| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <algorithm> |
| |
| #include "build/build_config.h" |
| #include "skia/ext/convolver.h" |
| #include "skia/ext/convolver_SSE2.h" |
| #include "third_party/skia/include/core/SkTypes.h" |
| |
| #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h |
| |
| namespace skia { |
| |
| // Convolves horizontally along a single row. The row data is given in |
| // |src_data| and continues for the num_values() of the filter. |
| void ConvolveHorizontally_SSE2(const unsigned char* src_data, |
| const ConvolutionFilter1D& filter, |
| unsigned char* out_row, |
| bool /*has_alpha*/) { |
| int num_values = filter.num_values(); |
| |
| int filter_offset, filter_length; |
| __m128i zero = _mm_setzero_si128(); |
| __m128i mask[4]; |
| // |mask| will be used to decimate all extra filter coefficients that are |
| // loaded by SIMD when |filter_length| is not divisible by 4. |
| // mask[0] is not used in following algorithm. |
| mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| |
| // Output one pixel each iteration, calculating all channels (RGBA) together. |
| for (int out_x = 0; out_x < num_values; out_x++) { |
| const ConvolutionFilter1D::Fixed* filter_values = |
| filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| |
| __m128i accum = _mm_setzero_si128(); |
| |
| // Compute the first pixel in this row that the filter affects. It will |
| // touch |filter_length| pixels (4 bytes each) after this. |
| const __m128i* row_to_filter = |
| reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); |
| |
| // We will load and accumulate with four coefficients per iteration. |
| for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { |
| |
| // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. |
| __m128i coeff, coeff16; |
| // [16] xx xx xx xx c3 c2 c1 c0 |
| coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| // [16] xx xx xx xx c1 c1 c0 c0 |
| coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| |
| // Load four pixels => unpack the first two pixels to 16 bits => |
| // multiply with coefficients => accumulate the convolution result. |
| // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| __m128i src8 = _mm_loadu_si128(row_to_filter); |
| // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| // [32] a0*c0 b0*c0 g0*c0 r0*c0 |
| __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| accum = _mm_add_epi32(accum, t); |
| // [32] a1*c1 b1*c1 g1*c1 r1*c1 |
| t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| accum = _mm_add_epi32(accum, t); |
| |
| // Duplicate 3rd and 4th coefficients for all channels => |
| // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients |
| // => accumulate the convolution results. |
| // [16] xx xx xx xx c3 c3 c2 c2 |
| coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| // [16] a3 g3 b3 r3 a2 g2 b2 r2 |
| src16 = _mm_unpackhi_epi8(src8, zero); |
| mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| mul_lo = _mm_mullo_epi16(src16, coeff16); |
| // [32] a2*c2 b2*c2 g2*c2 r2*c2 |
| t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| accum = _mm_add_epi32(accum, t); |
| // [32] a3*c3 b3*c3 g3*c3 r3*c3 |
| t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| accum = _mm_add_epi32(accum, t); |
| |
| // Advance the pixel and coefficients pointers. |
| row_to_filter += 1; |
| filter_values += 4; |
| } |
| |
| // When |filter_length| is not divisible by 4, we need to decimate some of |
| // the filter coefficient that was loaded incorrectly to zero; Other than |
| // that the algorithm is same with above, exceot that the 4th pixel will be |
| // always absent. |
| int r = filter_length&3; |
| if (r) { |
| // Note: filter_values must be padded to align_up(filter_offset, 8). |
| __m128i coeff, coeff16; |
| coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| // Mask out extra filter taps. |
| coeff = _mm_and_si128(coeff, mask[r]); |
| coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| |
| // Note: line buffer must be padded to align_up(filter_offset, 16). |
| // We resolve this by use C-version for the last horizontal line. |
| __m128i src8 = _mm_loadu_si128(row_to_filter); |
| __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| accum = _mm_add_epi32(accum, t); |
| t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| accum = _mm_add_epi32(accum, t); |
| |
| src16 = _mm_unpackhi_epi8(src8, zero); |
| coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| mul_lo = _mm_mullo_epi16(src16, coeff16); |
| t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| accum = _mm_add_epi32(accum, t); |
| } |
| |
| // Shift right for fixed point implementation. |
| accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); |
| |
| // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| accum = _mm_packs_epi32(accum, zero); |
| // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| accum = _mm_packus_epi16(accum, zero); |
| |
| // Store the pixel value of 32 bits. |
| *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
| out_row += 4; |
| } |
| } |
| |
| // Convolves horizontally along four rows. The row data is given in |
| // |src_data| and continues for the num_values() of the filter. |
| // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
| // refer to that function for detailed comments. |
| void Convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], |
| const ConvolutionFilter1D& filter, |
