blob: 6ee04d0919d9b4ae5e2d6719f1417f00a3d600fa [file] [log] [blame]
// Copyright 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/viz/service/display/gl_renderer.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <numeric>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/stl_util.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "cc/base/math_util.h"
#include "cc/debug/debug_colors.h"
#include "cc/paint/render_surface_filters.h"
#include "cc/raster/scoped_gpu_raster.h"
#include "components/viz/common/display/renderer_settings.h"
#include "components/viz/common/frame_sinks/copy_output_request.h"
#include "components/viz/common/gpu/context_provider.h"
#include "components/viz/common/quads/compositor_frame.h"
#include "components/viz/common/quads/compositor_frame_metadata.h"
#include "components/viz/common/quads/picture_draw_quad.h"
#include "components/viz/common/quads/render_pass.h"
#include "components/viz/common/quads/stream_video_draw_quad.h"
#include "components/viz/common/quads/texture_draw_quad.h"
#include "components/viz/common/resources/platform_color.h"
#include "components/viz/common/resources/resource_format_utils.h"
#include "components/viz/common/resources/resource_id.h"
#include "components/viz/common/skia_helper.h"
#include "components/viz/service/display/draw_polygon.h"
#include "components/viz/service/display/dynamic_geometry_binding.h"
#include "components/viz/service/display/layer_quad.h"
#include "components/viz/service/display/output_surface.h"
#include "components/viz/service/display/output_surface_frame.h"
#include "components/viz/service/display/resource_fence.h"
#include "components/viz/service/display/scoped_render_pass_texture.h"
#include "components/viz/service/display/static_geometry_binding.h"
#include "components/viz/service/display/texture_deleter.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "gpu/command_buffer/client/context_support.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "gpu/command_buffer/common/gpu_memory_allocation.h"
#include "media/base/media_switches.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "third_party/skia/include/core/SkColorFilter.h"
#include "third_party/skia/include/core/SkImage.h"
#include "third_party/skia/include/core/SkSurface.h"
#include "third_party/skia/include/core/SkTypes.h"
#include "third_party/skia/include/gpu/GrBackendSurface.h"
#include "third_party/skia/include/gpu/GrContext.h"
#include "third_party/skia/include/gpu/gl/GrGLInterface.h"
#include "third_party/skia/include/gpu/gl/GrGLTypes.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/color_transform.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/skia_util.h"
using gpu::gles2::GLES2Interface;
namespace viz {
namespace {
Float4 UVTransform(const TextureDrawQuad* quad) {
gfx::PointF uv0 = quad->uv_top_left;
gfx::PointF uv1 = quad->uv_bottom_right;
Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}};
if (quad->y_flipped) {
xform.data[1] = 1.0f - xform.data[1];
xform.data[3] = -xform.data[3];
}
return xform;
}
// To prevent sampling outside the visible rect.
Float4 UVClampRect(gfx::RectF uv_visible_rect,
const gfx::Size& texture_size,
SamplerType sampler) {
gfx::SizeF half_texel(0.5f, 0.5f);
if (sampler != SAMPLER_TYPE_2D_RECT) {
half_texel.Scale(1.f / texture_size.width(), 1.f / texture_size.height());
} else {
uv_visible_rect.Scale(texture_size.width(), texture_size.height());
}
uv_visible_rect.Inset(half_texel.width(), half_texel.height());
return {{uv_visible_rect.x(), uv_visible_rect.y(), uv_visible_rect.right(),
uv_visible_rect.bottom()}};
}
Float4 PremultipliedColor(SkColor color, float opacity) {
const U8CPU alpha255 = SkColorGetA(color);
const unsigned int alpha256 = alpha255 + 1;
const unsigned int premultiplied_red = (SkColorGetR(color) * alpha256) >> 8;
const unsigned int premultiplied_green = (SkColorGetG(color) * alpha256) >> 8;
const unsigned int premultiplied_blue = (SkColorGetB(color) * alpha256) >> 8;
const float factor = opacity / 255.0f;
return {{premultiplied_red * factor, premultiplied_green * factor,
premultiplied_blue * factor, alpha255 * factor}};
}
SamplerType SamplerTypeFromTextureTarget(GLenum target) {
switch (target) {
case GL_TEXTURE_2D:
return SAMPLER_TYPE_2D;
case GL_TEXTURE_RECTANGLE_ARB:
return SAMPLER_TYPE_2D_RECT;
case GL_TEXTURE_EXTERNAL_OES:
return SAMPLER_TYPE_EXTERNAL_OES;
default:
NOTREACHED();
return SAMPLER_TYPE_2D;
}
}
BlendMode BlendModeFromSkXfermode(SkBlendMode mode) {
switch (mode) {
case SkBlendMode::kSrcOver:
return BLEND_MODE_NORMAL;
case SkBlendMode::kDstIn:
return BLEND_MODE_DESTINATION_IN;
case SkBlendMode::kScreen:
return BLEND_MODE_SCREEN;
case SkBlendMode::kOverlay:
return BLEND_MODE_OVERLAY;
case SkBlendMode::kDarken:
return BLEND_MODE_DARKEN;
case SkBlendMode::kLighten:
return BLEND_MODE_LIGHTEN;
case SkBlendMode::kColorDodge:
return BLEND_MODE_COLOR_DODGE;
case SkBlendMode::kColorBurn:
return BLEND_MODE_COLOR_BURN;
case SkBlendMode::kHardLight:
return BLEND_MODE_HARD_LIGHT;
case SkBlendMode::kSoftLight:
return BLEND_MODE_SOFT_LIGHT;
case SkBlendMode::kDifference:
return BLEND_MODE_DIFFERENCE;
case SkBlendMode::kExclusion:
return BLEND_MODE_EXCLUSION;
case SkBlendMode::kMultiply:
return BLEND_MODE_MULTIPLY;
case SkBlendMode::kHue:
return BLEND_MODE_HUE;
case SkBlendMode::kSaturation:
return BLEND_MODE_SATURATION;
case SkBlendMode::kColor:
return BLEND_MODE_COLOR;
case SkBlendMode::kLuminosity:
return BLEND_MODE_LUMINOSITY;
default:
NOTREACHED();
return BLEND_MODE_NONE;
}
}
// Smallest unit that impact anti-aliasing output. We use this to
// determine when anti-aliasing is unnecessary.
const float kAntiAliasingEpsilon = 1.0f / 1024.0f;
} // anonymous namespace
static GLint GetActiveTextureUnit(GLES2Interface* gl) {
GLint active_unit = 0;
gl->GetIntegerv(GL_ACTIVE_TEXTURE, &active_unit);
return active_unit;
}
// Parameters needed to draw a RenderPassDrawQuad.
struct GLRenderer::DrawRenderPassDrawQuadParams {
DrawRenderPassDrawQuadParams() {}
~DrawRenderPassDrawQuadParams() {
// Don't leak the texture.
DCHECK(!background_texture);
}
// Required inputs below.
const RenderPassDrawQuad* quad = nullptr;
// Either |contents_texture| or |bypass_quad_texture| is populated. The
// |contents_texture| will be valid if non-null, and when null the
// bypass_quad_texture will be valid instead.
ScopedRenderPassTexture* contents_texture = nullptr;
struct {
ResourceId resource_id = 0;
gfx::Size size;
} bypass_quad_texture;
const gfx::QuadF* clip_region = nullptr;
bool flip_texture = false;
gfx::Transform window_matrix;
gfx::Transform projection_matrix;
gfx::Transform quad_to_target_transform;
const cc::FilterOperations* filters = nullptr;
const cc::FilterOperations* backdrop_filters = nullptr;
const gfx::RectF* backdrop_filter_bounds = nullptr;
// Whether the texture to be sampled from needs to be flipped.
bool source_needs_flip = false;
float edge[24];
SkScalar color_matrix[20];
// Blending refers to modifications to the backdrop.
bool use_shaders_for_blending = false;
bool use_aa = false;
// Some filters affect pixels outside the original contents bounds, in which
// case ApplyImageFilter will modify this rect.
gfx::RectF dst_rect;
// A Skia image that should be sampled from instead of the original
// contents.
sk_sp<SkImage> filter_image;
// The original contents, bound for sampling.
std::unique_ptr<DisplayResourceProvider::ScopedSamplerGL>
bypass_quad_resource_lock;
// A mask to be applied when drawing the RPDQ.
std::unique_ptr<DisplayResourceProvider::ScopedSamplerGL> mask_resource_lock;
// Whether a color matrix needs to be applied by the shaders when drawing
// the RPDQ.
bool use_color_matrix = false;
gfx::QuadF surface_quad;
gfx::Transform contents_device_transform;
gfx::RectF tex_coord_rect;
// The color space of the texture bound for sampling (from filter_image or
// bypass_quad_resource_lock, depending on the path taken).
gfx::ColorSpace contents_and_bypass_color_space;
// Background filters block.
// Original background texture.
uint32_t background_texture = 0;
// Backdrop bounding box.
gfx::Rect background_rect;
// Filtered background texture.
sk_sp<SkImage> background_image;
GLuint background_image_id = 0;
// A multiplier for the temporary surface we create to apply the backdrop
// filter.
float backdrop_filter_quality = 1.0;
// Whether the original background texture is needed for the mask.
bool mask_for_background = false;
};
class GLRenderer::ScopedUseGrContext {
public:
static std::unique_ptr<ScopedUseGrContext> Create(GLRenderer* renderer) {
// GrContext for filters is created lazily, and may fail if the context
// is lost.
// TODO(vmiura,bsalomon): crbug.com/487850 Ensure that
// ContextProvider::GrContext() does not return NULL.
if (renderer->output_surface_->context_provider()->GrContext())
return base::WrapUnique(new ScopedUseGrContext(renderer));
return nullptr;
}
~ScopedUseGrContext() {
// Pass context control back to GLrenderer.
scoped_gpu_raster_ = nullptr;
renderer_->RestoreGLState();
}
GrContext* context() const {
return renderer_->output_surface_->context_provider()->GrContext();
}
private:
explicit ScopedUseGrContext(GLRenderer* renderer)
: scoped_gpu_raster_(new cc::ScopedGpuRaster(
renderer->output_surface_->context_provider())),
renderer_(renderer) {
// scoped_gpu_raster_ passes context control to Skia.
}
std::unique_ptr<cc::ScopedGpuRaster> scoped_gpu_raster_;
GLRenderer* renderer_;
DISALLOW_COPY_AND_ASSIGN(ScopedUseGrContext);
};
GLRenderer::GLRenderer(
const RendererSettings* settings,
OutputSurface* output_surface,
DisplayResourceProvider* resource_provider,
scoped_refptr<base::SingleThreadTaskRunner> current_task_runner)
: DirectRenderer(settings, output_surface, resource_provider),
shared_geometry_quad_(QuadVertexRect()),
gl_(output_surface->context_provider()->ContextGL()),
context_support_(output_surface->context_provider()->ContextSupport()),
texture_deleter_(current_task_runner),
copier_(output_surface->context_provider(),
&texture_deleter_,
base::BindRepeating(&GLRenderer::MoveFromDrawToWindowSpace,
base::Unretained(this))),
sync_queries_(gl_),
bound_geometry_(NO_BINDING),
color_lut_cache_(gl_,
output_surface_->context_provider()
->ContextCapabilities()
.texture_half_float_linear),
current_task_runner_(std::move(current_task_runner)),
weak_ptr_factory_(this) {
DCHECK(gl_);
DCHECK(context_support_);
const auto& context_caps =
output_surface_->context_provider()->ContextCapabilities();
DCHECK(!context_caps.iosurface || context_caps.texture_rectangle);
use_discard_framebuffer_ = context_caps.discard_framebuffer;
use_sync_query_ = context_caps.sync_query;
use_blend_equation_advanced_ = context_caps.blend_equation_advanced;
use_blend_equation_advanced_coherent_ =
context_caps.blend_equation_advanced_coherent;
use_occlusion_query_ = context_caps.occlusion_query;
use_swap_with_bounds_ = context_caps.swap_buffers_with_bounds;
InitializeSharedObjects();
}
GLRenderer::~GLRenderer() {
CleanupSharedObjects();
if (context_visibility_) {
auto* context_provider = output_surface_->context_provider();
auto* cache_controller = context_provider->CacheController();
cache_controller->ClientBecameNotVisibleDuringShutdown(
std::move(context_visibility_));
}
}
bool GLRenderer::CanPartialSwap() {
if (use_swap_with_bounds_)
return false;
auto* context_provider = output_surface_->context_provider();
return context_provider->ContextCapabilities().post_sub_buffer;
}
void GLRenderer::DidChangeVisibility() {
if (visible_) {
output_surface_->EnsureBackbuffer();
} else {
TRACE_EVENT0("viz", "GLRenderer::DidChangeVisibility dropping resources");
ReleaseRenderPassTextures();
output_surface_->DiscardBackbuffer();
gl_->ReleaseShaderCompiler();
}
PrepareGeometry(NO_BINDING);
auto* context_provider = output_surface_->context_provider();
auto* cache_controller = context_provider->CacheController();
if (visible_) {
DCHECK(!context_visibility_);
context_visibility_ = cache_controller->ClientBecameVisible();
} else {
DCHECK(context_visibility_);
cache_controller->ClientBecameNotVisible(std::move(context_visibility_));
}
}
void GLRenderer::ReleaseRenderPassTextures() {
render_pass_textures_.clear();
}
void GLRenderer::DiscardPixels() {
if (!use_discard_framebuffer_)
return;
bool using_default_framebuffer =
!current_framebuffer_texture_ &&
output_surface_->capabilities().uses_default_gl_framebuffer;
GLenum attachments[] = {static_cast<GLenum>(
using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)};
gl_->DiscardFramebufferEXT(GL_FRAMEBUFFER, base::size(attachments),
attachments);
}
void GLRenderer::PrepareSurfaceForPass(
SurfaceInitializationMode initialization_mode,
const gfx::Rect& render_pass_scissor) {
SetViewport();
switch (initialization_mode) {
case SURFACE_INITIALIZATION_MODE_PRESERVE:
EnsureScissorTestDisabled();
return;
case SURFACE_INITIALIZATION_MODE_FULL_SURFACE_CLEAR:
EnsureScissorTestDisabled();
DiscardPixels();
ClearFramebuffer();
break;
case SURFACE_INITIALIZATION_MODE_SCISSORED_CLEAR:
SetScissorTestRect(render_pass_scissor);
ClearFramebuffer();
break;
}
}
void GLRenderer::ClearFramebuffer() {
// On DEBUG builds, opaque render passes are cleared to blue to easily see
// regions that were not drawn on the screen.
if (current_frame()->current_render_pass->has_transparent_background)
gl_->ClearColor(0, 0, 0, 0);
else
gl_->ClearColor(0, 0, 1, 1);
gl_->ClearStencil(0);
bool always_clear = overdraw_feedback_;
#ifndef NDEBUG
always_clear = true;
#endif
if (always_clear ||
current_frame()->current_render_pass->has_transparent_background) {
GLbitfield clear_bits = GL_COLOR_BUFFER_BIT;
if (always_clear)
clear_bits |= GL_STENCIL_BUFFER_BIT;
gl_->Clear(clear_bits);
}
}
void GLRenderer::BeginDrawingFrame() {
TRACE_EVENT0("viz", "GLRenderer::BeginDrawingFrame");
scoped_refptr<ResourceFence> read_lock_fence;
if (use_sync_query_) {
read_lock_fence = sync_queries_.StartNewFrame();
} else {
read_lock_fence =
base::MakeRefCounted<DisplayResourceProvider::SynchronousFence>(gl_);
}
resource_provider_->SetReadLockFence(read_lock_fence.get());
// Insert WaitSyncTokenCHROMIUM on quad resources prior to drawing the frame,
// so that drawing can proceed without GL context switching interruptions.
for (const auto& pass : *current_frame()->render_passes_in_draw_order) {
for (auto* quad : pass->quad_list) {
for (ResourceId resource_id : quad->resources)
resource_provider_->WaitSyncToken(resource_id);
}
}
// TODO(enne): Do we need to reinitialize all of this state per frame?
