfFlowPositioned());
bool HasReflection() const { return bitfields_.HasReflection(); }
// The current selection state for an object. For blocks, the state refers to
// the state of the leaf descendants (as described above in the SelectionState
// enum declaration).
SelectionState GetSelectionState() const {
return bitfields_.GetSelectionState();
void SetSelectionState(SelectionState state) {
bool CanUpdateSelectionOnRootLineBoxes() const;
// A single rectangle that encompasses all of the selected objects within this
// object. Used to determine the tightest possible bounding box for the
// selection. The rect returned is in the object's local coordinate space.
virtual LayoutRect LocalSelectionRect() const { return LayoutRect(); }
LayoutRect AbsoluteSelectionRect() const;
bool CanBeSelectionLeaf() const;
bool IsSelected() const;
bool IsSelectable() const;
* Returns the local coordinates of the caret within this layout object.
* @param caretOffset zero-based offset determining position within the
* layout object.
* @param extraWidthToEndOfLine optional out arg to give extra width to end
* of line -
* useful for character range rect computations
virtual LayoutRect LocalCaretRect(
const InlineBox*,
int caret_offset,
LayoutUnit* extra_width_to_end_of_line = nullptr) const;
// When performing a global document tear-down, the layoutObject of the
// document is cleared. We use this as a hook to detect the case of document
// destruction and don't waste time doing unnecessary work.
bool DocumentBeingDestroyed() const;
void DestroyAndCleanupAnonymousWrappers();
// While the destroy() method is virtual, this should only be overriden in
// very rare circumstances.
// You want to override willBeDestroyed() instead unless you explicitly need
// to stop this object from being destroyed (for example,
// LayoutEmbeddedContent overrides destroy() for this purpose).
virtual void Destroy();
// Virtual function helpers for the deprecated Flexible Box Layout (display:
// -webkit-box).
virtual bool IsDeprecatedFlexibleBox() const { return false; }
// Virtual function helper for the new FlexibleBox Layout (display:
// -webkit-flex).
virtual bool IsFlexibleBox() const { return false; }
virtual bool IsFlexibleBoxIncludingDeprecatedAndNG() const { return false; }
virtual bool IsFlexibleBoxIncludingNG() const { return false; }
bool IsListItemIncludingNG() const {
return IsListItem() || IsLayoutNGListItem();
bool IsListMarkerIncludingNG() const {
return IsListMarker() || IsLayoutNGListMarker();
virtual bool IsCombineText() const { return false; }
virtual int CaretMinOffset() const;
virtual int CaretMaxOffset() const;
// ImageResourceObserver override.
void ImageChanged(ImageResourceContent*, CanDeferInvalidation) final;
void ImageChanged(WrappedImagePtr, CanDeferInvalidation) override {}
void ImageNotifyFinished(ImageResourceContent*) override;
void NotifyImageFullyRemoved(ImageResourceContent*) override;
bool WillRenderImage() final;
bool GetImageAnimationPolicy(ImageAnimationPolicy&) final;
void Remove() {
if (Parent())
bool VisibleToHitTestRequest(const HitTestRequest& request) const {
return StyleRef().Visibility() == EVisibility::kVisible &&
(request.IgnorePointerEventsNone() ||
StyleRef().PointerEvents() != EPointerEvents::kNone) &&
// Warning: inertness can change without causing relayout.
bool VisibleToHitTesting() const {
return StyleRef().VisibleToHitTesting() && !IsInert();
// Map points and quads through elements, potentially via 3d transforms. You
// should never need to call these directly; use localToAbsolute/
// absoluteToLocal methods instead.
virtual void MapLocalToAncestor(
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = kApplyContainerFlip) const;
// If the LayoutBoxModelObject ancestor is non-null, the input quad is in the
// space of the ancestor.
// Otherwise:
// If TraverseDocumentBoundaries is specified, the input quad is in the
// space of the local root frame.