| unsigned char* out_row[4]) { |
| int num_values = filter.num_values(); |
| |
| int filter_offset, filter_length; |
| __m128i zero = _mm_setzero_si128(); |
| __m128i mask[4]; |
| // |mask| will be used to decimate all extra filter coefficients that are |
| // loaded by SIMD when |filter_length| is not divisible by 4. |
| // mask[0] is not used in following algorithm. |
| mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| |
| // Output one pixel each iteration, calculating all channels (RGBA) together. |
| for (int out_x = 0; out_x < num_values; out_x++) { |
| const ConvolutionFilter1D::Fixed* filter_values = |
| filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| |
| // four pixels in a column per iteration. |
| __m128i accum0 = _mm_setzero_si128(); |
| __m128i accum1 = _mm_setzero_si128(); |
| __m128i accum2 = _mm_setzero_si128(); |
| __m128i accum3 = _mm_setzero_si128(); |
| int start = (filter_offset<<2); |
| // We will load and accumulate with four coefficients per iteration. |
| for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { |
| __m128i coeff, coeff16lo, coeff16hi; |
| // [16] xx xx xx xx c3 c2 c1 c0 |
| coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| // [16] xx xx xx xx c1 c1 c0 c0 |
| coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| // [16] xx xx xx xx c3 c3 c2 c2 |
| coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| |
| __m128i src8, src16, mul_hi, mul_lo, t; |
| |
| #define ITERATION(src, accum) \ |
| src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ |
| src16 = _mm_unpacklo_epi8(src8, zero); \ |
| mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ |
| mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ |
| t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| accum = _mm_add_epi32(accum, t); \ |
| t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| accum = _mm_add_epi32(accum, t); \ |
| src16 = _mm_unpackhi_epi8(src8, zero); \ |
| mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ |
| mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ |
| t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| accum = _mm_add_epi32(accum, t); \ |
| t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| accum = _mm_add_epi32(accum, t) |
| |
| ITERATION(src_data[0] + start, accum0); |
| ITERATION(src_data[1] + start, accum1); |
| ITERATION(src_data[2] + start, accum2); |
| ITERATION(src_data[3] + start, accum3); |
| |
| start += 16; |
| filter_values += 4; |
| } |
| |
| int r = filter_length & 3; |
| if (r) { |
| // Note: filter_values must be padded to align_up(filter_offset, 8); |
| __m128i coeff; |
| coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| // Mask out extra filter taps. |
| coeff = _mm_and_si128(coeff, mask[r]); |
| |
| __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| /* c1 c1 c1 c1 c0 c0 c0 c0 */ |
| coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| |
| __m128i src8, src16, mul_hi, mul_lo, t; |
| |
| ITERATION(src_data[0] + start, accum0); |
| ITERATION(src_data[1] + start, accum1); |
| ITERATION(src_data[2] + start, accum2); |
| ITERATION(src_data[3] + start, accum3); |
| } |
| |
| accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| accum0 = _mm_packs_epi32(accum0, zero); |
| accum0 = _mm_packus_epi16(accum0, zero); |
| accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| accum1 = _mm_packs_epi32(accum1, zero); |
| accum1 = _mm_packus_epi16(accum1, zero); |
| accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| accum2 = _mm_packs_epi32(accum2, zero); |
| accum2 = _mm_packus_epi16(accum2, zero); |
| accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
| accum3 = _mm_packs_epi32(accum3, zero); |
| accum3 = _mm_packus_epi16(accum3, zero); |
| |
| *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); |
| *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); |
| *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); |
| *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); |
| |
| out_row[0] += 4; |
| out_row[1] += 4; |
| out_row[2] += 4; |
| out_row[3] += 4; |
| } |
| } |
| |
| // Does vertical convolution to produce one output row. The filter values and |
| // length are given in the first two parameters. These are applied to each |
| // of the rows pointed to in the |source_data_rows| array, with each row |
| // being |pixel_width| wide. |
| // |
| // The output must have room for |pixel_width * 4| bytes. |
| template<bool has_alpha> |
| void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
| int filter_length, |
| unsigned char* const* source_data_rows, |
| int pixel_width, |
| unsigned char* out_row) { |
| int width = pixel_width & ~3; |
| |
| __m128i zero = _mm_setzero_si128(); |
| __m128i accum0, accum1, accum2, accum3, coeff16; |
| const __m128i* src; |
| // Output four pixels per iteration (16 bytes). |
| for (int out_x = 0; out_x < width; out_x += 4) { |
| |
| // Accumulated result for each pixel. 32 bits per RGBA channel. |
| accum0 = _mm_setzero_si128(); |
| accum1 = _mm_setzero_si128(); |
| accum2 = _mm_setzero_si128(); |
| accum3 = _mm_setzero_si128(); |
| |
| // Convolve with one filter coefficient per iteration. |
| for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
| |
| // Duplicate the filter coefficient 8 times. |
| // [16] cj cj cj cj cj cj cj cj |
| coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
| |