ReinitializeGLState();
num_triangles_drawn_ = 0;
}
void GLRenderer::DoDrawQuad(const DrawQuad* quad,
const gfx::QuadF* clip_region) {
DCHECK(quad->rect.Contains(quad->visible_rect));
if (quad->material != DrawQuad::TEXTURE_CONTENT) {
FlushTextureQuadCache(SHARED_BINDING);
}
switch (quad->material) {
case DrawQuad::INVALID:
NOTREACHED();
break;
case DrawQuad::DEBUG_BORDER:
DrawDebugBorderQuad(DebugBorderDrawQuad::MaterialCast(quad));
break;
case DrawQuad::PICTURE_CONTENT:
// PictureDrawQuad should only be used for resourceless software draws.
NOTREACHED();
break;
case DrawQuad::RENDER_PASS:
DrawRenderPassQuad(RenderPassDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::SOLID_COLOR:
DrawSolidColorQuad(SolidColorDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::STREAM_VIDEO_CONTENT:
DrawStreamVideoQuad(StreamVideoDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::SURFACE_CONTENT:
// Surface content should be fully resolved to other quad types before
// reaching a direct renderer.
NOTREACHED();
break;
case DrawQuad::TEXTURE_CONTENT:
EnqueueTextureQuad(TextureDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::TILED_CONTENT:
DrawTileQuad(TileDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::YUV_VIDEO_CONTENT:
DrawYUVVideoQuad(YUVVideoDrawQuad::MaterialCast(quad), clip_region);
break;
}
}
// This function does not handle 3D sorting right now, since the debug border
// quads are just drawn as their original quads and not in split pieces. This
// results in some debug border quads drawing over foreground quads.
void GLRenderer::DrawDebugBorderQuad(const DebugBorderDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
SetUseProgram(ProgramKey::DebugBorder(), gfx::ColorSpace::CreateSRGB(),
current_frame()->current_render_pass->color_space);
// Use the full quad_rect for debug quads to not move the edges based on
// partial swaps.
gfx::Rect layer_rect = quad->rect;
gfx::Transform render_matrix;
QuadRectTransform(&render_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(layer_rect));
SetShaderMatrix(current_frame()->projection_matrix * render_matrix);
SetShaderColor(quad->color, 1.f);
gl_->LineWidth(quad->width);
// The indices for the line are stored in the same array as the triangle
// indices.
gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, nullptr);
}
// Wrap a given texture in a Ganesh backend texture.
static sk_sp<SkImage> WrapTexture(uint32_t texture_id,
uint32_t target,
const gfx::Size& size,
GrContext* context,
bool flip_texture) {
GrGLTextureInfo texture_info;
texture_info.fTarget = target;
texture_info.fID = texture_id;
if (kN32_SkColorType == kRGBA_8888_SkColorType) {
texture_info.fFormat = GL_RGBA8_OES;
} else {
DCHECK(kN32_SkColorType == kBGRA_8888_SkColorType);
texture_info.fFormat = GL_BGRA8_EXT;
}
GrBackendTexture backend_texture(size.width(), size.height(),
GrMipMapped::kNo, texture_info);
GrSurfaceOrigin origin =
flip_texture ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin;
return SkImage::MakeFromTexture(context, backend_texture, origin,
kN32_SkColorType, kPremul_SkAlphaType,
nullptr);
}
static gfx::RectF CenteredRect(const gfx::Rect& tile_rect) {
return gfx::RectF(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
gfx::SizeF(tile_rect.size()));
}
bool GLRenderer::CanApplyBlendModeUsingBlendFunc(SkBlendMode blend_mode) {
return use_blend_equation_advanced_ || blend_mode == SkBlendMode::kSrcOver ||
blend_mode == SkBlendMode::kDstIn ||
blend_mode == SkBlendMode::kScreen;
}
void GLRenderer::ApplyBlendModeUsingBlendFunc(SkBlendMode blend_mode) {
// Any modes set here must be reset in RestoreBlendFuncToDefault
if (blend_mode == SkBlendMode::kSrcOver) {
// Left no-op intentionally.
} else if (blend_mode == SkBlendMode::kDstIn) {
gl_->BlendFunc(GL_ZERO, GL_SRC_ALPHA);
} else if (blend_mode == SkBlendMode::kDstOut) {
gl_->BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_ALPHA);
} else if (blend_mode == SkBlendMode::kScreen) {
gl_->BlendFunc(GL_ONE_MINUS_DST_COLOR, GL_ONE);
} else {
DCHECK(use_blend_equation_advanced_);
GLenum equation = GL_FUNC_ADD;
switch (blend_mode) {
case SkBlendMode::kScreen:
equation = GL_SCREEN_KHR;
break;
case SkBlendMode::kOverlay:
equation = GL_OVERLAY_KHR;
break;
case SkBlendMode::kDarken:
equation = GL_DARKEN_KHR;
break;
case SkBlendMode::kLighten:
equation = GL_LIGHTEN_KHR;
break;
case SkBlendMode::kColorDodge:
equation = GL_COLORDODGE_KHR;
break;
case SkBlendMode::kColorBurn:
equation = GL_COLORBURN_KHR;
break;
case SkBlendMode::kHardLight:
equation = GL_HARDLIGHT_KHR;
break;
case SkBlendMode::kSoftLight:
equation = GL_SOFTLIGHT_KHR;
break;
case SkBlendMode::kDifference:
equation = GL_DIFFERENCE_KHR;
break;
case SkBlendMode::kExclusion:
equation = GL_EXCLUSION_KHR;
break;
case SkBlendMode::kMultiply:
equation = GL_MULTIPLY_KHR;
break;
case SkBlendMode::kHue:
equation = GL_HSL_HUE_KHR;
break;
case SkBlendMode::kSaturation:
equation = GL_HSL_SATURATION_KHR;
break;
case SkBlendMode::kColor:
equation = GL_HSL_COLOR_KHR;
break;
case SkBlendMode::kLuminosity:
equation = GL_HSL_LUMINOSITY_KHR;
break;
default:
NOTREACHED() << "Unexpected blend mode: SkBlendMode::k"
<< SkBlendMode_Name(blend_mode);
return;
}
gl_->BlendEquation(equation);
}
}
void GLRenderer::RestoreBlendFuncToDefault(SkBlendMode blend_mode) {
switch (blend_mode) {
case SkBlendMode::kSrcOver:
break;
case SkBlendMode::kDstIn:
case SkBlendMode::kDstOut:
case SkBlendMode::kScreen:
gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
break;
default:
DCHECK(use_blend_equation_advanced_);
gl_->BlendEquation(GL_FUNC_ADD);
}
}
bool GLRenderer::ShouldApplyBackgroundFilters(
const RenderPassDrawQuad* quad,
const cc::FilterOperations* backdrop_filters) {
if (!backdrop_filters)
return false;
DCHECK(!backdrop_filters->IsEmpty());
return true;
}
// This takes a gfx::Rect and a clip region quad in the same space,
// and returns a quad with the same proportions in the space -0.5->0.5.
bool GetScaledRegion(const gfx::Rect& rect,
const gfx::QuadF* clip,
gfx::QuadF* scaled_region) {
if (!clip)
return false;
gfx::PointF p1(((clip->p1().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p1().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p2(((clip->p2().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p2().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p3(((clip->p3().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p3().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p4(((clip->p4().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p4().y() - rect.y()) / rect.height()) - 0.5f);
*scaled_region = gfx::QuadF(p1, p2, p3, p4);
return true;
}
// This takes a gfx::Rect and a clip region quad in the same space,
// and returns the proportional uv's in the space 0->1.
bool GetScaledUVs(const gfx::Rect& rect, const gfx::QuadF* clip, float uvs[8]) {
if (!clip)
return false;
uvs[0] = ((clip->p1().x() - rect.x()) / rect.width());
uvs[1] = ((clip->p1().y() - rect.y()) / rect.height());
uvs[2] = ((clip->p2().x() - rect.x()) / rect.width());
uvs[3] = ((clip->p2().y() - rect.y()) / rect.height());
uvs[4] = ((clip->p3().x() - rect.x()) / rect.width());
uvs[5] = ((clip->p3().y() - rect.y()) / rect.height());
uvs[6] = ((clip->p4().x() - rect.x()) / rect.width());
uvs[7] = ((clip->p4().y() - rect.y()) / rect.height());
return true;
}
gfx::Rect GLRenderer::GetBackdropBoundingBoxForRenderPassQuad(
const RenderPassDrawQuad* quad,
const gfx::Transform& contents_device_transform,
const cc::FilterOperations* filters,
const cc::FilterOperations* backdrop_filters,
const gfx::QuadF* clip_region,
const gfx::RectF* backdrop_filter_bounds_input,
bool use_aa,
gfx::Rect* backdrop_filter_bounds,
gfx::Rect* unclipped_rect) {
gfx::QuadF scaled_region;
if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) {
scaled_region = SharedGeometryQuad().BoundingBox();
}
gfx::Rect backdrop_rect = gfx::ToEnclosingRect(cc::MathUtil::MapClippedRect(
contents_device_transform, scaled_region.BoundingBox()));
gfx::Rect orig_backdrop_rect = backdrop_rect;
// |backdrop_filter_bounds_input| can (rarely) be nullptr, if the render pass
// was not found. For example, some GLRenderer tests can trigger this case,
// e.g. GLRendererShaderTest.DrawRenderPassQuadShaderPermutations.
if (backdrop_filter_bounds_input) {
*backdrop_filter_bounds =
gfx::ToEnclosingRect(*backdrop_filter_bounds_input);
} else {
*backdrop_filter_bounds = gfx::Rect();
}
if (ShouldApplyBackgroundFilters(quad, backdrop_filters)) {
SkMatrix matrix;
matrix.setScale(quad->filters_scale.x(), quad->filters_scale.y());
if (FlippedFramebuffer()) {
// TODO(jbroman): This probably isn't the right way to account for this.
// Probably some combination of current_frame()->projection_matrix,
// current_frame()->window_matrix and contents_device_transform?
matrix.postScale(1, -1);
}
backdrop_rect = backdrop_filters->MapRectReverse(backdrop_rect, matrix);
}
if (!backdrop_rect.IsEmpty() && use_aa) {
const int kOutsetForAntialiasing = 1;
backdrop_rect.Inset(-kOutsetForAntialiasing, -kOutsetForAntialiasing);
}
if (filters) {
DCHECK(!filters->IsEmpty());
// If we have filters, grab an extra one-pixel border around the
// background, so texture edge clamping gives us a transparent border
// in case the filter expands the result.
backdrop_rect.Inset(-1, -1, -1, -1);
}
*unclipped_rect = backdrop_rect;
backdrop_rect.Intersect(MoveFromDrawToWindowSpace(
current_frame()->current_render_pass->output_rect));
backdrop_filter_bounds->Offset(orig_backdrop_rect.origin() -
backdrop_rect.origin());
return backdrop_rect;
}
GLenum GLRenderer::GetFramebufferCopyTextureFormat() {
// If copying a non-root renderpass then use the format of the bound
// texture. Otherwise, we use the format of the default framebuffer. But
// whatever the format is, convert it to a valid format for CopyTexSubImage2D.
GLenum format;
if (!current_framebuffer_texture_) {
format = output_surface_->GetFramebufferCopyTextureFormat();
} else {
ResourceFormat resource_format = BackbufferFormat();
DCHECK(GLSupportsFormat(resource_format));
format = GLCopyTextureInternalFormat(resource_format);
}
// Verify the format is valid for GLES2's glCopyTexSubImage2D.
DCHECK(format == GL_ALPHA || format == GL_LUMINANCE ||
format == GL_LUMINANCE_ALPHA || format == GL_RGB ||
format == GL_RGBA ||
(output_surface_->context_provider()
->ContextCapabilities()
.texture_format_bgra8888 &&
format == GL_BGRA_EXT))
<< format;
return format;
}
uint32_t GLRenderer::GetBackdropTexture(const gfx::Rect& window_rect) {
DCHECK_GE(window_rect.x(), 0);
DCHECK_GE(window_rect.y(), 0);
DCHECK_LE(window_rect.right(), current_surface_size_.width());
DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
uint32_t texture_id;
gl_->GenTextures(1, &texture_id);
DCHECK(texture_id);
gl_->BindTexture(GL_TEXTURE_2D, texture_id);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
unsigned internalformat = GetFramebufferCopyTextureFormat();
// CopyTexImage2D requires inernalformat channels to be a subset of
// the channels of the source texture internalformat.