// Otherwise, the input quad is in the space of the containing frame.
virtual void MapAncestorToLocal(
const LayoutBoxModelObject*,
MapCoordinatesFlags = kApplyContainerFlip) const;
// Pushes state onto LayoutGeometryMap about how to map coordinates from this
// layoutObject to its container, or ancestorToStopAt (whichever is
// encountered first). Returns the layoutObject which was mapped to (container
// or ancestorToStopAt).
virtual const LayoutObject* PushMappingToContainer(
const LayoutBoxModelObject* ancestor_to_stop_at,
LayoutGeometryMap&) const;
bool ShouldUseTransformFromContainer(const LayoutObject* container) const;
void GetTransformFromContainer(const LayoutObject* container,
const LayoutSize& offset_in_container,
TransformationMatrix&) const;
bool CreatesGroup() const {
return StyleRef().HasOpacity() || HasMask() || HasClipPath() ||
HasFilterInducingProperty() || StyleRef().HasBlendMode();
// Collects rectangles that the outline of this object would be drawing along
// the outside of, even if the object isn't styled with a outline for now. The
// rects also cover continuations.
virtual void AddOutlineRects(Vector<LayoutRect>&,
const LayoutPoint& additional_offset,
NGOutlineType) const {}
Vector<LayoutRect> PhysicalOutlineRects(const LayoutPoint& additional_offset,
NGOutlineType) const;
// For history and compatibility reasons, we draw outline:auto (for focus
// rings) and normal style outline differently.
// Focus rings enclose block visual overflows (of line boxes and descendants),
// while normal outlines don't.
NGOutlineType OutlineRectsShouldIncludeBlockVisualOverflow() const {
return StyleRef().OutlineStyleIsAuto()
? NGOutlineType::kIncludeBlockVisualOverflow
: NGOutlineType::kDontIncludeBlockVisualOverflow;
// Only public for LayoutNG.
void SetContainsInlineWithOutlineAndContinuation(bool b) {
static RespectImageOrientationEnum ShouldRespectImageOrientation(
const LayoutObject*);
bool IsRelayoutBoundaryForInspector() const;
// The visual rect, in the the space of the paint invalidation container
// (*not* the graphics layer that paints this object).
IntRect VisualRectIncludingCompositedScrolling(
const LayoutBoxModelObject& paint_invalidation_container) const;
// Called when the previous visual rect(s) is no longer valid.
virtual void ClearPreviousVisualRects();
void SetSelfNeedsLayoutForAvailableSpace(bool b) {
PaintInvalidationReason FullPaintInvalidationReason() const {
return full_paint_invalidation_reason_;
bool ShouldDoFullPaintInvalidation() const {
if (!ShouldDelayFullPaintInvalidation() &&
full_paint_invalidation_reason_ != PaintInvalidationReason::kNone) {
return true;
return false;
// Indicates that the paint of the object should be fully invalidated.
// We will repaint the object, and reraster the area on the composited layer
// where the object shows. Note that this function doesn't automatically
// cause invalidation of background painted on the scrolling contents layer
// because we don't want to invalidate the whole scrolling contents layer on
// non-background changes. It's also not safe to specially handle
// PaintInvalidationReason::kBackground in paint invalidator because we don't
// track paint invalidation reasons separately. To indicate that the
// background needs full invalidation, use
// SetBackgroundNeedsFullPaintInvalidation().