| // Load four pixels (16 bytes) together. |
| // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| src = reinterpret_cast<const __m128i*>( |
| &source_data_rows[filter_y][out_x << 2]); |
| __m128i src8 = _mm_loadu_si128(src); |
| |
| // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => |
| // multiply with current coefficient => accumulate the result. |
| // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| // [32] a0 b0 g0 r0 |
| __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| accum0 = _mm_add_epi32(accum0, t); |
| // [32] a1 b1 g1 r1 |
| t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| accum1 = _mm_add_epi32(accum1, t); |
| |
| // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => |
| // multiply with current coefficient => accumulate the result. |
| // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| src16 = _mm_unpackhi_epi8(src8, zero); |
| mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| mul_lo = _mm_mullo_epi16(src16, coeff16); |
| // [32] a2 b2 g2 r2 |
| t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| accum2 = _mm_add_epi32(accum2, t); |
| // [32] a3 b3 g3 r3 |
| t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| accum3 = _mm_add_epi32(accum3, t); |
| } |
| |
| // Shift right for fixed point implementation. |
| accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
| |
| // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| accum0 = _mm_packs_epi32(accum0, accum1); |
| // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| accum2 = _mm_packs_epi32(accum2, accum3); |
| |
| // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| accum0 = _mm_packus_epi16(accum0, accum2); |
| |
| if (has_alpha) { |
| // Compute the max(ri, gi, bi) for each pixel. |
| // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| __m128i a = _mm_srli_epi32(accum0, 8); |
| // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| a = _mm_srli_epi32(accum0, 16); |
| // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| b = _mm_max_epu8(a, b); // Max of r and g and b. |
| // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| b = _mm_slli_epi32(b, 24); |
| |
| // Make sure the value of alpha channel is always larger than maximum |
| // value of color channels. |
| accum0 = _mm_max_epu8(b, accum0); |
| } else { |
| // Set value of alpha channels to 0xFF. |
| __m128i mask = _mm_set1_epi32(0xff000000); |
| accum0 = _mm_or_si128(accum0, mask); |
| } |
| |
| // Store the convolution result (16 bytes) and advance the pixel pointers. |
| _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); |
| out_row += 16; |
| } |
| |
| // When the width of the output is not divisible by 4, We need to save one |
| // pixel (4 bytes) each time. And also the fourth pixel is always absent. |
| if (pixel_width & 3) { |
| accum0 = _mm_setzero_si128(); |
| accum1 = _mm_setzero_si128(); |
| accum2 = _mm_setzero_si128(); |
| for (int filter_y = 0; filter_y < filter_length; ++filter_y) { |
| coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
| // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| src = reinterpret_cast<const __m128i*>( |
| &source_data_rows[filter_y][width<<2]); |
| __m128i src8 = _mm_loadu_si128(src); |
| // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| // [32] a0 b0 g0 r0 |
| __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| accum0 = _mm_add_epi32(accum0, t); |
| // [32] a1 b1 g1 r1 |
| t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| accum1 = _mm_add_epi32(accum1, t); |
| // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| src16 = _mm_unpackhi_epi8(src8, zero); |
| mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| mul_lo = _mm_mullo_epi16(src16, coeff16); |
| // [32] a2 b2 g2 r2 |
| t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| accum2 = _mm_add_epi32(accum2, t); |
| } |
| |
| accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| accum0 = _mm_packs_epi32(accum0, accum1); |
| // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| accum2 = _mm_packs_epi32(accum2, zero); |
| // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| accum0 = _mm_packus_epi16(accum0, accum2); |
| if (has_alpha) { |
| // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| __m128i a = _mm_srli_epi32(accum0, 8); |
| // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| a = _mm_srli_epi32(accum0, 16); |
| // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| b = _mm_max_epu8(a, b); // Max of r and g and b. |
| // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| b = _mm_slli_epi32(b, 24); |
| accum0 = _mm_max_epu8(b, accum0); |
| } else { |
| __m128i mask = _mm_set1_epi32(0xff000000); |
| accum0 = _mm_or_si128(accum0, mask); |
| } |
| |
| for (int out_x = width; out_x < pixel_width; out_x++) { |
| *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); |
| accum0 = _mm_srli_si128(accum0, 4); |
| out_row += 4; |
| } |
| } |
| } |
| |
| void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
| int filter_length, |
| unsigned char* const* source_data_rows, |
| int pixel_width, |
| unsigned char* out_row, |
| bool has_alpha) { |
| if (has_alpha) { |
| ConvolveVertically_SSE2<true>(filter_values, |
| filter_length, |
| source_data_rows, |
| pixel_width, |
| out_row); |
| } else { |
| ConvolveVertically_SSE2<false>(filter_values, |
| filter_length, |
| source_data_rows, |
| pixel_width, |
| out_row); |
| } |
| } |
| |
| } // namespace skia |