DCHECK(internalformat == GL_RGB || internalformat == GL_RGBA ||
internalformat == GL_BGRA_EXT);
if (internalformat == GL_BGRA_EXT)
internalformat = GL_RGBA;
gl_->CopyTexImage2D(GL_TEXTURE_2D, 0, internalformat, window_rect.x(),
window_rect.y(), window_rect.width(),
window_rect.height(), 0);
gl_->BindTexture(GL_TEXTURE_2D, 0);
return texture_id;
}
sk_sp<SkImage> GLRenderer::ApplyBackgroundFilters(
const RenderPassDrawQuad* quad,
const cc::FilterOperations* backdrop_filters,
const cc::FilterOperations* regular_filters,
uint32_t background_texture,
const gfx::Rect& rect,
const gfx::Rect& unclipped_rect,
const float backdrop_filter_quality,
const gfx::Rect& backdrop_filter_bounds) {
DCHECK(ShouldApplyBackgroundFilters(quad, backdrop_filters));
auto use_gr_context = ScopedUseGrContext::Create(this);
gfx::Vector2d clipping_offset =
(rect.top_right() - unclipped_rect.top_right()) +
(rect.bottom_left() - unclipped_rect.bottom_left());
// Update the backdrop filter to include "regular" filters and opacity.
cc::FilterOperations backdrop_filters_plus_effects = *backdrop_filters;
if (regular_filters) {
for (const auto& filter_op : regular_filters->operations())
backdrop_filters_plus_effects.Append(filter_op);
}
if (quad->shared_quad_state->opacity < 1.0) {
backdrop_filters_plus_effects.Append(
cc::FilterOperation::CreateOpacityFilter(
quad->shared_quad_state->opacity));
}
auto paint_filter = cc::RenderSurfaceFilters::BuildImageFilter(
backdrop_filters_plus_effects, gfx::SizeF(rect.size()),
gfx::Vector2dF(clipping_offset));
// TODO(senorblanco): background filters should be moved to the
// makeWithFilter fast-path, and go back to calling ApplyImageFilter().
// See http://crbug.com/613233.
if (!paint_filter || !use_gr_context)
return nullptr;
auto filter = paint_filter->cached_sk_filter_;
bool flip_texture = true;
sk_sp<SkImage> src_image =
WrapTexture(background_texture, GL_TEXTURE_2D, rect.size(),
use_gr_context->context(), flip_texture);
if (!src_image) {
TRACE_EVENT_INSTANT0(
"cc", "ApplyBackgroundFilters wrap background texture failed",
TRACE_EVENT_SCOPE_THREAD);
return nullptr;
}
gfx::Rect quality_adjusted_rect =
ScaleToEnclosingRect(rect, backdrop_filter_quality);
// Create surface to draw into.
SkImageInfo dst_info = SkImageInfo::MakeN32Premul(
quality_adjusted_rect.width(), quality_adjusted_rect.height());
sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(
use_gr_context->context(), SkBudgeted::kYes, dst_info);
if (!surface) {
TRACE_EVENT_INSTANT0("viz",
"ApplyBackgroundFilters surface allocation failed",
TRACE_EVENT_SCOPE_THREAD);
return nullptr;
}
// Big filters can sometimes fallback to CPU. Therefore, we need
// to disable subnormal floats for performance and security reasons.
cc::ScopedSubnormalFloatDisabler disabler;
// First paint the backdrop at full opacity. The backdrop-filtered content
// will not be blended with the backdrop later, it will be rastered over the
// top. So we need to paint it here, unfiltered.
gfx::RectF src_image_rect = gfx::RectF(rect.width(), rect.height());
SkRect dest_rect = RectToSkRect(gfx::Rect(quality_adjusted_rect.size()));
surface->getCanvas()->drawImageRect(src_image, RectFToSkRect(src_image_rect),
dest_rect, nullptr);
// Can't crop here, because the crop rect is applied prior to filtering, and
// some filters move pixels and need to process the full image.
// TODO(916314): this could probably be put back to just using
// drawImageRect on the unfiltered image, with &paint last argument to handle
// filters and opacity. Would be cleaner.
SkIPoint offset;
SkIRect subset;
sk_sp<SkImage> filtered_image = SkiaHelper::ApplyImageFilter(
use_gr_context->context(), src_image, src_image_rect, src_image_rect,
gfx::Vector2dF(1, 1), std::move(filter), &offset, &subset,
quad->filters_origin, true);
if (!backdrop_filter_bounds.IsEmpty()) {
// Clip the filtered image to the bounding box of the element.
surface->getCanvas()->save();
gfx::RectF clip_rect_scaled = gfx::RectF(backdrop_filter_bounds);
clip_rect_scaled.Scale(backdrop_filter_quality);
SkRRect clip_rect =
SkRRect::MakeRectXY(RectFToSkRect(clip_rect_scaled), 0, 0);
surface->getCanvas()->clipRRect(clip_rect, SkClipOp::kIntersect,
true /* antialias */);
}
// Now paint the pre-filtered image onto the canvas.
surface->getCanvas()->drawImageRect(filtered_image, subset, dest_rect,
nullptr);
if (!backdrop_filter_bounds.IsEmpty()) {
surface->getCanvas()->restore();
}
// Flush the drawing before source texture read lock goes out of scope.
// Skia API does not guarantee that when the SkImage goes out of scope,
// its externally referenced resources would force the rendering to be
// flushed.
surface->getCanvas()->flush();
sk_sp<SkImage> image = surface->makeImageSnapshot();
if (!image || !image->isTextureBacked()) {
return nullptr;
}
return image;
}
const TileDrawQuad* GLRenderer::CanPassBeDrawnDirectly(const RenderPass* pass) {
return DirectRenderer::CanPassBeDrawnDirectly(pass, false,
resource_provider_);
}
void GLRenderer::DrawRenderPassQuad(const RenderPassDrawQuad* quad,
const gfx::QuadF* clip_region) {
auto bypass = render_pass_bypass_quads_.find(quad->render_pass_id);
DrawRenderPassDrawQuadParams params;
params.quad = quad;
params.clip_region = clip_region;
params.window_matrix = current_frame()->window_matrix;
params.projection_matrix = current_frame()->projection_matrix;
params.tex_coord_rect = quad->tex_coord_rect;
if (bypass != render_pass_bypass_quads_.end()) {
TileDrawQuad* tile_quad = &bypass->second;
// The projection matrix used by GLRenderer has a flip. As tile texture
// inputs are oriented opposite to framebuffer outputs, don't flip via
// texture coords and let the projection matrix naturallyd o it.
params.flip_texture = false;
params.bypass_quad_texture.resource_id = tile_quad->resource_id();
params.bypass_quad_texture.size = tile_quad->texture_size;
DrawRenderPassQuadInternal(&params);
} else {
auto contents_texture_it = render_pass_textures_.find(quad->render_pass_id);
DCHECK(contents_texture_it->second.id());
// See above comments about texture flipping. When the input is a
// render pass, it needs to an extra flip to be oriented correctly.
params.flip_texture = true;
params.contents_texture = &contents_texture_it->second;
DrawRenderPassQuadInternal(&params);
}
if (params.background_texture) {
gl_->DeleteTextures(1, &params.background_texture);
params.background_texture = 0;
}
}
void GLRenderer::DrawRenderPassQuadInternal(
DrawRenderPassDrawQuadParams* params) {
params->quad_to_target_transform =
params->quad->shared_quad_state->quad_to_target_transform;
if (!InitializeRPDQParameters(params))
return;
UpdateRPDQShadersForBlending(params);
bool can_draw = UpdateRPDQWithSkiaFilters(params);
// The above calls use ScopedUseGrContext which can change the bound
// framebuffer, so we need to restore it for the current RenderPass.
UseRenderPass(current_frame()->current_render_pass);
// As part of restoring the framebuffer, we call SetViewport directly, rather
// than through PrepareSurfaceForPass. PrepareSurfaceForPass also clears the
// surface, which is not desired when restoring.
SetViewport();
if (!can_draw)
return;
UpdateRPDQTexturesForSampling(params);
UpdateRPDQBlendMode(params);
ChooseRPDQProgram(params, current_frame()->current_render_pass->color_space);
UpdateRPDQUniforms(params);
DrawRPDQ(*params);
}
bool GLRenderer::InitializeRPDQParameters(
DrawRenderPassDrawQuadParams* params) {
const RenderPassDrawQuad* quad = params->quad;
SkMatrix local_matrix;
local_matrix.setTranslate(quad->filters_origin.x(), quad->filters_origin.y());
local_matrix.postScale(quad->filters_scale.x(), quad->filters_scale.y());
params->filters = FiltersForPass(quad->render_pass_id);
params->backdrop_filters = BackgroundFiltersForPass(quad->render_pass_id);
params->backdrop_filter_bounds =
BackgroundFilterBoundsForPass(quad->render_pass_id);
params->backdrop_filter_quality = quad->backdrop_filter_quality;
gfx::Rect dst_rect = params->filters
? params->filters->MapRect(quad->rect, local_matrix)
: quad->rect;
params->dst_rect.SetRect(static_cast<float>(dst_rect.x()),
static_cast<float>(dst_rect.y()),
static_cast<float>(dst_rect.width()),
static_cast<float>(dst_rect.height()));
gfx::Transform quad_rect_matrix;
gfx::Rect quad_layer_rect(quad->shared_quad_state->quad_layer_rect);
if (params->filters)
quad_layer_rect = params->filters->MapRect(quad_layer_rect, local_matrix);
QuadRectTransform(&quad_rect_matrix, params->quad_to_target_transform,
gfx::RectF(quad_layer_rect));
params->contents_device_transform =
params->window_matrix * params->projection_matrix * quad_rect_matrix;
params->contents_device_transform.FlattenTo2d();
// Can only draw surface if device matrix is invertible.
if (!params->contents_device_transform.IsInvertible())
return false;
// TODO(sunxd): unify the anti-aliasing logic of RPDQ and TileDrawQuad.
params->surface_quad = SharedGeometryQuad();
gfx::QuadF device_layer_quad;
if (settings_->allow_antialiasing && !quad->force_anti_aliasing_off &&
quad->IsEdge()) {
bool clipped = false;
device_layer_quad = cc::MathUtil::MapQuad(params->contents_device_transform,
params->surface_quad, &clipped);
params->use_aa = ShouldAntialiasQuad(device_layer_quad, clipped,
settings_->force_antialiasing);
}
const gfx::QuadF* aa_quad = params->use_aa ? &device_layer_quad : nullptr;
SetupRenderPassQuadForClippingAndAntialiasing(
params->contents_device_transform, quad, aa_quad, params->clip_region,
&params->surface_quad, params->edge);
return true;
}
// Get a GL texture id from an SkImage. An optional origin pointer can be
// passed in which will be filled out with the origin for the texture
// backing the SkImage.
static GLuint GetGLTextureIDFromSkImage(const SkImage* image,
GrSurfaceOrigin* origin = nullptr) {
GrBackendTexture backend_texture = image->getBackendTexture(true, origin);
if (!backend_texture.isValid()) {
return 0;
}
GrGLTextureInfo info;
bool result = backend_texture.getGLTextureInfo(&info);
DCHECK(result);
return info.fID;
}
void GLRenderer::UpdateRPDQShadersForBlending(
DrawRenderPassDrawQuadParams* params) {
const RenderPassDrawQuad* quad = params->quad;
SkBlendMode blend_mode = quad->shared_quad_state->blend_mode;
params->use_shaders_for_blending =
!CanApplyBlendModeUsingBlendFunc(blend_mode) ||
ShouldApplyBackgroundFilters(quad, params->backdrop_filters) ||
settings_->force_blending_with_shaders;
if (params->use_shaders_for_blending) {
// Compute a bounding box around the pixels that will be visible through
// the quad.
gfx::Rect backdrop_filter_bounds_rect;
gfx::Rect unclipped_rect;
params->background_rect = GetBackdropBoundingBoxForRenderPassQuad(
quad, params->contents_device_transform, params->filters,
params->backdrop_filters, params->clip_region,
params->backdrop_filter_bounds, params->use_aa,
&backdrop_filter_bounds_rect, &unclipped_rect);
if (!params->background_rect.IsEmpty()) {
// The pixels from the filtered background should completely replace the
// current pixel values.
if (blend_enabled())
SetBlendEnabled(false);
// Read the pixels in the bounding box into a buffer R.