void SetShouldDoFullPaintInvalidation(
PaintInvalidationReason = PaintInvalidationReason::kFull);
void SetShouldDoFullPaintInvalidationWithoutGeometryChange(
PaintInvalidationReason = PaintInvalidationReason::kFull);
void ClearPaintInvalidationFlags();
bool ShouldCheckForPaintInvalidation() const {
return bitfields_.ShouldCheckForPaintInvalidation();
void SetShouldCheckForPaintInvalidation();
void SetShouldCheckForPaintInvalidationWithoutGeometryChange();
bool SubtreeShouldCheckForPaintInvalidation() const {
return bitfields_.SubtreeShouldCheckForPaintInvalidation();
void SetSubtreeShouldCheckForPaintInvalidation();
bool NeedsPaintOffsetAndVisualRectUpdate() const {
return bitfields_.NeedsPaintOffsetAndVisualRectUpdate();
bool DescendantNeedsPaintOffsetAndVisualRectUpdate() const {
return bitfields_.DescendantNeedsPaintOffsetAndVisualRectUpdate();
bool MayNeedPaintInvalidationAnimatedBackgroundImage() const {
return bitfields_.MayNeedPaintInvalidationAnimatedBackgroundImage();
void SetMayNeedPaintInvalidationAnimatedBackgroundImage();
void SetSubtreeShouldDoFullPaintInvalidation(
PaintInvalidationReason reason = PaintInvalidationReason::kSubtree);
bool SubtreeShouldDoFullPaintInvalidation() const {
DCHECK(!bitfields_.SubtreeShouldDoFullPaintInvalidation() ||
return bitfields_.SubtreeShouldDoFullPaintInvalidation();
// If true, it means that invalidation and repainting of the object can be
// delayed until a future frame. This can be the case for an object whose
// content is not visible to the user.
bool ShouldDelayFullPaintInvalidation() const {
return bitfields_.ShouldDelayFullPaintInvalidation();
void SetShouldDelayFullPaintInvalidation();
bool ShouldInvalidateSelection() const {
return bitfields_.ShouldInvalidateSelection();
void SetShouldInvalidateSelection();
virtual LayoutRect ViewRect() const;
// Called by PaintInvalidator during PrePaint. Checks paint invalidation flags
// and other changes that will cause different painting, and invalidate
// display item clients for painting if needed.
virtual void InvalidatePaint(const PaintInvalidatorContext&) const;
// When this object is invalidated for paint, this method is called to
// invalidate any DisplayItemClients owned by this object, including the
// object itself, LayoutText/LayoutInline line boxes, etc.,
// not including children which will be invalidated normally during
// invalidateTreeIfNeeded() and parts which are invalidated separately (e.g.
// scrollbars). The caller should ensure the painting layer has been
// setNeedsRepaint before calling this function.
virtual void InvalidateDisplayItemClients(PaintInvalidationReason) const;
virtual bool HasNonCompositedScrollbars() const { return false; }
// Called before setting style for existing/new anonymous child. Override to
// set custom styles for the child. For new anonymous child, |child| is null.
virtual void UpdateAnonymousChildStyle(const LayoutObject* child,
ComputedStyle& style) const {}
// Returns a rect corresponding to this LayoutObject's bounds for use in
// debugging output
virtual LayoutRect DebugRect() const;
// Each LayoutObject has one or more painting fragments (exactly one
// in the absence of multicol/pagination).
// See ../paint/ for more on fragments.
const FragmentData& FirstFragment() const { return fragment_; }
// Returns the bounding box of the visual rects of all fragments.
IntRect FragmentsVisualRectBoundingBox() const;
void SetNeedsOverflowRecalc();
void InvalidateClipPathCache();
// Call |SetShouldDoFullPaintInvalidation| for LayoutNG or
// |SetShouldInvalidateSelection| on all selected children.
void InvalidateSelectedChildrenOnStyleChange();
// The allowed touch action is the union of the effective touch action
// (from style) and blocking touch event handlers.
TouchAction EffectiveAllowedTouchAction() const {
if (InsideBlockingTouchEventHandler())
return TouchAction::kTouchActionNone;
return StyleRef().GetEffectiveTouchAction();
bool HasEffectiveAllowedTouchAction() const {
return EffectiveAllowedTouchAction() != TouchAction::kTouchActionAuto;
// Whether this object's Node has a blocking touch event handler on itself
// or an ancestor.
bool InsideBlockingTouchEventHandler() const {
return bitfields_.InsideBlockingTouchEventHandler();
// Mark this object as having a |EffectiveAllowedTouchAction| changed, and
// mark all ancestors as having a descendant that changed. This will cause a
// PrePaint tree walk to update effective allowed touch action.
