blob: b91b1daab86215b1731a7059130f5e9d1673b8a1 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/display/manager/managed_display_info.h"
#include <stdio.h>
#include <string>
#include <vector>
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "ui/display/display.h"
#include "ui/display/display_switches.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/geometry/size_f.h"
#if defined(OS_WIN)
#include <windows.h>
#include "ui/display/win/dpi.h"
#endif
namespace display {
namespace {
// Use larger than max int to catch overflow early.
const int64_t kSynthesizedDisplayIdStart = 2200000000LL;
int64_t synthesized_display_id = kSynthesizedDisplayIdStart;
const float kDpi96 = 96.0;
// Check the content of |spec| and fill |bounds| and |device_scale_factor|.
// Returns true when |bounds| is found.
bool GetDisplayBounds(const std::string& spec,
gfx::Rect* bounds,
float* device_scale_factor) {
int width = 0;
int height = 0;
int x = 0;
int y = 0;
if (sscanf(spec.c_str(), "%dx%d*%f", &width, &height, device_scale_factor) >=
2 ||
sscanf(spec.c_str(), "%d+%d-%dx%d*%f", &x, &y, &width, &height,
device_scale_factor) >= 4) {
bounds->SetRect(x, y, width, height);
return true;
}
return false;
}
// Display mode list is sorted by:
// * the area in pixels in ascending order
// * refresh rate in descending order
struct ManagedDisplayModeSorter {
explicit ManagedDisplayModeSorter(bool is_internal)
: is_internal(is_internal) {}
bool operator()(const ManagedDisplayMode& a, const ManagedDisplayMode& b) {
gfx::Size size_a_dip = a.GetSizeInDIP(is_internal);
gfx::Size size_b_dip = b.GetSizeInDIP(is_internal);
if (size_a_dip.GetArea() == size_b_dip.GetArea())
return (a.refresh_rate() > b.refresh_rate());
return (size_a_dip.GetArea() < size_b_dip.GetArea());
}
bool is_internal;
};
} // namespace
ManagedDisplayMode::ManagedDisplayMode() {}
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size) : size_(size) {}
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size,
float refresh_rate,
bool is_interlaced,
bool native)
: size_(size),
refresh_rate_(refresh_rate),
is_interlaced_(is_interlaced),
native_(native) {}
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size,
float refresh_rate,
bool is_interlaced,
bool native,
float device_scale_factor)
: size_(size),
refresh_rate_(refresh_rate),
is_interlaced_(is_interlaced),
native_(native),
device_scale_factor_(device_scale_factor) {}
ManagedDisplayMode::~ManagedDisplayMode() = default;
ManagedDisplayMode::ManagedDisplayMode(const ManagedDisplayMode& other) =
default;
ManagedDisplayMode& ManagedDisplayMode::operator=(
const ManagedDisplayMode& other) = default;
gfx::Size ManagedDisplayMode::GetSizeInDIP(bool is_internal) const {
gfx::SizeF size_dip(size_);
// DSF=1.25 is special on internal display. The screen is drawn with DSF=1.25
// but it doesn't affect the screen size computation.
if (is_internal && device_scale_factor_ == 1.25f)
return gfx::ToFlooredSize(size_dip);
size_dip.Scale(1.0f / device_scale_factor_);
return gfx::ToFlooredSize(size_dip);
}
bool ManagedDisplayMode::IsEquivalent(const ManagedDisplayMode& other) const {
const float kEpsilon = 0.0001f;
return size_ == other.size_ &&
std::abs(device_scale_factor_ - other.device_scale_factor_) < kEpsilon;
}
// static
ManagedDisplayInfo ManagedDisplayInfo::CreateFromSpec(const std::string& spec) {
return CreateFromSpecWithID(spec, kInvalidDisplayId);
}
// static
ManagedDisplayInfo ManagedDisplayInfo::CreateFromSpecWithID(
const std::string& spec,
int64_t id) {
#if defined(OS_WIN)
gfx::Rect bounds_in_native(
gfx::Size(GetSystemMetrics(SM_CXSCREEN), GetSystemMetrics(SM_CYSCREEN)));
#else
// Default bounds for a display.
