blob: e280ea52e67c1d9b49b679b4b8f2d5905b52cba8 [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashTraits_h
#define WTF_HashTraits_h
#include "wtf/HashFunctions.h"
#include "wtf/HashTableDeletedValueType.h"
#include "wtf/StdLibExtras.h"
#include "wtf/TypeTraits.h"
#include <limits>
#include <string.h> // For memset.
#include <type_traits>
#include <utility>
namespace WTF {
class String;
template <bool isInteger, typename T> struct GenericHashTraitsBase;
template <typename T> class OwnPtr;
template <typename T> class PassOwnPtr;
template <typename T> struct HashTraits;
enum ShouldWeakPointersBeMarkedStrongly {
WeakPointersActStrong,
WeakPointersActWeak
};
template <typename T> struct GenericHashTraitsBase<false, T> {
// The emptyValueIsZero flag is used to optimize allocation of empty hash
// tables with zeroed memory.
static const bool emptyValueIsZero = false;
// The hasIsEmptyValueFunction flag allows the hash table to automatically
// generate code to check for the empty value when it can be done with the
// equality operator, but allows custom functions for cases like String that
// need them.
static const bool hasIsEmptyValueFunction = false;
// The starting table size. Can be overridden when we know beforehand that a
// hash table will have at least N entries.
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
static const unsigned minimumTableSize = 1;
#else
static const unsigned minimumTableSize = 8;
#endif
template <typename U = void>
struct NeedsTracingLazily {
static const bool value = NeedsTracing<T>::value;
};
static const WeakHandlingFlag weakHandlingFlag = IsWeak<T>::value ? WeakHandlingInCollections : NoWeakHandlingInCollections;
};
// Default integer traits disallow both 0 and -1 as keys (max value instead of
// -1 for unsigned).
template <typename T> struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> {
static const bool emptyValueIsZero = true;
static void constructDeletedValue(T& slot, bool) { slot = static_cast<T>(-1); }
static bool isDeletedValue(T value) { return value == static_cast<T>(-1); }
};
template <typename T> struct GenericHashTraits : GenericHashTraitsBase<std::is_integral<T>::value, T> {
typedef T TraitType;
typedef T EmptyValueType;
static T emptyValue() { return T(); }
// Type for functions that do not take ownership, such as contains.
typedef const T& PeekInType;
typedef T* IteratorGetType;
typedef const T* IteratorConstGetType;
typedef T& IteratorReferenceType;
typedef const T& IteratorConstReferenceType;
static IteratorReferenceType getToReferenceConversion(IteratorGetType x) { return *x; }
static IteratorConstReferenceType getToReferenceConstConversion(IteratorConstGetType x) { return *x; }
// Type for functions that take ownership, such as add.
// The store function either not be called or called once to store something
// passed in. The value passed to the store function will be PassInType.
typedef const T& PassInType;
static void store(const T& value, T& storage) { storage = value; }
// Type for return value of functions that transfer ownership, such as take.
typedef T PassOutType;
static const T& passOut(const T& value) { return value; }
// Type for return value of functions that do not transfer ownership, such
// as get.
// FIXME: We could change this type to const T& for better performance if we
// figured out a way to handle the return value from emptyValue, which is a
// temporary.
typedef T PeekOutType;
static const T& peek(const T& value) { return value; }
};
template <typename T> struct HashTraits : GenericHashTraits<T> { };
template <typename T> struct FloatHashTraits : GenericHashTraits<T> {
static T emptyValue() { return std::numeric_limits<T>::infinity(); }
static void constructDeletedValue(T& slot, bool) { slot = -std::numeric_limits<T>::infinity(); }
static bool isDeletedValue(T value) { return value == -std::numeric_limits<T>::infinity(); }
};
template <> struct HashTraits<float> : FloatHashTraits<float> { };
template <> struct HashTraits<double> : FloatHashTraits<double> { };
// Default unsigned traits disallow both 0 and max as keys -- use these traits
// to allow zero and disallow max - 1.