void MarkEffectiveAllowedTouchActionChanged();
bool EffectiveAllowedTouchActionChanged() const {
return bitfields_.EffectiveAllowedTouchActionChanged();
bool DescendantEffectiveAllowedTouchActionChanged() const {
return bitfields_.DescendantEffectiveAllowedTouchActionChanged();
void UpdateInsideBlockingTouchEventHandler(bool inside) {
// Painters can use const methods only, except for these explicitly declared
// methods.
class CORE_EXPORT MutableForPainting {
// Convenience mutator that clears paint invalidation flags and this object
// and its descendants' needs-paint-property-update flags.
void ClearPaintFlags() {
void SetShouldCheckForPaintInvalidation() {
void SetShouldDoFullPaintInvalidation(PaintInvalidationReason reason) {
void SetShouldDoFullPaintInvalidationWithoutGeometryChange(
PaintInvalidationReason reason) {
void SetBackgroundNeedsFullPaintInvalidation() {
void SetShouldDelayFullPaintInvalidation() {
void EnsureIsReadyForPaintInvalidation() {
void MarkEffectiveAllowedTouchActionChanged() {
// The following setters store the current values as calculated during the
// pre-paint tree walk. TODO(wangxianzhu): Add check of lifecycle states.
void SetVisualRect(const IntRect& r) {
void SetSelectionVisualRect(const IntRect& r) {
void SetPreviousBackgroundPaintLocation(BackgroundPaintLocation location) {
void UpdatePreviousOutlineMayBeAffectedByDescendants() {
void ClearPreviousVisualRects() {
void SetNeedsPaintPropertyUpdate() {
void AddSubtreePaintPropertyUpdateReason(
SubtreePaintPropertyUpdateReason reason) {
void SetPartialInvalidationVisualRect(const IntRect& r) {
void InvalidateClipPathCache() { layout_object_.InvalidateClipPathCache(); }
void UpdateInsideBlockingTouchEventHandler(bool inside) {
// Same as setNeedsPaintPropertyUpdate() but does not mark ancestors as
// having a descendant needing a paint property update.
void SetOnlyThisNeedsPaintPropertyUpdateForTesting() {
void ClearNeedsPaintPropertyUpdateForTesting() {
FragmentData& FirstFragment() { return layout_object_.fragment_; }
friend class LayoutBoxModelObject;
friend class LayoutScrollbar;
friend class PaintInvalidator;
friend class PaintPropertyTreeBuilder;
friend class PrePaintTreeWalk;
FRIEND_TEST_ALL_PREFIXES(PrePaintTreeWalkTest, ClipRects);
FRIEND_TEST_ALL_PREFIXES(LayoutObjectTest, VisualRect);
friend class LayoutObject;
MutableForPainting(const LayoutObject& layout_object)
: layout_object_(const_cast<LayoutObject&>(layout_object)) {}
LayoutObject& layout_object_;
MutableForPainting GetMutableForPainting() const {
return MutableForPainting(*this);
// Paint properties (see: |ObjectPaintProperties|) are built from an object's
// state (location, transform, etc) as well as properties from ancestors.
// When these inputs change, SetNeedsPaintPropertyUpdate will cause a property
// tree update during the next document lifecycle update.
// In addition to tracking if an object needs its own paint properties
// updated, SetNeedsPaintPropertyUpdate marks all ancestors as having a
// descendant needing a paint property update too.
void SetNeedsPaintPropertyUpdate();
bool NeedsPaintPropertyUpdate() const {
return bitfields_.NeedsPaintPropertyUpdate();
void AddSubtreePaintPropertyUpdateReason(
SubtreePaintPropertyUpdateReason reason) {
unsigned SubtreePaintPropertyUpdateReasons() const {
return bitfields_.SubtreePaintPropertyUpdateReasons();
bool DescendantNeedsPaintPropertyUpdate() const {
return bitfields_.DescendantNeedsPaintPropertyUpdate();
// Main thread scrolling reasons require fully updating paint propeties of all
// ancestors (see: ScrollPaintPropertyNode.h).