const int kDefaultHostWindowX = 200;
const int kDefaultHostWindowY = 200;
const int kDefaultHostWindowWidth = 1366;
const int kDefaultHostWindowHeight = 768;
gfx::Rect bounds_in_native(kDefaultHostWindowX, kDefaultHostWindowY,
kDefaultHostWindowWidth, kDefaultHostWindowHeight);
#endif
std::string main_spec = spec;
float zoom_factor = 1.0f;
std::vector<std::string> parts = base::SplitString(
main_spec, "@", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
if (parts.size() == 2) {
double scale_in_double = 0;
if (base::StringToDouble(parts[1], &scale_in_double))
zoom_factor = scale_in_double;
main_spec = parts[0];
}
parts = base::SplitString(main_spec, "/", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
Display::Rotation rotation(Display::ROTATE_0);
bool has_overscan = false;
if (!parts.empty()) {
main_spec = parts[0];
if (parts.size() >= 2) {
std::string options = parts[1];
for (size_t i = 0; i < options.size(); ++i) {
char c = options[i];
switch (c) {
case 'o':
has_overscan = true;
break;
case 'r': // rotate 90 degrees to 'right'.
rotation = Display::ROTATE_90;
break;
case 'u': // 180 degrees, 'u'pside-down.
rotation = Display::ROTATE_180;
break;
case 'l': // rotate 90 degrees to 'left'.
rotation = Display::ROTATE_270;
break;
}
}
}
}
float device_scale_factor = 1.0f;
if (!GetDisplayBounds(main_spec, &bounds_in_native, &device_scale_factor)) {
#if defined(OS_WIN)
device_scale_factor = win::GetDPIScale();
#endif
}
ManagedDisplayModeList display_modes;
parts = base::SplitString(main_spec, "#", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
if (parts.size() == 2) {
size_t native_mode = 0;
int largest_area = -1;
float highest_refresh_rate = -1.0f;
main_spec = parts[0];
std::string resolution_list = parts[1];
parts = base::SplitString(resolution_list, "|", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
for (size_t i = 0; i < parts.size(); ++i) {
gfx::Size size;
float refresh_rate = 0.0f;
bool is_interlaced = false;
gfx::Rect mode_bounds;
std::vector<std::string> resolution = base::SplitString(
parts[i], "%", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
if (GetDisplayBounds(resolution[0], &mode_bounds, &device_scale_factor)) {
size = mode_bounds.size();
if (resolution.size() > 1)
sscanf(resolution[1].c_str(), "%f", &refresh_rate);
if (size.GetArea() >= largest_area &&
refresh_rate > highest_refresh_rate) {
// Use mode with largest area and highest refresh rate as native.
largest_area = size.GetArea();
highest_refresh_rate = refresh_rate;
native_mode = i;
}
display_modes.push_back(ManagedDisplayMode(
size, refresh_rate, is_interlaced, false, device_scale_factor));
}
}
ManagedDisplayMode dm = display_modes[native_mode];
display_modes[native_mode] =
ManagedDisplayMode(dm.size(), dm.refresh_rate(), dm.is_interlaced(),
true, dm.device_scale_factor());
}
if (id == kInvalidDisplayId)
id = synthesized_display_id++;
ManagedDisplayInfo display_info(
id, base::StringPrintf("Display-%d", static_cast<int>(id)), has_overscan);
display_info.set_device_scale_factor(device_scale_factor);
display_info.SetRotation(rotation, Display::RotationSource::ACTIVE);
display_info.set_zoom_factor(zoom_factor);
display_info.SetBounds(bounds_in_native);
#if 0
if (!display_modes.size()) {
display_modes.push_back(ManagedDisplayMode(
display_info.size_in_pixel(), 60.0f,
/*interlace=*/false, /*native=*/true, device_scale_factor));
}
#endif
display_info.SetManagedDisplayModes(display_modes);
// To test the overscan, it creates the default 5% overscan.