// This function allocates a texture, which should contribute to the
// amount of memory used by render surfaces:
// LayerTreeHost::CalculateMemoryForRenderSurfaces.
params->background_texture = GetBackdropTexture(params->background_rect);
if (ShouldApplyBackgroundFilters(quad, params->backdrop_filters)) {
// Apply the background filters to R, so that it is applied in the
// pixels' coordinate space.
params->background_image = ApplyBackgroundFilters(
quad, params->backdrop_filters, params->filters,
params->background_texture, params->background_rect, unclipped_rect,
params->backdrop_filter_quality, backdrop_filter_bounds_rect);
if (params->background_image) {
params->background_image_id =
GetGLTextureIDFromSkImage(params->background_image.get());
DCHECK(params->background_image_id || IsContextLost());
}
}
if (params->background_image_id) {
// Reset original background texture if there is not any mask.
if (!quad->mask_resource_id()) {
gl_->DeleteTextures(1, &params->background_texture);
params->background_texture = 0;
}
} else if (CanApplyBlendModeUsingBlendFunc(blend_mode) &&
ShouldApplyBackgroundFilters(quad, params->backdrop_filters)) {
// Something went wrong with applying background filters to the
// backdrop.
params->use_shaders_for_blending = false;
gl_->DeleteTextures(1, &params->background_texture);
params->background_texture = 0;
}
} else { // params->background_rect.IsEmpty()
DCHECK(!params->background_image_id);
params->use_shaders_for_blending = false;
}
}
// Need original background texture for mask?
params->mask_for_background =
params->background_texture && // Have original background texture
params->background_image_id; // Have mask texture
// If we have background texture + background image, then we also have mask
// resource.
if (params->background_texture && params->background_image_id) {
DCHECK(params->mask_for_background);
DCHECK(quad->mask_resource_id());
}
DCHECK_EQ(params->background_texture || params->background_image_id,
params->use_shaders_for_blending);
}
bool GLRenderer::UpdateRPDQWithSkiaFilters(
DrawRenderPassDrawQuadParams* params) {
const RenderPassDrawQuad* quad = params->quad;
// Apply filters to the contents texture.
if (params->filters) {
DCHECK(!params->filters->IsEmpty());
gfx::Size size = params->contents_texture
? params->contents_texture->size()
: params->bypass_quad_texture.size;
auto paint_filter = cc::RenderSurfaceFilters::BuildImageFilter(
*params->filters, gfx::SizeF(size));
auto filter = paint_filter ? paint_filter->cached_sk_filter_ : nullptr;
if (filter) {
SkColorFilter* colorfilter_rawptr = nullptr;
filter->asColorFilter(&colorfilter_rawptr);
sk_sp<SkColorFilter> cf(colorfilter_rawptr);
if (cf && cf->asColorMatrix(params->color_matrix)) {
// We have a color matrix at the root of the filter DAG; apply it
// locally in the compositor and process the rest of the DAG (if any)
// in Skia.
params->use_color_matrix = true;
filter = sk_ref_sp(filter->getInput(0));
}
if (filter) {
gfx::Rect clip_rect = quad->shared_quad_state->clip_rect;
if (clip_rect.IsEmpty()) {
clip_rect = current_draw_rect_;
}
gfx::Transform transform = params->quad_to_target_transform;
if (!transform.IsInvertible()) {
return false;
}
gfx::QuadF clip_quad = gfx::QuadF(gfx::RectF(clip_rect));
gfx::QuadF local_clip =
cc::MathUtil::InverseMapQuadToLocalSpace(transform, clip_quad);
params->dst_rect.Intersect(local_clip.BoundingBox());
// If we've been fully clipped out (by crop rect or clipping), there's
// nothing to draw.
if (params->dst_rect.IsEmpty()) {
return false;
}
SkIPoint offset;
SkIRect subset;
gfx::RectF src_rect(quad->rect);
auto use_gr_context = ScopedUseGrContext::Create(this);
if (!use_gr_context)
return false;
if (params->contents_texture) {
params->contents_and_bypass_color_space =
params->contents_texture->color_space();
sk_sp<SkImage> src_image =
WrapTexture(params->contents_texture->id(), GL_TEXTURE_2D,
params->contents_texture->size(),
use_gr_context->context(), params->flip_texture);
params->filter_image = SkiaHelper::ApplyImageFilter(
use_gr_context->context(), src_image, src_rect, params->dst_rect,
quad->filters_scale, std::move(filter), &offset, &subset,
quad->filters_origin, true);
} else {
DisplayResourceProvider::ScopedReadLockGL
prefilter_bypass_quad_texture_lock(
resource_provider_, params->bypass_quad_texture.resource_id);
params->contents_and_bypass_color_space =
prefilter_bypass_quad_texture_lock.color_space();
sk_sp<SkImage> src_image =
WrapTexture(prefilter_bypass_quad_texture_lock.texture_id(),
prefilter_bypass_quad_texture_lock.target(),
prefilter_bypass_quad_texture_lock.size(),
use_gr_context->context(), params->flip_texture);
params->filter_image = SkiaHelper::ApplyImageFilter(
use_gr_context->context(), src_image, src_rect, params->dst_rect,
quad->filters_scale, std::move(filter), &offset, &subset,
quad->filters_origin, true);
}
if (!params->filter_image)
return false;
params->dst_rect =
gfx::RectF(src_rect.x() + offset.fX, src_rect.y() + offset.fY,
subset.width(), subset.height());
gfx::RectF tex_rect = gfx::RectF(gfx::PointF(subset.x(), subset.y()),
params->dst_rect.size());
params->tex_coord_rect = tex_rect;
}
}
}
return true;
}
void GLRenderer::UpdateRPDQTexturesForSampling(
DrawRenderPassDrawQuadParams* params) {
if (params->quad->mask_resource_id()) {
params->mask_resource_lock.reset(
new DisplayResourceProvider::ScopedSamplerGL(
resource_provider_, params->quad->mask_resource_id(), GL_TEXTURE1,
GL_LINEAR));
}
if (params->filter_image) {
GrSurfaceOrigin origin;
GLuint filter_image_id =
GetGLTextureIDFromSkImage(params->filter_image.get(), &origin);
DCHECK(filter_image_id || IsContextLost());
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_2D, filter_image_id);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// |params->contents_and_bypass_color_space| was populated when
// |params->filter_image| was populated.
params->source_needs_flip = kBottomLeft_GrSurfaceOrigin == origin;
} else if (params->contents_texture) {
params->contents_texture->BindForSampling();
params->contents_and_bypass_color_space =
params->contents_texture->color_space();
params->source_needs_flip = params->flip_texture;
} else {
params->bypass_quad_resource_lock =
std::make_unique<DisplayResourceProvider::ScopedSamplerGL>(
resource_provider_, params->bypass_quad_texture.resource_id,
GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
params->bypass_quad_resource_lock->target());
params->contents_and_bypass_color_space =
params->bypass_quad_resource_lock->color_space();
params->source_needs_flip = params->flip_texture;
}
}
void GLRenderer::UpdateRPDQBlendMode(DrawRenderPassDrawQuadParams* params) {
SkBlendMode blend_mode = params->quad->shared_quad_state->blend_mode;
SetBlendEnabled(!params->use_shaders_for_blending &&
(params->quad->ShouldDrawWithBlending() ||
!IsDefaultBlendMode(blend_mode)));
if (!params->use_shaders_for_blending) {
if (!use_blend_equation_advanced_coherent_ && use_blend_equation_advanced_)
gl_->BlendBarrierKHR();
ApplyBlendModeUsingBlendFunc(blend_mode);
}
}
void GLRenderer::ChooseRPDQProgram(DrawRenderPassDrawQuadParams* params,
const gfx::ColorSpace& target_color_space) {
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, settings_->highp_threshold_min,
params->quad->shared_quad_state->visible_quad_layer_rect.size());
BlendMode shader_blend_mode =
params->use_shaders_for_blending
? BlendModeFromSkXfermode(params->quad->shared_quad_state->blend_mode)
: BLEND_MODE_NONE;
SamplerType sampler_type = SAMPLER_TYPE_2D;
MaskMode mask_mode = NO_MASK;
bool mask_for_background = params->mask_for_background;
if (params->mask_resource_lock) {
mask_mode = HAS_MASK;
sampler_type =
SamplerTypeFromTextureTarget(params->mask_resource_lock->target());
}
SetUseProgram(
ProgramKey::RenderPass(
tex_coord_precision, sampler_type, shader_blend_mode,
params->use_aa ? USE_AA : NO_AA, mask_mode, mask_for_background,
params->use_color_matrix, tint_gl_composited_content_),
params->contents_and_bypass_color_space, target_color_space);
}
void GLRenderer::UpdateRPDQUniforms(DrawRenderPassDrawQuadParams* params) {
gfx::RectF tex_rect = params->tex_coord_rect;
gfx::Size texture_size;
if (params->filter_image) {
texture_size.set_width(params->filter_image->width());
texture_size.set_height(params->filter_image->height());
} else if (params->contents_texture) {
texture_size = params->contents_texture->size();
} else {
texture_size = params->bypass_quad_texture.size;
}
tex_rect.Scale(1.0f / texture_size.width(), 1.0f / texture_size.height());
DCHECK(current_program_->vertex_tex_transform_location() != -1 ||
IsContextLost());
if (params->source_needs_flip) {
// Flip the content vertically in the shader, as the RenderPass input
// texture is already oriented the same way as the framebuffer, but the
// projection transform does a flip.
gl_->Uniform4f(current_program_->vertex_tex_transform_location(),
tex_rect.x(), 1.0f - tex_rect.y(), tex_rect.width(),
-tex_rect.height());
} else {
// Tile textures are oriented opposite the framebuffer, so can use
// the projection transform to do the flip.
gl_->Uniform4f(current_program_->vertex_tex_transform_location(),
tex_rect.x(), tex_rect.y(), tex_rect.width(),
tex_rect.height());
}
GLint last_texture_unit = 0;
if (current_program_->mask_sampler_location() != -1) {
DCHECK(params->mask_resource_lock);
DCHECK_NE(current_program_->mask_tex_coord_scale_location(), 1);
DCHECK_NE(current_program_->mask_tex_coord_offset_location(), 1);
gl_->Uniform1i(current_program_->mask_sampler_location(), 1);
gfx::RectF mask_uv_rect = params->quad->mask_uv_rect;
if (SamplerTypeFromTextureTarget(params->mask_resource_lock->target()) !=
SAMPLER_TYPE_2D) {
mask_uv_rect.Scale(params->quad->mask_texture_size.width(),
params->quad->mask_texture_size.height());
}
SkMatrix tex_to_mask = SkMatrix::MakeRectToRect(RectFToSkRect(tex_rect),
RectFToSkRect(mask_uv_rect),
SkMatrix::kFill_ScaleToFit);
if (params->source_needs_flip) {
// Mask textures are oriented vertically flipped relative to the
// framebuffer and the RenderPass contents texture, so we flip the tex
// coords from the RenderPass texture to find the mask texture coords.
tex_to_mask.preTranslate(0, 1);
tex_to_mask.preScale(1, -1);
}
gl_->Uniform2f(current_program_->mask_tex_coord_offset_location(),
tex_to_mask.getTranslateX(), tex_to_mask.getTranslateY());
gl_->Uniform2f(current_program_->mask_tex_coord_scale_location(),
tex_to_mask.getScaleX(), tex_to_mask.getScaleY());
last_texture_unit = 1;
}
if (current_program_->edge_location() != -1)
gl_->Uniform3fv(current_program_->edge_location(), 8, params->edge);
if (current_program_->color_matrix_location() != -1) {
float matrix[16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j)
matrix[i * 4 + j] = SkScalarToFloat(params->color_matrix[j * 5 + i]);
}
gl_->UniformMatrix4fv(current_program_->color_matrix_location(), 1, false,
matrix);
}
static const float kScale = 1.0f / 255.0f;
if (current_program_->color_offset_location() != -1) {
float offset[4];
for (int i = 0; i < 4; ++i)
offset[i] = SkScalarToFloat(params->color_matrix[i * 5 + 4]) * kScale;
gl_->Uniform4fv(current_program_->color_offset_location(), 1, offset);
}
if (current_program_->tint_color_matrix_location() != -1) {
auto matrix = cc::DebugColors::TintCompositedContentColorTransformMatrix();
gl_->UniformMatrix4fv(current_program_->tint_color_matrix_location(), 1,
false, matrix.data());
}
if (current_program_->backdrop_location() != -1) {
DCHECK(params->background_texture || params->background_image_id);
DCHECK_NE(current_program_->backdrop_location(), 0);
DCHECK_NE(current_program_->backdrop_rect_location(), 0);
++last_texture_unit;
gl_->Uniform1i(current_program_->backdrop_location(), last_texture_unit);
gl_->Uniform4f(current_program_->backdrop_rect_location(),
params->background_rect.x(), params->background_rect.y(),
1.0f / params->background_rect.width(),
1.0f / params->background_rect.height());
// Either |background_image_id| or |background_texture| will be the
// |backdrop_location| in the shader.
if (params->background_image_id) {
gl_->ActiveTexture(GL_TEXTURE0 + last_texture_unit);
gl_->BindTexture(GL_TEXTURE_2D, params->background_image_id);
if (params->backdrop_filter_quality != 1.0f)
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl_->ActiveTexture(GL_TEXTURE0);
}
// If |mask_for_background| then we have both |background_image_id| and
// |background_texture|, and the latter will be the
// |original_backdrop_location| in the shader.
if (params->mask_for_background) {
DCHECK(params->background_image_id);
DCHECK(params->background_texture);
++last_texture_unit;
gl_->Uniform1i(current_program_->original_backdrop_location(),
last_texture_unit);
}
if (params->background_texture) {
gl_->ActiveTexture(GL_TEXTURE0 + last_texture_unit);
gl_->BindTexture(GL_TEXTURE_2D, params->background_texture);
gl_->ActiveTexture(GL_TEXTURE0);
}
}
SetShaderOpacity(params->quad->shared_quad_state->opacity);
SetShaderQuadF(params->surface_quad);
}
void GLRenderer::DrawRPDQ(const DrawRenderPassDrawQuadParams& params) {
DrawQuadGeometry(params.projection_matrix, params.quad_to_target_transform,
params.dst_rect);
// Flush the compositor context before the filter bitmap goes out of
// scope, so the draw gets processed before the filter texture gets deleted.
if (params.filter_image)
gl_->Flush();
if (!params.use_shaders_for_blending)
RestoreBlendFuncToDefault(params.quad->shared_quad_state->blend_mode);
}
namespace {
// These functions determine if a quad, clipped by a clip_region contains
// the entire {top|bottom|left|right} edge.
bool is_top(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsTopEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p1().y()) < kAntiAliasingEpsilon &&
std::abs(clip_region->p2().y()) < kAntiAliasingEpsilon;
}
bool is_bottom(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsBottomEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p3().y() -
quad->shared_quad_state->quad_layer_rect.height()) <
kAntiAliasingEpsilon &&
std::abs(clip_region->p4().y() -
quad->shared_quad_state->quad_layer_rect.height()) <
kAntiAliasingEpsilon;
}
bool is_left(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsLeftEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p1().x()) < kAntiAliasingEpsilon &&
std::abs(clip_region->p4().x()) < kAntiAliasingEpsilon;
}
bool is_right(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsRightEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p2().x() -
quad->shared_quad_state->quad_layer_rect.width()) <
kAntiAliasingEpsilon &&
std::abs(clip_region->p3().x() -
quad->shared_quad_state->quad_layer_rect.width()) <
kAntiAliasingEpsilon;
}
} // anonymous namespace
static gfx::QuadF GetDeviceQuadWithAntialiasingOnExteriorEdges(
const LayerQuad& device_layer_edges,
const gfx::Transform& device_transform,
const gfx::QuadF& tile_quad,
const gfx::QuadF* clip_region,
const DrawQuad* quad) {
auto tile_rect = gfx::RectF(quad->visible_rect);
gfx::PointF bottom_right = tile_quad.p3();
gfx::PointF bottom_left = tile_quad.p4();
gfx::PointF top_left = tile_quad.p1();
gfx::PointF top_right = tile_quad.p2();
bool clipped = false;
// Map points to device space. We ignore |clipped|, since the result of
// |MapPoint()| still produces a valid point to draw the quad with. When
// clipped, the point will be outside of the viewport. See crbug.com/416367.
bottom_right =
cc::MathUtil::MapPoint(device_transform, bottom_right, &clipped);
bottom_left = cc::MathUtil::MapPoint(device_transform, bottom_left, &clipped);
top_left = cc::MathUtil::MapPoint(device_transform, top_left, &clipped);
top_right = cc::MathUtil::MapPoint(device_transform, top_right, &clipped);
LayerQuad::Edge bottom_edge(bottom_right, bottom_left);
LayerQuad::Edge left_edge(bottom_left, top_left);
LayerQuad::Edge top_edge(top_left, top_right);
LayerQuad::Edge right_edge(top_right, bottom_right);
// Only apply anti-aliasing to edges not clipped by culling or scissoring.