void SetAncestorsNeedPaintPropertyUpdateForMainThreadScrolling();
void SetIsScrollAnchorObject() { bitfields_.SetIsScrollAnchorObject(true); }
// Clears the IsScrollAnchorObject bit if and only if no ScrollAnchors still
// reference this LayoutObject.
void MaybeClearIsScrollAnchorObject();
bool ScrollAnchorDisablingStyleChanged() {
return bitfields_.ScrollAnchorDisablingStyleChanged();
void SetScrollAnchorDisablingStyleChanged(bool changed) {
bool CompositedScrollsWithRespectTo(
const LayoutBoxModelObject& paint_invalidation_container) const;
BackgroundPaintLocation PreviousBackgroundPaintLocation() const {
return bitfields_.PreviousBackgroundPaintLocation();
bool IsBackgroundAttachmentFixedObject() const {
return bitfields_.IsBackgroundAttachmentFixedObject();
bool BackgroundNeedsFullPaintInvalidation() const {
return !ShouldDelayFullPaintInvalidation() &&
void SetBackgroundNeedsFullPaintInvalidation() {
bool OutlineMayBeAffectedByDescendants() const {
return bitfields_.OutlineMayBeAffectedByDescendants();
bool PreviousOutlineMayBeAffectedByDescendants() const {
return bitfields_.PreviousOutlineMayBeAffectedByDescendants();
IntRect SelectionVisualRect() const {
return fragment_.SelectionVisualRect();
LayoutRect PartialInvalidationLocalRect() const {
return fragment_.PartialInvalidationLocalRect();
void InvalidateIfControlStateChanged(ControlState);
bool ContainsInlineWithOutlineAndContinuation() const {
return bitfields_.ContainsInlineWithOutlineAndContinuation();
void SetOutlineMayBeAffectedByDescendants(bool b) {
bool LayoutBlockedByDisplayLock() const {
auto* context = GetDisplayLockContext();
return context && !context->ShouldLayout();
bool PrePaintBlockedByDisplayLock() const {
auto* context = GetDisplayLockContext();
return context && !context->ShouldPrePaint();
bool PaintBlockedByDisplayLock() const {
auto* context = GetDisplayLockContext();
return context && !context->ShouldPaint();
void NotifyDisplayLockDidPrePaint() const {
if (auto* context = GetDisplayLockContext())
void NotifyDisplayLockDidPaint() const {
if (auto* context = GetDisplayLockContext())
// This flag caches StyleRef().HasBorderDecoration() &&
// !Table()->ShouldCollapseBorders().
bool HasNonCollapsedBorderDecoration() const {
// We can only ensure this flag is up-to-date after PrePaint.
return bitfields_.HasNonCollapsedBorderDecoration();
void SetHasNonCollapsedBorderDecoration(bool b) {
DisplayLockContext* GetDisplayLockContext() const {
if (!RuntimeEnabledFeatures::DisplayLockingEnabled())
return nullptr;
if (!GetNode() || !GetNode()->IsElementNode())
return nullptr;
return ToElement(GetNode())->GetDisplayLockContext();
enum LayoutObjectType {
kLayoutObjectSVG, /* Keep by itself? */
virtual bool IsOfType(LayoutObjectType type) const { return false; }
// Updates only the local style ptr of the object. Does not update the state
// of the object, and so only should be called when the style is known not to
// have changed (or from SetStyle).
void SetStyleInternal(scoped_refptr<ComputedStyle> style) {
style_ = std::move(style);
// Overrides should call the superclass at the end. style_ will be 0 the
// first time this function will be called.
virtual void StyleWillChange(StyleDifference, const ComputedStyle& new_style);
// Overrides should call the superclass at the start. |oldStyle| will be 0 the
// first time this function is called.
virtual void StyleDidChange(StyleDifference, const ComputedStyle* old_style);
void PropagateStyleToAnonymousChildren();
// Return true for objects that don't want style changes automatically
// propagated via propagateStyleToAnonymousChildren(), but rather rely on
// other custom mechanisms (if they need to be notified of parent style
// changes at all).
virtual bool AnonymousHasStylePropagationOverride() { return false; }
virtual void InLayoutNGInlineFormattingContextWillChange(bool) {}
// A fast path for MapToVisualRectInAncestorSpace for when GeometryMapper
// can be used. |intersects| is set to whether the input rect intersected
// (see documentation of return value of MapToVisualRectInAncestorSpace).