if (has_overscan) {
int width = bounds_in_native.width() / device_scale_factor / 40;
int height = bounds_in_native.height() / device_scale_factor / 40;
display_info.SetOverscanInsets(gfx::Insets(height, width, height, width));
display_info.UpdateDisplaySize();
}
DVLOG(1) << "DisplayInfoFromSpec info=" << display_info.ToString()
<< ", spec=" << spec;
return display_info;
}
ManagedDisplayInfo::ManagedDisplayInfo()
: id_(kInvalidDisplayId),
year_of_manufacture_(kInvalidYearOfManufacture),
has_overscan_(false),
active_rotation_source_(Display::RotationSource::UNKNOWN),
touch_support_(Display::TouchSupport::UNKNOWN),
device_scale_factor_(1.0f),
device_dpi_(kDpi96),
overscan_insets_in_dip_(0, 0, 0, 0),
zoom_factor_(1.f),
is_zoom_factor_from_ui_scale_(false),
native_(false),
is_aspect_preserving_scaling_(false),
clear_overscan_insets_(false) {}
ManagedDisplayInfo::ManagedDisplayInfo(int64_t id,
const std::string& name,
bool has_overscan)
: id_(id),
name_(name),
year_of_manufacture_(kInvalidYearOfManufacture),
has_overscan_(has_overscan),
active_rotation_source_(Display::RotationSource::UNKNOWN),
touch_support_(Display::TouchSupport::UNKNOWN),
device_scale_factor_(1.0f),
device_dpi_(kDpi96),
overscan_insets_in_dip_(0, 0, 0, 0),
zoom_factor_(1.f),
is_zoom_factor_from_ui_scale_(false),
native_(false),
is_aspect_preserving_scaling_(false),
clear_overscan_insets_(false) {}
ManagedDisplayInfo::ManagedDisplayInfo(const ManagedDisplayInfo& other) =
default;
ManagedDisplayInfo::~ManagedDisplayInfo() {}
void ManagedDisplayInfo::SetRotation(Display::Rotation rotation,
Display::RotationSource source) {
rotations_[source] = rotation;
rotations_[Display::RotationSource::ACTIVE] = rotation;
active_rotation_source_ = source;
}
Display::Rotation ManagedDisplayInfo::GetActiveRotation() const {
return GetRotation(Display::RotationSource::ACTIVE);
}
Display::Rotation ManagedDisplayInfo::GetRotation(
Display::RotationSource source) const {
if (rotations_.find(source) == rotations_.end())
return Display::ROTATE_0;
return rotations_.at(source);
}
void ManagedDisplayInfo::Copy(const ManagedDisplayInfo& native_info) {
DCHECK(id_ == native_info.id_);
manufacturer_id_ = native_info.manufacturer_id_;
product_id_ = native_info.product_id_;
year_of_manufacture_ = native_info.year_of_manufacture_;
name_ = native_info.name_;
has_overscan_ = native_info.has_overscan_;
active_rotation_source_ = native_info.active_rotation_source_;
touch_support_ = native_info.touch_support_;
device_scale_factor_ = native_info.device_scale_factor_;
DCHECK(!native_info.bounds_in_native_.IsEmpty());
bounds_in_native_ = native_info.bounds_in_native_;
device_dpi_ = native_info.device_dpi_;
size_in_pixel_ = native_info.size_in_pixel_;
is_aspect_preserving_scaling_ = native_info.is_aspect_preserving_scaling_;
display_modes_ = native_info.display_modes_;
maximum_cursor_size_ = native_info.maximum_cursor_size_;
color_space_ = native_info.color_space_;
// Rotation, color_profile and overscan are given by preference,
// or unit tests. Don't copy if this native_info came from
// DisplayChangeObserver.
if (native_info.native())
return;
// Update the overscan_insets_in_dip_ either if the inset should be
// cleared, or has non empty insts.