// If an edge is degenerate we do not want to replace it with a "proper" edge
// as that will cause the quad to possibly expand in strange ways.
if (!top_edge.degenerate() && is_top(clip_region, quad) &&
tile_rect.y() == quad->rect.y()) {
top_edge = device_layer_edges.top();
}
if (!left_edge.degenerate() && is_left(clip_region, quad) &&
tile_rect.x() == quad->rect.x()) {
left_edge = device_layer_edges.left();
}
if (!right_edge.degenerate() && is_right(clip_region, quad) &&
tile_rect.right() == quad->rect.right()) {
right_edge = device_layer_edges.right();
}
if (!bottom_edge.degenerate() && is_bottom(clip_region, quad) &&
tile_rect.bottom() == quad->rect.bottom()) {
bottom_edge = device_layer_edges.bottom();
}
float sign = tile_quad.IsCounterClockwise() ? -1 : 1;
bottom_edge.scale(sign);
left_edge.scale(sign);
top_edge.scale(sign);
right_edge.scale(sign);
// Create device space quad.
return LayerQuad(left_edge, top_edge, right_edge, bottom_edge).ToQuadF();
}
float GetTotalQuadError(const gfx::QuadF* clipped_quad,
const gfx::QuadF* ideal_rect) {
return (clipped_quad->p1() - ideal_rect->p1()).LengthSquared() +
(clipped_quad->p2() - ideal_rect->p2()).LengthSquared() +
(clipped_quad->p3() - ideal_rect->p3()).LengthSquared() +
(clipped_quad->p4() - ideal_rect->p4()).LengthSquared();
}
// Attempt to rotate the clipped quad until it lines up the most
// correctly. This is necessary because we check the edges of this
// quad against the expected left/right/top/bottom for anti-aliasing.
void AlignQuadToBoundingBox(gfx::QuadF* clipped_quad) {
auto bounding_quad = gfx::QuadF(clipped_quad->BoundingBox());
gfx::QuadF best_rotation = *clipped_quad;
float least_error_amount = GetTotalQuadError(clipped_quad, &bounding_quad);
for (size_t i = 1; i < 4; ++i) {
clipped_quad->Realign(1);
float new_error = GetTotalQuadError(clipped_quad, &bounding_quad);
if (new_error < least_error_amount) {
least_error_amount = new_error;
best_rotation = *clipped_quad;
}
}
*clipped_quad = best_rotation;
}
void InflateAntiAliasingDistances(const gfx::QuadF& quad,
LayerQuad* device_layer_edges,
float edge[24]) {
DCHECK(!quad.BoundingBox().IsEmpty());
LayerQuad device_layer_bounds(gfx::QuadF(quad.BoundingBox()));
device_layer_edges->InflateAntiAliasingDistance();
device_layer_edges->ToFloatArray(edge);
device_layer_bounds.InflateAntiAliasingDistance();
device_layer_bounds.ToFloatArray(&edge[12]);
}
// static
bool GLRenderer::ShouldAntialiasQuad(const gfx::QuadF& device_layer_quad,
bool clipped,
bool force_aa) {
// AAing clipped quads is not supported by the code yet.
if (clipped)
return false;
if (device_layer_quad.BoundingBox().IsEmpty())
return false;
if (force_aa)
return true;
bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear();
bool is_nearest_rect_within_epsilon =
is_axis_aligned_in_target &&
gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(),
kAntiAliasingEpsilon);
return !is_nearest_rect_within_epsilon;
}
// static
void GLRenderer::SetupQuadForClippingAndAntialiasing(
const gfx::Transform& device_transform,
const DrawQuad* quad,
const gfx::QuadF* aa_quad,
const gfx::QuadF* clip_region,
gfx::QuadF* local_quad,
float edge[24]) {
gfx::QuadF rotated_clip;
const gfx::QuadF* local_clip_region = clip_region;
if (local_clip_region) {
rotated_clip = *clip_region;
AlignQuadToBoundingBox(&rotated_clip);
local_clip_region = &rotated_clip;
}
if (!aa_quad) {
if (local_clip_region)
*local_quad = *local_clip_region;
return;
}
LayerQuad device_layer_edges(*aa_quad);
InflateAntiAliasingDistances(*aa_quad, &device_layer_edges, edge);
// If we have a clip region then we are split, and therefore
// by necessity, at least one of our edges is not an external
// one.
bool is_full_rect = quad->visible_rect == quad->rect;
bool region_contains_all_outside_edges =
is_full_rect &&
(is_top(local_clip_region, quad) && is_left(local_clip_region, quad) &&
is_bottom(local_clip_region, quad) && is_right(local_clip_region, quad));
bool use_aa_on_all_four_edges =
!local_clip_region && region_contains_all_outside_edges;
gfx::QuadF device_quad;
if (use_aa_on_all_four_edges) {
device_quad = device_layer_edges.ToQuadF();
} else {
gfx::QuadF tile_quad(local_clip_region
? *local_clip_region
: gfx::QuadF(gfx::RectF(quad->visible_rect)));
device_quad = GetDeviceQuadWithAntialiasingOnExteriorEdges(
device_layer_edges, device_transform, tile_quad, local_clip_region,
quad);
}
*local_quad =
cc::MathUtil::InverseMapQuadToLocalSpace(device_transform, device_quad);
}
// static
void GLRenderer::SetupRenderPassQuadForClippingAndAntialiasing(
const gfx::Transform& device_transform,
const RenderPassDrawQuad* quad,
const gfx::QuadF* aa_quad,
const gfx::QuadF* clip_region,
gfx::QuadF* local_quad,
float edge[24]) {
gfx::QuadF rotated_clip;
const gfx::QuadF* local_clip_region = clip_region;
if (local_clip_region) {
rotated_clip = *clip_region;
AlignQuadToBoundingBox(&rotated_clip);
local_clip_region = &rotated_clip;
}
if (!aa_quad) {
GetScaledRegion(quad->rect, local_clip_region, local_quad);
return;
}
LayerQuad device_layer_edges(*aa_quad);
InflateAntiAliasingDistances(*aa_quad, &device_layer_edges, edge);
gfx::QuadF device_quad;
// Apply anti-aliasing only to the edges that are not being clipped
if (local_clip_region) {
gfx::QuadF tile_quad(gfx::RectF(quad->visible_rect));
GetScaledRegion(quad->rect, local_clip_region, &tile_quad);
device_quad = GetDeviceQuadWithAntialiasingOnExteriorEdges(
device_layer_edges, device_transform, tile_quad, local_clip_region,
quad);
} else {
device_quad = device_layer_edges.ToQuadF();
}
*local_quad =
cc::MathUtil::InverseMapQuadToLocalSpace(device_transform, device_quad);
}
void GLRenderer::DrawSolidColorQuad(const SolidColorDrawQuad* quad,
const gfx::QuadF* clip_region) {
gfx::Rect tile_rect = quad->visible_rect;
SkColor color = quad->color;
float opacity = quad->shared_quad_state->opacity;
float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity;
// Early out if alpha is small enough that quad doesn't contribute to output.
if (alpha < std::numeric_limits<float>::epsilon() &&
quad->ShouldDrawWithBlending() &&
quad->shared_quad_state->blend_mode == SkBlendMode::kSrcOver)
return;
gfx::Transform device_transform =
current_frame()->window_matrix * current_frame()->projection_matrix *
quad->shared_quad_state->quad_to_target_transform;
device_transform.FlattenTo2d();
if (!device_transform.IsInvertible())
return;
auto local_quad = gfx::QuadF(gfx::RectF(tile_rect));
gfx::QuadF device_layer_quad;
bool use_aa = false;
bool allow_aa = settings_->allow_antialiasing &&
!quad->force_anti_aliasing_off && quad->IsEdge();
if (allow_aa) {
bool clipped = false;
bool force_aa = false;
device_layer_quad = cc::MathUtil::MapQuad(
device_transform,
gfx::QuadF(
gfx::RectF(quad->shared_quad_state->visible_quad_layer_rect)),
&clipped);
use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, force_aa);
}
float edge[24];
const gfx::QuadF* aa_quad = use_aa ? &device_layer_quad : nullptr;
SetupQuadForClippingAndAntialiasing(device_transform, quad, aa_quad,
clip_region, &local_quad, edge);
gfx::ColorSpace quad_color_space = gfx::ColorSpace::CreateSRGB();
SetUseProgram(ProgramKey::SolidColor(use_aa ? USE_AA : NO_AA,
tint_gl_composited_content_),
quad_color_space,
current_frame()->current_render_pass->color_space);
SetShaderColor(color, opacity);
if (current_program_->tint_color_matrix_location() != -1) {
auto matrix = cc::DebugColors::TintCompositedContentColorTransformMatrix();
gl_->UniformMatrix4fv(current_program_->tint_color_matrix_location(), 1,
false, matrix.data());
}
if (use_aa) {
gl_->Uniform3fv(current_program_->edge_location(), 8, edge);
}
// Enable blending when the quad properties require it or if we decided
// to use antialiasing.
SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
ApplyBlendModeUsingBlendFunc(quad->shared_quad_state->blend_mode);
// Antialising requires a normalized quad, but this could lead to floating
// point precision errors, so only normalize when antialising is on.
if (use_aa) {
DrawQuadGeometryWithAA(quad, &local_quad, tile_rect);
} else {
PrepareGeometry(SHARED_BINDING);
SetShaderQuadF(local_quad);
SetShaderMatrix(current_frame()->projection_matrix *
quad->shared_quad_state->quad_to_target_transform);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, nullptr);
num_triangles_drawn_ += 2;
}
RestoreBlendFuncToDefault(quad->shared_quad_state->blend_mode);
}
void GLRenderer::DrawTileQuad(const TileDrawQuad* quad,
const gfx::QuadF* clip_region) {
DrawContentQuad(quad, quad->resource_id(), clip_region);
}
void GLRenderer::DrawContentQuad(const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::QuadF* clip_region) {
gfx::Transform device_transform =
current_frame()->window_matrix * current_frame()->projection_matrix *
quad->shared_quad_state->quad_to_target_transform;
device_transform.FlattenTo2d();
gfx::QuadF device_layer_quad;
bool use_aa = false;
bool allow_aa = settings_->allow_antialiasing &&
!quad->force_anti_aliasing_off && quad->IsEdge();
if (allow_aa) {
bool clipped = false;
bool force_aa = false;
device_layer_quad = cc::MathUtil::MapQuad(
device_transform,
gfx::QuadF(
gfx::RectF(quad->shared_quad_state->visible_quad_layer_rect)),
&clipped);
use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, force_aa);
}
// TODO(timav): simplify coordinate transformations in DrawContentQuadAA
// similar to the way DrawContentQuadNoAA works and then consider
// combining DrawContentQuadAA and DrawContentQuadNoAA into one method.
if (use_aa)
DrawContentQuadAA(quad, resource_id, device_transform, device_layer_quad,
clip_region);
else
DrawContentQuadNoAA(quad, resource_id, clip_region);
}
void GLRenderer::DrawContentQuadAA(const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::Transform& device_transform,
const gfx::QuadF& aa_quad,
const gfx::QuadF* clip_region) {
if (!device_transform.IsInvertible())
return;
gfx::Rect tile_rect = quad->visible_rect;
gfx::RectF tex_coord_rect = cc::MathUtil::ScaleRectProportional(
quad->tex_coord_rect, gfx::RectF(quad->rect), gfx::RectF(tile_rect));
float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
float tex_to_geom_scale_y =
quad->rect.height() / quad->tex_coord_rect.height();
gfx::RectF clamp_geom_rect(tile_rect);
gfx::RectF clamp_tex_rect(tex_coord_rect);
// Clamp texture coordinates to avoid sampling outside the layer
// by deflating the tile region half a texel or half a texel
// minus epsilon for one pixel layers. The resulting clamp region
// is mapped to the unit square by the vertex shader and mapped
// back to normalized texture coordinates by the fragment shader
// after being clamped to 0-1 range.
float tex_clamp_x =
std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon);
float tex_clamp_y =
std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon);
float geom_clamp_x =
std::min(tex_clamp_x * tex_to_geom_scale_x,
0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon);
float geom_clamp_y =
std::min(tex_clamp_y * tex_to_geom_scale_y,
0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon);
clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y);
clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y);
// Map clamping rectangle to unit square.
float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width();
float vertex_tex_translate_y =
-clamp_geom_rect.y() / clamp_geom_rect.height();
float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width();
float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height();
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, settings_->highp_threshold_min,
quad->texture_size);
auto local_quad = gfx::QuadF(gfx::RectF(tile_rect));
float edge[24];
SetupQuadForClippingAndAntialiasing(device_transform, quad, &aa_quad,
clip_region, &local_quad, edge);
DisplayResourceProvider::ScopedSamplerGL quad_resource_lock(
resource_provider_, resource_id,
quad->nearest_neighbor ? GL_NEAREST : GL_LINEAR);
SamplerType sampler =
SamplerTypeFromTextureTarget(quad_resource_lock.target());
float fragment_tex_translate_x = clamp_tex_rect.x();
float fragment_tex_translate_y = clamp_tex_rect.y();
float fragment_tex_scale_x = clamp_tex_rect.width();
float fragment_tex_scale_y = clamp_tex_rect.height();
// Map to normalized texture coordinates.
if (sampler != SAMPLER_TYPE_2D_RECT) {
gfx::Size texture_size = quad->texture_size;
DCHECK(!texture_size.IsEmpty());
fragment_tex_translate_x /= texture_size.width();
fragment_tex_translate_y /= texture_size.height();
fragment_tex_scale_x /= texture_size.width();
fragment_tex_scale_y /= texture_size.height();
}
SetUseProgram(
ProgramKey::Tile(tex_coord_precision, sampler, USE_AA,
quad->swizzle_contents ? DO_SWIZZLE : NO_SWIZZLE,
quad->is_premultiplied ? PREMULTIPLIED_ALPHA
: NON_PREMULTIPLIED_ALPHA,
false, false, tint_gl_composited_content_),
quad_resource_lock.color_space(),
current_frame()->current_render_pass->color_space);
if (current_program_->tint_color_matrix_location() != -1) {
auto matrix = cc::DebugColors::TintCompositedContentColorTransformMatrix();
gl_->UniformMatrix4fv(current_program_->tint_color_matrix_location(), 1,
false, matrix.data());
}
gl_->Uniform3fv(current_program_->edge_location(), 8, edge);
gl_->Uniform4f(current_program_->vertex_tex_transform_location(),
vertex_tex_translate_x, vertex_tex_translate_y,
vertex_tex_scale_x, vertex_tex_scale_y);
gl_->Uniform4f(current_program_->fragment_tex_transform_location(),
fragment_tex_translate_x, fragment_tex_translate_y,
fragment_tex_scale_x, fragment_tex_scale_y);
// Blending is required for antialiasing.