// The return value of this method is whether the fast path could be used.
bool MapToVisualRectInAncestorSpaceInternalFastPath(
const LayoutBoxModelObject* ancestor,
bool& intersects) const;
// This function is called before calling the destructor so that some clean-up
// can happen regardless of whether they call a virtual function or not. As a
// rule of thumb, this function should be preferred to the destructor. See
// destroy() that is the one calling willBeDestroyed().
// There are 2 types of destructions: regular destructions and tree tear-down.
// Regular destructions happen when the renderer is not needed anymore (e.g.
// 'display' changed or the DOM Node was removed).
// Tree tear-down is when the whole tree destroyed during navigation. It is
// handled in the code by checking if documentBeingDestroyed() returns 'true'.
// In this case, the code skips some unneeded expensive operations as we know
// the tree is not reused (e.g. avoid clearing the containing block's line
// box).
virtual void WillBeDestroyed();
virtual void InsertedIntoTree();
virtual void WillBeRemovedFromTree();
void SetDocumentForAnonymous(Document* document) {
node_ = document;
virtual bool PaintInvalidationStateIsDirty() const;
// Called before paint invalidation.
virtual void EnsureIsReadyForPaintInvalidation() { DCHECK(!NeedsLayout()); }
void SetIsBackgroundAttachmentFixedObject(bool);
void SetEverHadLayout() { bitfields_.SetEverHadLayout(true); }
// Remove this object and all descendants from the containing
// LayoutFlowThread.
void RemoveFromLayoutFlowThread();
void SetPreviousOutlineMayBeAffectedByDescendants(bool b) {
virtual bool VisualRectRespectsVisibility() const { return true; }
virtual LayoutRect LocalVisualRectIgnoringVisibility() const;
virtual bool CanBeSelectionLeafInternal() const { return false; }
virtual LayoutSize OffsetFromContainerInternal(
const LayoutObject*,
bool ignore_scroll_offset) const;
LayoutSize OffsetFromScrollableContainer(const LayoutObject*,
bool ignore_scroll_offset) const;
void NotifyDisplayLockDidLayout() {
if (auto* context = GetDisplayLockContext())
bool BackgroundIsKnownToBeObscured() const {
return bitfields_.BackgroundIsKnownToBeObscured();
void SetBackgroundIsKnownToBeObscured(bool b) {
// Used only by applyFirstLineChanges to get a first line style based off of a
// given new style, without accessing the cache.
scoped_refptr<const ComputedStyle> UncachedFirstLineStyle() const;
// Adjusts a visual rect in the space of |visual_rect| to be in the space of
// the |paint_invalidation_container|, if needed. They can be different only
// if |paint_invalidation_container| is a composited scroller.
void AdjustVisualRectForCompositedScrolling(
IntRect& visual_rect,
const LayoutBoxModelObject& paint_invalidation_container) const;
FloatQuad LocalToAncestorQuadInternal(const FloatQuad&,
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = 0) const;
void ClearLayoutRootIfNeeded() const;
bool IsInert() const;
void ScheduleRelayout();
void AddAsImageObserver(StyleImage*);
void RemoveAsImageObserver(StyleImage*);
void UpdateImage(StyleImage*, StyleImage*);
void UpdateShapeImage(const ShapeValue*, const ShapeValue*);
void UpdateFillImages(const FillLayer* old_layers,
const FillLayer* new_layers);
void UpdateCursorImages(const CursorList* old_cursors,
const CursorList* new_cursors);
void CheckCounterChanges(const ComputedStyle* old_style,
const ComputedStyle* new_style);
// Walk up the parent chain and find the first scrolling block to disable
// scroll anchoring on.