template <typename T> struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> {
static const bool emptyValueIsZero = false;
static T emptyValue() { return std::numeric_limits<T>::max(); }
static void constructDeletedValue(T& slot, bool) { slot = std::numeric_limits<T>::max() - 1; }
static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max() - 1; }
};
template <typename P> struct HashTraits<P*> : GenericHashTraits<P*> {
static const bool emptyValueIsZero = true;
static void constructDeletedValue(P*& slot, bool) { slot = reinterpret_cast<P*>(-1); }
static bool isDeletedValue(P* value) { return value == reinterpret_cast<P*>(-1); }
};
template <typename T> struct SimpleClassHashTraits : GenericHashTraits<T> {
static const bool emptyValueIsZero = true;
static void constructDeletedValue(T& slot, bool) { new (NotNull, &slot) T(HashTableDeletedValue); }
static bool isDeletedValue(const T& value) { return value.isHashTableDeletedValue(); }
};
template <typename P> struct HashTraits<OwnPtr<P>> : SimpleClassHashTraits<OwnPtr<P>> {
typedef std::nullptr_t EmptyValueType;
static EmptyValueType emptyValue() { return nullptr; }
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const OwnPtr<P>& value) { return !value; }
typedef typename OwnPtr<P>::PtrType PeekInType;
typedef PassOwnPtr<P> PassInType;
static void store(PassOwnPtr<P> value, OwnPtr<P>& storage) { storage = value; }
typedef PassOwnPtr<P> PassOutType;
static PassOwnPtr<P> passOut(OwnPtr<P>& value) { return value.release(); }
static PassOwnPtr<P> passOut(std::nullptr_t) { return nullptr; }
typedef typename OwnPtr<P>::PtrType PeekOutType;
static PeekOutType peek(const OwnPtr<P>& value) { return value.get(); }
static PeekOutType peek(std::nullptr_t) { return 0; }
};
template <typename P> struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> {
typedef std::nullptr_t EmptyValueType;
static EmptyValueType emptyValue() { return nullptr; }
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const RefPtr<P>& value) { return !value; }
typedef RefPtrValuePeeker<P> PeekInType;
typedef RefPtr<P>* IteratorGetType;
typedef const RefPtr<P>* IteratorConstGetType;
typedef RefPtr<P>& IteratorReferenceType;
typedef const RefPtr<P>& IteratorConstReferenceType;
static IteratorReferenceType getToReferenceConversion(IteratorGetType x) { return *x; }
static IteratorConstReferenceType getToReferenceConstConversion(IteratorConstGetType x) { return *x; }
typedef PassRefPtr<P> PassInType;
static void store(PassRefPtr<P> value, RefPtr<P>& storage) { storage = value; }
typedef PassRefPtr<P> PassOutType;
static PassOutType passOut(RefPtr<P>& value) { return value.release(); }
static PassOutType passOut(std::nullptr_t) { return nullptr; }
typedef P* PeekOutType;
static PeekOutType peek(const RefPtr<P>& value) { return value.get(); }
static PeekOutType peek(std::nullptr_t) { return 0; }
};
template <typename T> struct HashTraits<RawPtr<T>> : HashTraits<T*> { };
template <> struct HashTraits<String> : SimpleClassHashTraits<String> {
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const String&);
};
// This struct template is an implementation detail of the
// isHashTraitsEmptyValue function, which selects either the emptyValue function
// or the isEmptyValue function to check for empty values.
template <typename Traits, bool hasEmptyValueFunction> struct HashTraitsEmptyValueChecker;
template <typename Traits> struct HashTraitsEmptyValueChecker<Traits, true> {
template <typename T> static bool isEmptyValue(const T& value) { return Traits::isEmptyValue(value); }
};
template <typename Traits> struct HashTraitsEmptyValueChecker<Traits, false> {
template <typename T> static bool isEmptyValue(const T& value) { return value == Traits::emptyValue(); }
};
template <typename Traits, typename T> inline bool isHashTraitsEmptyValue(const T& value)
{
return HashTraitsEmptyValueChecker<Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value);
}
template <typename FirstTraitsArg, typename SecondTraitsArg>
struct PairHashTraits : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType, typename SecondTraitsArg::TraitType>> {
typedef FirstTraitsArg FirstTraits;
typedef SecondTraitsArg SecondTraits;
typedef std::pair<typename FirstTraits::TraitType, typename SecondTraits::TraitType> TraitType;
typedef std::pair<typename FirstTraits::EmptyValueType, typename SecondTraits::EmptyValueType> EmptyValueType;
static const bool emptyValueIsZero = FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero;
static EmptyValueType emptyValue() { return std::make_pair(FirstTraits::emptyValue(), SecondTraits::emptyValue()); }
static const unsigned minimumTableSize = FirstTraits::minimumTableSize;
static void constructDeletedValue(TraitType& slot, bool zeroValue)
{
FirstTraits::constructDeletedValue(slot.first, zeroValue);
// For GC collections the memory for the backing is zeroed when it is
// allocated, and the constructors may take advantage of that,
// especially if a GC occurs during insertion of an entry into the
// table. This slot is being marked deleted, but If the slot is reused
// at a later point, the same assumptions around memory zeroing must
// hold as they did at the initial allocation. Therefore we zero the
// value part of the slot here for GC collections.