SetBlendEnabled(true);
SetShaderOpacity(quad->shared_quad_state->opacity);
// Draw the quad with antialiasing.
DrawQuadGeometryWithAA(quad, &local_quad, tile_rect);
}
void GLRenderer::DrawContentQuadNoAA(const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::QuadF* clip_region) {
gfx::RectF tex_coord_rect = cc::MathUtil::ScaleRectProportional(
quad->tex_coord_rect, gfx::RectF(quad->rect),
gfx::RectF(quad->visible_rect));
float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
float tex_to_geom_scale_y =
quad->rect.height() / quad->tex_coord_rect.height();
bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f);
GLenum filter = (scaled || !quad->shared_quad_state->quad_to_target_transform
.IsIdentityOrIntegerTranslation()) &&
!quad->nearest_neighbor
? GL_LINEAR
: GL_NEAREST;
DisplayResourceProvider::ScopedSamplerGL quad_resource_lock(
resource_provider_, resource_id, filter);
SamplerType sampler =
SamplerTypeFromTextureTarget(quad_resource_lock.target());
// Tiles are guaranteed to have been entirely filled except for the
// bottom/right external edge tiles. Because of border texels, any
// internal edge will have uvs that are offset from 0 and 1, so
// clamping to tex_coord_rect in all cases would cause these border
// texels to not be sampled. Therefore, only clamp texture coordinates
// for external edge bottom/right tiles that don't have content all
// the way to the edge and are using bilinear filtering.
gfx::Size texture_size = quad->texture_size;
bool fills_right_edge =
!quad->IsRightEdge() || texture_size.width() == tex_coord_rect.right();
bool fills_bottom_edge =
!quad->IsBottomEdge() || texture_size.height() == tex_coord_rect.bottom();
bool has_tex_clamp_rect =
filter == GL_LINEAR && (!fills_right_edge || !fills_bottom_edge);
gfx::SizeF tex_clamp_size(texture_size);
// Clamp from the original tex coord rect, instead of the one that has
// been adjusted by the visible rect.
if (!fills_right_edge)
tex_clamp_size.set_width(quad->tex_coord_rect.right() - 0.5f);
if (!fills_bottom_edge)
tex_clamp_size.set_height(quad->tex_coord_rect.bottom() - 0.5f);
// Map to normalized texture coordinates.
if (sampler != SAMPLER_TYPE_2D_RECT) {
DCHECK(!texture_size.IsEmpty());
tex_coord_rect.Scale(1.f / texture_size.width(),
1.f / texture_size.height());
tex_clamp_size.Scale(1.f / texture_size.width(),
1.f / texture_size.height());
}
TexCoordPrecision tex_coord_precision =
TexCoordPrecisionRequired(gl_, &highp_threshold_cache_,
settings_->highp_threshold_min, texture_size);
SetUseProgram(
ProgramKey::Tile(tex_coord_precision, sampler, NO_AA,
quad->swizzle_contents ? DO_SWIZZLE : NO_SWIZZLE,
quad->is_premultiplied ? PREMULTIPLIED_ALPHA
: NON_PREMULTIPLIED_ALPHA,
!quad->ShouldDrawWithBlending(), has_tex_clamp_rect,
tint_gl_composited_content_),
quad_resource_lock.color_space(),
current_frame()->current_render_pass->color_space);
if (current_program_->tint_color_matrix_location() != -1) {
auto matrix = cc::DebugColors::TintCompositedContentColorTransformMatrix();
gl_->UniformMatrix4fv(current_program_->tint_color_matrix_location(), 1,
false, matrix.data());
}
if (has_tex_clamp_rect) {
gl_->Uniform4f(current_program_->tex_clamp_rect_location(), 0, 0,
tex_clamp_size.width(), tex_clamp_size.height());
}
gl_->Uniform4f(current_program_->vertex_tex_transform_location(),
tex_coord_rect.x(), tex_coord_rect.y(), tex_coord_rect.width(),
tex_coord_rect.height());
SetBlendEnabled(quad->ShouldDrawWithBlending());
SetShaderOpacity(quad->shared_quad_state->opacity);
// Pass quad coordinates to the uniform in the same order as GeometryBinding
// does, then vertices will match the texture mapping in the vertex buffer.
// The method SetShaderQuadF() changes the order of vertices and so it's
// not used here.
auto tile_quad = gfx::QuadF(gfx::RectF(quad->visible_rect));
float width = quad->visible_rect.width();
float height = quad->visible_rect.height();
auto top_left = gfx::PointF(quad->visible_rect.origin());
if (clip_region) {
tile_quad = *clip_region;
float gl_uv[8] = {
(tile_quad.p4().x() - top_left.x()) / width,
(tile_quad.p4().y() - top_left.y()) / height,
(tile_quad.p1().x() - top_left.x()) / width,
(tile_quad.p1().y() - top_left.y()) / height,
(tile_quad.p2().x() - top_left.x()) / width,
(tile_quad.p2().y() - top_left.y()) / height,
(tile_quad.p3().x() - top_left.x()) / width,
(tile_quad.p3().y() - top_left.y()) / height,
};
PrepareGeometry(CLIPPED_BINDING);
clipped_geometry_->InitializeCustomQuadWithUVs(
gfx::QuadF(gfx::RectF(quad->visible_rect)), gl_uv);
} else {
PrepareGeometry(SHARED_BINDING);
}
float gl_quad[8] = {
tile_quad.p4().x(), tile_quad.p4().y(), tile_quad.p1().x(),
tile_quad.p1().y(), tile_quad.p2().x(), tile_quad.p2().y(),
tile_quad.p3().x(), tile_quad.p3().y(),
};
gl_->Uniform2fv(current_program_->quad_location(), 4, gl_quad);
SetShaderMatrix(current_frame()->projection_matrix *
quad->shared_quad_state->quad_to_target_transform);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, nullptr);
num_triangles_drawn_ += 2;
}
void GLRenderer::DrawYUVVideoQuad(const YUVVideoDrawQuad* quad,
const gfx::QuadF* clip_region) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, settings_->highp_threshold_min,
quad->shared_quad_state->visible_quad_layer_rect.size());
YUVAlphaTextureMode alpha_texture_mode = quad->a_plane_resource_id()
? YUV_HAS_ALPHA_TEXTURE
: YUV_NO_ALPHA_TEXTURE;
UVTextureMode uv_texture_mode =
quad->v_plane_resource_id() == quad->u_plane_resource_id()
? UV_TEXTURE_MODE_UV
: UV_TEXTURE_MODE_U_V;
DisplayResourceProvider::ScopedSamplerGL y_plane_lock(
resource_provider_, quad->y_plane_resource_id(), GL_TEXTURE1, GL_LINEAR);
DisplayResourceProvider::ScopedSamplerGL u_plane_lock(
resource_provider_, quad->u_plane_resource_id(), GL_TEXTURE2, GL_LINEAR);
DCHECK_EQ(y_plane_lock.target(), u_plane_lock.target());
DCHECK_EQ(y_plane_lock.color_space(), u_plane_lock.color_space());
// TODO(ccameron): There are currently three sources of the color space: the
// resource, quad->color_space, and quad->video_color_space. Remove two of
// them.
gfx::ColorSpace src_color_space = quad->video_color_space;
// Invalid or unspecified color spaces should be treated as REC709.
if (!src_color_space.IsValid())
src_color_space = gfx::ColorSpace::CreateREC709();
else
DCHECK_EQ(src_color_space, y_plane_lock.color_space());
// The source color space should never be RGB.
DCHECK_NE(src_color_space, src_color_space.GetAsFullRangeRGB());
gfx::ColorSpace dst_color_space =
current_frame()->current_render_pass->color_space;
// Force sRGB output on Windows for overlay candidate video quads to match
// DirectComposition behavior in case these switch between overlays and
// compositing. See https://crbug.com/811118 for details.
if (supports_dc_layers_ &&
resource_provider_->IsOverlayCandidate(quad->y_plane_resource_id())) {
DCHECK(resource_provider_->IsOverlayCandidate(quad->u_plane_resource_id()));
dst_color_space = gfx::ColorSpace::CreateSRGB();
}
// TODO(jbauman): Use base::Optional when available.
std::unique_ptr<DisplayResourceProvider::ScopedSamplerGL> v_plane_lock;
if (uv_texture_mode == UV_TEXTURE_MODE_U_V) {
v_plane_lock.reset(new DisplayResourceProvider::ScopedSamplerGL(
resource_provider_, quad->v_plane_resource_id(), GL_TEXTURE3,
GL_LINEAR));
DCHECK_EQ(y_plane_lock.target(), v_plane_lock->target());
DCHECK_EQ(y_plane_lock.color_space(), v_plane_lock->color_space());
}
std::unique_ptr<DisplayResourceProvider::ScopedSamplerGL> a_plane_lock;
if (alpha_texture_mode == YUV_HAS_ALPHA_TEXTURE) {
a_plane_lock.reset(new DisplayResourceProvider::ScopedSamplerGL(
resource_provider_, quad->a_plane_resource_id(), GL_TEXTURE4,
GL_LINEAR));
DCHECK_EQ(y_plane_lock.target(), a_plane_lock->target());
}
// All planes must have the same sampler type.
SamplerType sampler = SamplerTypeFromTextureTarget(y_plane_lock.target());
SetUseProgram(
ProgramKey::YUVVideo(tex_coord_precision, sampler, alpha_texture_mode,
uv_texture_mode, tint_gl_composited_content_),
src_color_space, dst_color_space);
if (current_program_->tint_color_matrix_location() != -1) {
auto matrix = cc::DebugColors::TintCompositedContentColorTransformMatrix();
gl_->UniformMatrix4fv(current_program_->tint_color_matrix_location(), 1,
false, matrix.data());
}
gfx::SizeF ya_tex_scale(1.0f, 1.0f);
gfx::SizeF uv_tex_scale(1.0f, 1.0f);
if (sampler != SAMPLER_TYPE_2D_RECT) {
DCHECK(!quad->ya_tex_size.IsEmpty());
DCHECK(!quad->uv_tex_size.IsEmpty());
ya_tex_scale = gfx::SizeF(1.0f / quad->ya_tex_size.width(),
1.0f / quad->ya_tex_size.height());
uv_tex_scale = gfx::SizeF(1.0f / quad->uv_tex_size.width(),
1.0f / quad->uv_tex_size.height());
}
float ya_vertex_tex_translate_x =
quad->ya_tex_coord_rect.x() * ya_tex_scale.width();
float ya_vertex_tex_translate_y =
quad->ya_tex_coord_rect.y() * ya_tex_scale.height();
float ya_vertex_tex_scale_x =
quad->ya_tex_coord_rect.width() * ya_tex_scale.width();
float ya_vertex_tex_scale_y =
quad->ya_tex_coord_rect.height() * ya_tex_scale.height();
float uv_vertex_tex_translate_x =
quad->uv_tex_coord_rect.x() * uv_tex_scale.width();
float uv_vertex_tex_translate_y =
quad->uv_tex_coord_rect.y() * uv_tex_scale.height();
float uv_vertex_tex_scale_x =
quad->uv_tex_coord_rect.width() * uv_tex_scale.width();
float uv_vertex_tex_scale_y =
quad->uv_tex_coord_rect.height() * uv_tex_scale.height();
gl_->Uniform2f(current_program_->ya_tex_scale_location(),
ya_vertex_tex_scale_x, ya_vertex_tex_scale_y);
gl_->Uniform2f(current_program_->ya_tex_offset_location(),
ya_vertex_tex_translate_x, ya_vertex_tex_translate_y);
gl_->Uniform2f(current_program_->uv_tex_scale_location(),
uv_vertex_tex_scale_x, uv_vertex_tex_scale_y);
gl_->Uniform2f(current_program_->uv_tex_offset_location(),
uv_vertex_tex_translate_x, uv_vertex_tex_translate_y);
gfx::RectF ya_clamp_rect(ya_vertex_tex_translate_x, ya_vertex_tex_translate_y,
ya_vertex_tex_scale_x, ya_vertex_tex_scale_y);
ya_clamp_rect.Inset(0.5f * ya_tex_scale.width(),
0.5f * ya_tex_scale.height());
gfx::RectF uv_clamp_rect(uv_vertex_tex_translate_x, uv_vertex_tex_translate_y,
uv_vertex_tex_scale_x, uv_vertex_tex_scale_y);
uv_clamp_rect.Inset(0.5f * uv_tex_scale.width(),
0.5f * uv_tex_scale.height());
gl_->Uniform4f(current_program_->ya_clamp_rect_location(), ya_clamp_rect.x(),
ya_clamp_rect.y(), ya_clamp_rect.right(),
ya_clamp_rect.bottom());
gl_->Uniform4f(current_program_->uv_clamp_rect_location(), uv_clamp_rect.x(),
uv_clamp_rect.y(), uv_clamp_rect.right(),
uv_clamp_rect.bottom());
gl_->Uniform1i(current_program_->y_texture_location(), 1);
if (uv_texture_mode == UV_TEXTURE_MODE_UV) {
gl_->Uniform1i(current_program_->uv_texture_location(), 2);
} else {
gl_->Uniform1i(current_program_->u_texture_location(), 2);
gl_->Uniform1i(current_program_->v_texture_location(), 3);
}
if (alpha_texture_mode == YUV_HAS_ALPHA_TEXTURE)
gl_->Uniform1i(current_program_->a_texture_location(), 4);
gl_->Uniform1f(current_program_->resource_multiplier_location(),
quad->resource_multiplier);
gl_->Uniform1f(current_program_->resource_offset_location(),
quad->resource_offset);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
auto tile_rect = gfx::RectF(quad->rect);
SetShaderOpacity(quad->shared_quad_state->opacity);
if (!clip_region) {
DrawQuadGeometry(current_frame()->projection_matrix,
quad->shared_quad_state->quad_to_target_transform,
tile_rect);
} else {
float uvs[8] = {0};
GetScaledUVs(quad->visible_rect, clip_region, uvs);
gfx::QuadF region_quad = *clip_region;
region_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
region_quad -= gfx::Vector2dF(0.5f, 0.5f);
DrawQuadGeometryClippedByQuadF(
quad->shared_quad_state->quad_to_target_transform, tile_rect,
region_quad, uvs);
}
}
void GLRenderer::DrawStreamVideoQuad(const StreamVideoDrawQuad* quad,
const gfx::QuadF* clip_region) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
DCHECK(output_surface_->context_provider()
->ContextCapabilities()
.egl_image_external);
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, settings_->highp_threshold_min,
quad->shared_quad_state->visible_quad_layer_rect.size());
DisplayResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->resource_id());
SetUseProgram(ProgramKey::VideoStream(tex_coord_precision),
lock.color_space(),
current_frame()->current_render_pass->color_space);
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id());
static float gl_matrix[16];
ToGLMatrix(&gl_matrix[0], quad->matrix);
gl_->UniformMatrix4fvStreamTextureMatrixCHROMIUM(
current_program_->tex_matrix_location(), false, gl_matrix);
SetShaderOpacity(quad->shared_quad_state->opacity);
gfx::Size texture_size = lock.size();
gfx::Vector2dF uv = quad->matrix.Scale2d();
gfx::RectF uv_visible_rect(0, 0, uv.x(), uv.y());
const SamplerType sampler = SamplerTypeFromTextureTarget(lock.target());
Float4 tex_clamp_rect = UVClampRect(uv_visible_rect, texture_size, sampler);
gl_->Uniform4f(current_program_->tex_clamp_rect_location(),
tex_clamp_rect.data[0], tex_clamp_rect.data[1],
tex_clamp_rect.data[2], tex_clamp_rect.data[3]);
if (!clip_region) {
DrawQuadGeometry(current_frame()->projection_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect));
} else {
gfx::QuadF region_quad(*clip_region);
region_quad.Scale(1.0f / quad->rect.width(), 1.0f / quad->rect.height());
region_quad -= gfx::Vector2dF(0.5f, 0.5f);
float uvs[8] = {0};
GetScaledUVs(quad->visible_rect, clip_region, uvs);
DrawQuadGeometryClippedByQuadF(
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect), region_quad, uvs);
}
}
void GLRenderer::FlushTextureQuadCache(BoundGeometry flush_binding) {
// Check to see if we have anything to draw.