void SetScrollAnchorDisablingStyleChangedOnAncestor();
inline void MarkContainerChainForOverflowRecalcIfNeeded();
inline void SetNeedsPaintOffsetAndVisualRectUpdate();
inline void InvalidateContainerPreferredLogicalWidths();
const LayoutBoxModelObject* EnclosingCompositedContainer() const;
LayoutFlowThread* LocateFlowThreadContainingBlock() const;
void RemoveFromLayoutFlowThreadRecursive(LayoutFlowThread*);
const ComputedStyle* CachedFirstLineStyle() const;
StyleDifference AdjustStyleDifference(StyleDifference) const;
// These are helper functions for AbsoluteBoudingBoxRectHandlingEmptyAnchor()
// and AbsoluteBoundingBoxRectForScrollIntoView().
enum class ExpandScrollMargin { kExpand, kIgnore };
LayoutRect AbsoluteBoundingBoxRectHelper(ExpandScrollMargin) const;
bool GetUpperLeftCorner(ExpandScrollMargin, FloatPoint&) const;
bool GetLowerRightCorner(ExpandScrollMargin, FloatPoint&) const;
void CheckBlockPositionedObjectsNeedLayout();
bool IsTextOrSVGChild() const { return IsText() || IsSVGChild(); }
static bool IsAllowedToModifyLayoutTreeStructure(Document&);
// Returns the parent LayoutObject, or nullptr. This has a special case for
// LayoutView to return the owning LayoutObject in the containing frame.
inline LayoutObject* ParentCrossingFrames() const;
void UpdateImageObservers(const ComputedStyle* old_style,
const ComputedStyle* new_style);
void UpdateFirstLineImageObservers(const ComputedStyle* old_style,
const ComputedStyle* new_style);
void ApplyPseudoStyleChanges(const ComputedStyle* old_style);
void ApplyFirstLineChanges(const ComputedStyle* old_style);
IntRect AdjustVisualRectForInlineBox(const IntRect&) const;
// This is set by Set[Subtree]ShouldDoFullPaintInvalidation, and cleared
// during PrePaint in this object's InvalidatePaint(). It's different from
// DisplayItemClient::GetPaintInvalidationReason() which is set during
// PrePaint and cleared in PaintController::FinishCycle().
// It's defined as the first field so that it can use the memory gap between
// DisplayItemClient and LayoutObject's other fields.
PaintInvalidationReason full_paint_invalidation_reason_;
scoped_refptr<ComputedStyle> style_;
// Oilpan: This untraced pointer to the owning Node is considered safe.
UntracedMember<Node> node_;
LayoutObject* parent_;
LayoutObject* previous_;
LayoutObject* next_;
unsigned has_ax_object_ : 1;
unsigned set_needs_layout_forbidden_ : 1;
unsigned as_image_observer_count_ : 20;
#define ADD_BOOLEAN_BITFIELD(field_name_, MethodNameBase) \
public: \
bool MethodNameBase() const { return field_name_; } \
void Set##MethodNameBase(bool new_value) { field_name_ = new_value; } \
private: \
unsigned field_name_ : 1
class LayoutObjectBitfields {
enum PositionedState {
kIsStaticallyPositioned = 0,
kIsRelativelyPositioned = 1,
kIsOutOfFlowPositioned = 2,
kIsStickyPositioned = 3,
// LayoutObjectBitfields holds all the boolean values for LayoutObject.
// This is done to promote better packing on LayoutObject (at the expense of
// preventing bit field packing for the subclasses). Classes concerned about
// packing and memory use should hoist their boolean to this class. See
// below the field from sub-classes (e.g. childrenInline).
// Some of those booleans are caches of ComputedStyle values (e.g.
// positionState). This enables better memory locality and thus better
// performance.
// This class is an artifact of the WebKit era where LayoutObject wasn't
// allowed to grow and each sub-class was strictly monitored for memory
// increase. Our measurements indicate that the size of LayoutObject and
// subsequent classes do not impact memory or speed in a significant
// manner. This is based on growing LayoutObject in
// and subsequent relaxations
// of the memory constraints on layout objects.
LayoutObjectBitfields(Node* node)
: self_needs_layout_for_style_(false),