if (zeroValue)
memset(reinterpret_cast<void*>(&slot.second), 0, sizeof(slot.second));
}
static bool isDeletedValue(const TraitType& value) { return FirstTraits::isDeletedValue(value.first); }
};
template <typename First, typename Second>
struct HashTraits<std::pair<First, Second>> : public PairHashTraits<HashTraits<First>, HashTraits<Second>> { };
template <typename KeyTypeArg, typename ValueTypeArg>
struct KeyValuePair {
typedef KeyTypeArg KeyType;
KeyValuePair(const KeyTypeArg& _key, const ValueTypeArg& _value)
: key(_key)
, value(_value)
{
}
template <typename OtherKeyType, typename OtherValueType>
KeyValuePair(const KeyValuePair<OtherKeyType, OtherValueType>& other)
: key(other.key)
, value(other.value)
{
}
KeyTypeArg key;
ValueTypeArg value;
};
template <typename KeyTraitsArg, typename ValueTraitsArg>
struct KeyValuePairHashTraits : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType, typename ValueTraitsArg::TraitType>> {
typedef KeyTraitsArg KeyTraits;
typedef ValueTraitsArg ValueTraits;
typedef KeyValuePair<typename KeyTraits::TraitType, typename ValueTraits::TraitType> TraitType;
typedef KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType> EmptyValueType;
static const bool emptyValueIsZero = KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero;
static EmptyValueType emptyValue() { return KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType>(KeyTraits::emptyValue(), ValueTraits::emptyValue()); }
template <typename U = void>
struct NeedsTracingLazily {
static const bool value = NeedsTracingTrait<KeyTraits>::value || NeedsTracingTrait<ValueTraits>::value;
};
static const WeakHandlingFlag weakHandlingFlag = (KeyTraits::weakHandlingFlag == WeakHandlingInCollections || ValueTraits::weakHandlingFlag == WeakHandlingInCollections) ? WeakHandlingInCollections : NoWeakHandlingInCollections;
static const unsigned minimumTableSize = KeyTraits::minimumTableSize;
static void constructDeletedValue(TraitType& slot, bool zeroValue)
{
KeyTraits::constructDeletedValue(slot.key, zeroValue);
// See similar code in this file for why we need to do this.
if (zeroValue)
memset(reinterpret_cast<void*>(&slot.value), 0, sizeof(slot.value));
}
static bool isDeletedValue(const TraitType& value) { return KeyTraits::isDeletedValue(value.key); }
};
template <typename Key, typename Value>
struct HashTraits<KeyValuePair<Key, Value>> : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> { };
template <typename T>
struct NullableHashTraits : public HashTraits<T> {
static const bool emptyValueIsZero = false;
static T emptyValue() { return reinterpret_cast<T>(1); }
};
// This is for tracing inside collections that have special support for weak
// pointers. The trait has a trace method which returns true if there are weak
// pointers to things that have not (yet) been marked live. Returning true
// indicates that the entry in the collection may yet be removed by weak
// handling. Default implementation for non-weak types is to use the regular
// non-weak TraceTrait. Default implementation for types with weakness is to
// call traceInCollection on the type's trait.
template <WeakHandlingFlag weakHandlingFlag, ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct TraceInCollectionTrait;
} // namespace WTF
using WTF::HashTraits;
using WTF::PairHashTraits;
using WTF::NullableHashTraits;
using WTF::SimpleClassHashTraits;
#endif // WTF_HashTraits_h