if (draw_cache_.is_empty)
return;
PrepareGeometry(flush_binding);
// Set the correct blending mode.
SetBlendEnabled(draw_cache_.needs_blending);
// Assume the current active textures is 0.
DisplayResourceProvider::ScopedSamplerGL locked_quad(
resource_provider_, draw_cache_.resource_id,
draw_cache_.nearest_neighbor ? GL_NEAREST : GL_LINEAR);
// Bind the program to the GL state.
SetUseProgram(draw_cache_.program_key, locked_quad.color_space(),
current_frame()->current_render_pass->color_space);
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(locked_quad.target(), locked_quad.texture_id());
static_assert(sizeof(Float4) == 4 * sizeof(float),
"Float4 struct should be densely packed");
static_assert(sizeof(Float16) == 16 * sizeof(float),
"Float16 struct should be densely packed");
// Upload the tranforms for both points and uvs.
gl_->UniformMatrix4fv(
current_program_->matrix_location(),
static_cast<int>(draw_cache_.matrix_data.size()), false,
reinterpret_cast<float*>(&draw_cache_.matrix_data.front()));
gl_->Uniform4fv(current_program_->vertex_tex_transform_location(),
static_cast<int>(draw_cache_.uv_xform_data.size()),
reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front()));
if (current_program_->tint_color_matrix_location() != -1) {
auto matrix = cc::DebugColors::TintCompositedContentColorTransformMatrix();
gl_->UniformMatrix4fv(current_program_->tint_color_matrix_location(), 1,
false, matrix.data());
}
if (current_program_->tex_clamp_rect_location() != -1) {
// Draw batching is not allowed with texture clamping.
DCHECK_EQ(1u, draw_cache_.matrix_data.size());
gl_->Uniform4f(current_program_->tex_clamp_rect_location(),
draw_cache_.tex_clamp_rect_data.data[0],
draw_cache_.tex_clamp_rect_data.data[1],
draw_cache_.tex_clamp_rect_data.data[2],
draw_cache_.tex_clamp_rect_data.data[3]);
}
if (draw_cache_.background_color != SK_ColorTRANSPARENT) {
Float4 background_color =
PremultipliedColor(draw_cache_.background_color, 1.f);
gl_->Uniform4fv(current_program_->background_color_location(), 1,
background_color.data);
}
gl_->Uniform1fv(
current_program_->vertex_opacity_location(),
static_cast<int>(draw_cache_.vertex_opacity_data.size()),
static_cast<float*>(&draw_cache_.vertex_opacity_data.front()));
DCHECK_LE(draw_cache_.matrix_data.size(),
static_cast<size_t>(std::numeric_limits<int>::max()) / 6u);
// Draw the quads!
gl_->DrawElements(GL_TRIANGLES,
6 * static_cast<int>(draw_cache_.matrix_data.size()),
GL_UNSIGNED_SHORT, nullptr);
num_triangles_drawn_ += 2 * static_cast<int>(draw_cache_.matrix_data.size());
// Clear the cache.
draw_cache_.is_empty = true;
draw_cache_.resource_id = -1;
draw_cache_.uv_xform_data.resize(0);
draw_cache_.vertex_opacity_data.resize(0);
draw_cache_.matrix_data.resize(0);
draw_cache_.tex_clamp_rect_data = Float4();
// If we had a clipped binding, prepare the shared binding for the
// next inserts.
if (flush_binding == CLIPPED_BINDING) {
PrepareGeometry(SHARED_BINDING);
}
}
void GLRenderer::EnqueueTextureQuad(const TextureDrawQuad* quad,
const gfx::QuadF* clip_region) {
// If we have a clip_region then we have to render the next quad
// with dynamic geometry, therefore we must flush all pending
// texture quads.
if (clip_region) {
// We send in false here because we want to flush what's currently in the
// queue using the shared_geometry and not clipped_geometry
FlushTextureQuadCache(SHARED_BINDING);
}
DisplayResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->resource_id());
// ScopedReadLockGL contains the correct texture size, even when
// quad->resource_size_in_pixels() is empty.
const gfx::Size texture_size = lock.size();
TexCoordPrecision tex_coord_precision =
TexCoordPrecisionRequired(gl_, &highp_threshold_cache_,
settings_->highp_threshold_min, texture_size);
const SamplerType sampler = SamplerTypeFromTextureTarget(lock.target());
bool need_tex_clamp_rect = !quad->resource_size_in_pixels().IsEmpty() &&
(quad->uv_top_left != gfx::PointF(0, 0) ||
quad->uv_bottom_right != gfx::PointF(1, 1));
ProgramKey program_key = ProgramKey::Texture(
tex_coord_precision, sampler,
quad->premultiplied_alpha ? PREMULTIPLIED_ALPHA : NON_PREMULTIPLIED_ALPHA,
quad->background_color != SK_ColorTRANSPARENT, need_tex_clamp_rect,
tint_gl_composited_content_);
int resource_id = quad->resource_id();
size_t max_quads = StaticGeometryBinding::NUM_QUADS;
if (draw_cache_.is_empty || draw_cache_.program_key != program_key ||
draw_cache_.resource_id != resource_id ||
draw_cache_.needs_blending != quad->ShouldDrawWithBlending() ||
draw_cache_.nearest_neighbor != quad->nearest_neighbor ||
draw_cache_.background_color != quad->background_color ||
draw_cache_.matrix_data.size() >= max_quads) {
FlushTextureQuadCache(SHARED_BINDING);
draw_cache_.is_empty = false;
draw_cache_.program_key = program_key;
draw_cache_.resource_id = resource_id;
draw_cache_.needs_blending = quad->ShouldDrawWithBlending();
draw_cache_.nearest_neighbor = quad->nearest_neighbor;
draw_cache_.background_color = quad->background_color;
}
// Generate the uv-transform
auto uv_transform = UVTransform(quad);
if (sampler == SAMPLER_TYPE_2D_RECT) {
// Un-normalize the texture coordiantes for rectangle targets.
uv_transform.data[0] *= texture_size.width();
uv_transform.data[2] *= texture_size.width();
uv_transform.data[1] *= texture_size.height();
uv_transform.data[3] *= texture_size.height();
}
draw_cache_.uv_xform_data.push_back(uv_transform);
if (need_tex_clamp_rect) {
DCHECK_EQ(1u, draw_cache_.uv_xform_data.size());
DCHECK_EQ(texture_size.ToString(),
quad->resource_size_in_pixels().ToString());
DCHECK(!texture_size.IsEmpty());
gfx::RectF uv_visible_rect(
quad->uv_top_left.x(), quad->uv_top_left.y(),
quad->uv_bottom_right.x() - quad->uv_top_left.x(),
quad->uv_bottom_right.y() - quad->uv_top_left.y());
Float4 tex_clamp_rect = UVClampRect(uv_visible_rect, texture_size, sampler);
draw_cache_.tex_clamp_rect_data = tex_clamp_rect;
}
// Generate the vertex opacity
const float opacity = quad->shared_quad_state->opacity;
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity);
// Generate the transform matrix
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect));
quad_rect_matrix = current_frame()->projection_matrix * quad_rect_matrix;
Float16 m;
quad_rect_matrix.matrix().asColMajorf(m.data);
draw_cache_.matrix_data.push_back(m);
if (clip_region) {
gfx::QuadF scaled_region;
if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) {
scaled_region = SharedGeometryQuad().BoundingBox();
}
// Both the scaled region and the SharedGeomtryQuad are in the space
// -0.5->0.5. We need to move that to the space 0->1.
float uv[8];
uv[0] = scaled_region.p1().x() + 0.5f;
uv[1] = scaled_region.p1().y() + 0.5f;
uv[2] = scaled_region.p2().x() + 0.5f;
uv[3] = scaled_region.p2().y() + 0.5f;
uv[4] = scaled_region.p3().x() + 0.5f;
uv[5] = scaled_region.p3().y() + 0.5f;
uv[6] = scaled_region.p4().x() + 0.5f;
uv[7] = scaled_region.p4().y() + 0.5f;
PrepareGeometry(CLIPPED_BINDING);
clipped_geometry_->InitializeCustomQuadWithUVs(scaled_region, uv);
FlushTextureQuadCache(CLIPPED_BINDING);
} else if (need_tex_clamp_rect) {
FlushTextureQuadCache(SHARED_BINDING);
}
}
void GLRenderer::FinishDrawingFrame() {
if (use_sync_query_) {
sync_queries_.EndCurrentFrame();
}
swap_buffer_rect_.Union(current_frame()->root_damage_rect);
if (overdraw_feedback_)
FlushOverdrawFeedback(swap_buffer_rect_);
if (use_swap_with_bounds_)
swap_content_bounds_ = current_frame()->root_content_bounds;
copier_.FreeUnusedCachedResources();
current_framebuffer_texture_ = nullptr;
gl_->Disable(GL_BLEND);
blend_shadow_ = false;
ScheduleCALayers();
ScheduleDCLayers();
ScheduleOverlays();
TRACE_COUNTER1(TRACE_DISABLED_BY_DEFAULT("viz.triangles"), "Triangles Drawn",
num_triangles_drawn_);
}
void GLRenderer::FinishDrawingQuadList() {
FlushTextureQuadCache(SHARED_BINDING);
}
void GLRenderer::GenerateMipmap() {
DCHECK(current_framebuffer_texture_);
current_framebuffer_texture_->set_generate_mipmap();
}
void GLRenderer::SetEnableDCLayers(bool enable) {
gl_->SetEnableDCLayersCHROMIUM(enable);
}
bool GLRenderer::FlippedFramebuffer() const {
if (force_drawing_frame_framebuffer_unflipped_)
return false;
if (current_frame()->current_render_pass != current_frame()->root_render_pass)
return true;
return FlippedRootFramebuffer();
}
bool GLRenderer::FlippedRootFramebuffer() const {
// GL is normally flipped, so a flipped output results in an unflipping.
return !output_surface_->capabilities().flipped_output_surface;
}
void GLRenderer::EnsureScissorTestEnabled() {
if (is_scissor_enabled_)
return;
FlushTextureQuadCache(SHARED_BINDING);
gl_->Enable(GL_SCISSOR_TEST);
is_scissor_enabled_ = true;
}
void GLRenderer::EnsureScissorTestDisabled() {
if (!is_scissor_enabled_)
return;
FlushTextureQuadCache(SHARED_BINDING);
gl_->Disable(GL_SCISSOR_TEST);
is_scissor_enabled_ = false;
}
void GLRenderer::CopyDrawnRenderPass(
std::unique_ptr<CopyOutputRequest> request) {
TRACE_EVENT0("viz", "GLRenderer::CopyDrawnRenderPass");
if (overdraw_feedback_)
FlushOverdrawFeedback(current_frame()->current_render_pass->output_rect);
GLuint framebuffer_texture = 0;
gfx::Size framebuffer_texture_size;
if (current_framebuffer_texture_) {
framebuffer_texture = current_framebuffer_texture_->id();
framebuffer_texture_size = current_framebuffer_texture_->size();
}
copier_.CopyFromTextureOrFramebuffer(
std::move(request), current_frame()->current_render_pass->output_rect,
GetFramebufferCopyTextureFormat(), framebuffer_texture,
framebuffer_texture_size, FlippedFramebuffer(),
current_frame()->current_render_pass->color_space);
// The copier modified texture/framebuffer bindings, shader programs, and
// other GL state; and so this must be restored before continuing.