if (native_info.clear_overscan_insets())
overscan_insets_in_dip_.Set(0, 0, 0, 0);
else if (!native_info.overscan_insets_in_dip_.IsEmpty())
overscan_insets_in_dip_ = native_info.overscan_insets_in_dip_;
rotations_ = native_info.rotations_;
zoom_factor_ = native_info.zoom_factor_;
is_zoom_factor_from_ui_scale_ = native_info.is_zoom_factor_from_ui_scale_;
}
void ManagedDisplayInfo::SetBounds(const gfx::Rect& new_bounds_in_native) {
bounds_in_native_ = new_bounds_in_native;
size_in_pixel_ = new_bounds_in_native.size();
UpdateDisplaySize();
}
float ManagedDisplayInfo::GetDensityRatio() const {
if (Display::IsInternalDisplayId(id_) && device_scale_factor_ == 1.25f)
return 1.0f;
return device_scale_factor_;
}
float ManagedDisplayInfo::GetEffectiveDeviceScaleFactor() const {
return device_scale_factor_ * zoom_factor_;
}
void ManagedDisplayInfo::UpdateDisplaySize() {
size_in_pixel_ = bounds_in_native_.size();
if (!overscan_insets_in_dip_.IsEmpty()) {
gfx::Insets insets_in_pixel =
overscan_insets_in_dip_.Scale(device_scale_factor_);
size_in_pixel_.Enlarge(-insets_in_pixel.width(), -insets_in_pixel.height());
} else {
overscan_insets_in_dip_.Set(0, 0, 0, 0);
}
if (GetActiveRotation() == Display::ROTATE_90 ||
GetActiveRotation() == Display::ROTATE_270) {
size_in_pixel_.SetSize(size_in_pixel_.height(), size_in_pixel_.width());
}
}
void ManagedDisplayInfo::SetOverscanInsets(const gfx::Insets& insets_in_dip) {
overscan_insets_in_dip_ = insets_in_dip;
}
gfx::Insets ManagedDisplayInfo::GetOverscanInsetsInPixel() const {
return overscan_insets_in_dip_.Scale(device_scale_factor_ * zoom_factor_);
}
void ManagedDisplayInfo::SetManagedDisplayModes(
const ManagedDisplayModeList& display_modes) {
display_modes_ = display_modes;
std::sort(display_modes_.begin(), display_modes_.end(),
ManagedDisplayModeSorter(Display::IsInternalDisplayId(id_)));
}
gfx::Size ManagedDisplayInfo::GetNativeModeSize() const {
for (const ManagedDisplayMode& display_mode : display_modes_) {
if (display_mode.native())
return display_mode.size();
}
return gfx::Size();
}
std::string ManagedDisplayInfo::ToString() const {
int rotation_degree = static_cast<int>(GetActiveRotation()) * 90;
std::string result = base::StringPrintf(
"ManagedDisplayInfo[%lld] native bounds=%s, size=%s, device-scale=%g, "
"display-zoom=%g, overscan=%s, rotation=%d, touchscreen=%s",
static_cast<long long int>(id_), bounds_in_native_.ToString().c_str(),
size_in_pixel_.ToString().c_str(), device_scale_factor_, zoom_factor_,
overscan_insets_in_dip_.ToString().c_str(), rotation_degree,
touch_support_ == Display::TouchSupport::AVAILABLE
? "yes"
: touch_support_ == Display::TouchSupport::UNAVAILABLE ? "no"
: "unknown");
return result;
}
std::string ManagedDisplayInfo::ToFullString() const {
std::string display_modes_str;
for (const ManagedDisplayMode& m : display_modes_) {
if (!display_modes_str.empty())
display_modes_str += ",";
base::StringAppendF(&display_modes_str, "(%dx%d@%g%c%s %g)",
m.size().width(), m.size().height(), m.refresh_rate(),
m.is_interlaced() ? 'I' : 'P', m.native() ? "(N)" : "",
m.device_scale_factor());
}
return ToString() + ", display_modes==" + display_modes_str;
}
void ResetDisplayIdForTest() {
synthesized_display_id = kSynthesizedDisplayIdStart;
}
} // namespace display