RestoreGLState();
// CopyDrawnRenderPass() can change the binding of the framebuffer target as
// a part of its usual scaling and readback operations. It will break next
// CopyDrawnRenderPass() call for the root render pass. Therefore, make sure
// to restore the correct framebuffer between readbacks. (Even if it did
// not, a Mac-specific bug requires this workaround: http://crbug.com/99393)
const auto* render_pass = current_frame()->current_render_pass;
if (render_pass == current_frame()->root_render_pass)
BindFramebufferToOutputSurface();
}
void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) {
transform.matrix().asColMajorf(gl_matrix);
}
void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad) {
if (!current_program_ || current_program_->quad_location() == -1)
return;
float gl_quad[8];
gl_quad[0] = quad.p1().x();
gl_quad[1] = quad.p1().y();
gl_quad[2] = quad.p2().x();
gl_quad[3] = quad.p2().y();
gl_quad[4] = quad.p3().x();
gl_quad[5] = quad.p3().y();
gl_quad[6] = quad.p4().x();
gl_quad[7] = quad.p4().y();
gl_->Uniform2fv(current_program_->quad_location(), 4, gl_quad);
}
void GLRenderer::SetShaderOpacity(float opacity) {
if (!current_program_ || current_program_->alpha_location() == -1)
return;
gl_->Uniform1f(current_program_->alpha_location(), opacity);
}
void GLRenderer::SetShaderMatrix(const gfx::Transform& transform) {
if (!current_program_ || current_program_->matrix_location() == -1)
return;
float gl_matrix[16];
ToGLMatrix(gl_matrix, transform);
gl_->UniformMatrix4fv(current_program_->matrix_location(), 1, false,
gl_matrix);
}
void GLRenderer::SetShaderColor(SkColor color, float opacity) {
if (!current_program_ || current_program_->color_location() == -1)
return;
Float4 float_color = PremultipliedColor(color, opacity);
gl_->Uniform4fv(current_program_->color_location(), 1, float_color.data);
}
void GLRenderer::SetStencilEnabled(bool enabled) {
if (enabled == stencil_shadow_)
return;
if (enabled)
gl_->Enable(GL_STENCIL_TEST);
else
gl_->Disable(GL_STENCIL_TEST);
stencil_shadow_ = enabled;
}
void GLRenderer::SetBlendEnabled(bool enabled) {
if (enabled == blend_shadow_)
return;
if (enabled)
gl_->Enable(GL_BLEND);
else
gl_->Disable(GL_BLEND);
blend_shadow_ = enabled;
}
void GLRenderer::DrawQuadGeometryClippedByQuadF(
const gfx::Transform& draw_transform,
const gfx::RectF& quad_rect,
const gfx::QuadF& clipping_region_quad,
const float* uvs) {
PrepareGeometry(CLIPPED_BINDING);
if (uvs) {
clipped_geometry_->InitializeCustomQuadWithUVs(clipping_region_quad, uvs);
} else {
clipped_geometry_->InitializeCustomQuad(clipping_region_quad);
}
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect);
SetShaderMatrix(current_frame()->projection_matrix * quad_rect_matrix);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT,
reinterpret_cast<const void*>(0));
num_triangles_drawn_ += 2;
}
void GLRenderer::DrawQuadGeometry(const gfx::Transform& projection_matrix,
const gfx::Transform& draw_transform,
const gfx::RectF& quad_rect) {
PrepareGeometry(SHARED_BINDING);
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect);
SetShaderMatrix(projection_matrix * quad_rect_matrix);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, nullptr);
num_triangles_drawn_ += 2;
}
void GLRenderer::DrawQuadGeometryWithAA(const DrawQuad* quad,
gfx::QuadF* local_quad,
const gfx::Rect& tile_rect) {
DCHECK(local_quad);
// Normalize to tile_rect.
local_quad->Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderQuadF(*local_quad);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
DrawQuadGeometry(current_frame()->projection_matrix,
quad->shared_quad_state->quad_to_target_transform,
CenteredRect(tile_rect));
}
void GLRenderer::SwapBuffers(std::vector<ui::LatencyInfo> latency_info) {
DCHECK(visible_);
TRACE_EVENT0("viz", "GLRenderer::SwapBuffers");
// We're done! Time to swapbuffers!
gfx::Size surface_size = surface_size_for_swap_buffers();
OutputSurfaceFrame output_frame;
output_frame.latency_info = std::move(latency_info);
output_frame.size = surface_size;
if (use_swap_with_bounds_) {
output_frame.content_bounds = std::move(swap_content_bounds_);
} else if (use_partial_swap_) {
// If supported, we can save significant bandwidth by only swapping the
// damaged/scissored region (clamped to the viewport).
swap_buffer_rect_.Intersect(gfx::Rect(surface_size));
int flipped_y_pos_of_rect_bottom = surface_size.height() -
swap_buffer_rect_.y() -
swap_buffer_rect_.height();
output_frame.sub_buffer_rect =
gfx::Rect(swap_buffer_rect_.x(),
FlippedRootFramebuffer() ? flipped_y_pos_of_rect_bottom
: swap_buffer_rect_.y(),
swap_buffer_rect_.width(), swap_buffer_rect_.height());
} else if (swap_buffer_rect_.IsEmpty() && allow_empty_swap_) {
output_frame.sub_buffer_rect = swap_buffer_rect_;
}
// Record resources from viz clients that have been shipped as overlays to the
// gpu together.
swapping_overlay_resources_.push_back(std::move(pending_overlay_resources_));
pending_overlay_resources_.clear();
if (settings_->release_overlay_resources_after_gpu_query) {
// Record RenderPass textures that have been shipped as overlays to the gpu
// together.
displayed_overlay_textures_.push_back(
std::move(awaiting_swap_overlay_textures_));
awaiting_swap_overlay_textures_.clear();
} else {
// If |displayed_overlay_textures_| is appended to in this case then
// SwapBuffersComplete needs to be extended to handle it.
DCHECK(awaiting_swap_overlay_textures_.empty());
}
output_surface_->SwapBuffers(std::move(output_frame));
swap_buffer_rect_ = gfx::Rect();
}
void GLRenderer::SwapBuffersComplete() {
if (settings_->release_overlay_resources_after_gpu_query) {
// Once a resource has been swap-ACKed, send a query to the GPU process to
// ask if the resource is no longer being consumed by the system compositor.
// The response will come with the next swap-ACK.
if (!swapping_overlay_resources_.empty()) {
for (OverlayResourceLock& lock : swapping_overlay_resources_.front()) {
unsigned texture = lock->texture_id();
if (swapped_and_acked_overlay_resources_.find(texture) ==
swapped_and_acked_overlay_resources_.end()) {
swapped_and_acked_overlay_resources_[texture] = std::move(lock);
}
}
swapping_overlay_resources_.pop_front();
}
if (!displayed_overlay_textures_.empty()) {
for (auto& overlay : displayed_overlay_textures_.front())
awaiting_release_overlay_textures_.push_back(std::move(overlay));
displayed_overlay_textures_.erase(displayed_overlay_textures_.begin());
}
size_t query_texture_count = swapped_and_acked_overlay_resources_.size() +
awaiting_release_overlay_textures_.size();
if (query_texture_count) {
std::vector<uint32_t> query_texture_ids;
query_texture_ids.reserve(query_texture_count);
for (auto& pair : swapped_and_acked_overlay_resources_)
query_texture_ids.push_back(pair.first);
for (auto& overlay : awaiting_release_overlay_textures_)
query_texture_ids.push_back(overlay->texture.id());
// We query for *all* outstanding texture ids, even if we previously
// queried, as we will not hear back about things becoming available
// until after we query again.
gl_->ScheduleCALayerInUseQueryCHROMIUM(query_texture_count,
query_texture_ids.data());
}
} else {
// If a query is not needed to release the overlay buffers, we can assume
// that once a swap buffer has completed we can remove the oldest buffers
// from the queue, but only once we've swapped another frame afterward.
if (swapping_overlay_resources_.size() > 1) {
DisplayResourceProvider::ScopedBatchReturnResources returner(
resource_provider_);
swapping_overlay_resources_.pop_front();
}
// If |displayed_overlay_textures_| has a non-empty member that means we're
// sending RenderPassDrawQuads as an overlay. This is only supported for
// CALayers now, where |release_overlay_resources_after_gpu_query| will be
// true. In order to support them here, the OverlayTextures would need to
// move to |awaiting_release_overlay_textures_| and stay there until the
// ResourceFence that was in use for the frame they were submitted is
// passed.
DCHECK(displayed_overlay_textures_.empty());
}
}
void GLRenderer::DidReceiveTextureInUseResponses(
const gpu::TextureInUseResponses& responses) {
DCHECK(settings_->release_overlay_resources_after_gpu_query);
DisplayResourceProvider::ScopedBatchReturnResources returner(
resource_provider_);
for (const gpu::TextureInUseResponse& response : responses) {
if (response.in_use)
continue;
// Returned texture ids may be for resources from clients of the
// display compositor, in |swapped_and_acked_overlay_resources_|. In that
// case we remove the lock from the map, allowing them to be returned to the
// client if the resource has been deleted from the DisplayResourceProvider.
if (swapped_and_acked_overlay_resources_.erase(response.texture))
continue;
// If not, then they would be a RenderPass copy texture, which is held in
// |awaiting_release_overlay_textures_|. We move it back to the available
// texture list to use it for the next frame.
auto it = std::find_if(
awaiting_release_overlay_textures_.begin(),
awaiting_release_overlay_textures_.end(),
[&response](const std::unique_ptr<OverlayTexture>& overlay) {
return overlay->texture.id() == response.texture;
});
if (it != awaiting_release_overlay_textures_.end()) {
// Mark the OverlayTexture as newly returned to the available set.
(*it)->frames_waiting_for_reuse = 0;
available_overlay_textures_.push_back(std::move(*it));
awaiting_release_overlay_textures_.erase(it);
}
}
color_lut_cache_.Swap();
}
void GLRenderer::BindFramebufferToOutputSurface() {
current_framebuffer_texture_ = nullptr;
output_surface_->BindFramebuffer();
tint_gl_composited_content_ = settings_->tint_gl_composited_content;
if (overdraw_feedback_) {
// Output surfaces that require an external stencil test should not allow
// overdraw feedback by setting |supports_stencil| to false.
DCHECK(!output_surface_->HasExternalStencilTest());
SetupOverdrawFeedback();
SetStencilEnabled(true);
} else if (output_surface_->HasExternalStencilTest()) {
output_surface_->ApplyExternalStencil();
SetStencilEnabled(true);
} else {
SetStencilEnabled(false);
}
}
void GLRenderer::BindFramebufferToTexture(const RenderPassId render_pass_id) {
tint_gl_composited_content_ = false;
gl_->BindFramebuffer(GL_FRAMEBUFFER, offscreen_framebuffer_id_);
auto contents_texture_it = render_pass_textures_.find(render_pass_id);
current_framebuffer_texture_ = &contents_texture_it->second;
GLuint texture_id = current_framebuffer_texture_->id();
DCHECK(texture_id);
gl_->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
texture_id, 0);
if (overdraw_feedback_) {
if (!offscreen_stencil_renderbuffer_id_)
gl_->GenRenderbuffers(1, &offscreen_stencil_renderbuffer_id_);
if (current_framebuffer_texture_->size() !=
offscreen_stencil_renderbuffer_size_) {
gl_->BindRenderbuffer(GL_RENDERBUFFER,
offscreen_stencil_renderbuffer_id_);
gl_->RenderbufferStorage(GL_RENDERBUFFER, GL_STENCIL_INDEX8,
current_framebuffer_texture_->size().width(),
current_framebuffer_texture_->size().height());
gl_->BindRenderbuffer(GL_RENDERBUFFER, 0);
offscreen_stencil_renderbuffer_size_ =
current_framebuffer_texture_->size();
}
gl_->FramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
GL_RENDERBUFFER,
offscreen_stencil_renderbuffer_id_);
}
DCHECK(gl_->CheckFramebufferStatus(GL_FRAMEBUFFER) ==
GL_FRAMEBUFFER_COMPLETE ||
IsContextLost());
if (overdraw_feedback_) {
SetupOverdrawFeedback();
SetStencilEnabled(true);
} else {
SetStencilEnabled(false);
}
}
void GLRenderer::SetScissorTestRect(const gfx::Rect& scissor_rect) {
EnsureScissorTestEnabled();
// Don't unnecessarily ask the context to change the scissor, because it
// may cause undesired GPU pipeline flushes.
if (scissor_rect == scissor_rect_)
return;
scissor_rect_ = scissor_rect;
FlushTextureQuadCache(SHARED_BINDING);
gl_->Scissor(scissor_rect.x(), scissor_rect.y(), scissor_rect.width(),
scissor_rect.height());
}
void GLRenderer::SetViewport() {
gl_->Viewport(current_window_space_viewport_.x(),
current_window_space_viewport_.y(),
current_window_space_viewport_.width(),
current_window_space_viewport_.height());
}
void GLRenderer::InitializeSharedObjects() {
TRACE_EVENT0("viz", "GLRenderer::InitializeSharedObjects");
// Create an FBO for doing offscreen rendering.
gl_->GenFramebuffers(1, &offscreen_framebuffer_id_);
shared_geometry_ =
std::make_unique<StaticGeometryBinding>(gl_, QuadVertexRect());
clipped_geometry_ = std::make_unique<DynamicGeometryBinding>(gl_);
}
void GLRenderer::PrepareGeometry(BoundGeometry binding) {
if (binding == bound_geometry_) {
return;
}
switch (binding) {
case SHARED_BINDING:
shared_geometry_->PrepareForDraw();
break;
case CLIPPED_BINDING:
clipped_geometry_->PrepareForDraw();
break;
case NO_BINDING:
break;
}
bound_geometry_ = binding;
}
void GLRenderer::SetUseProgram(const ProgramKey& program_key_no_color,
const gfx::ColorSpace& src_color_space,
const gfx::ColorSpace& dst_color_space) {
DCHECK(dst_color_space.IsValid());
ProgramKey program_key = program_key_no_color;
const gfx::ColorTransform* color_transform =
GetColorTransform(src_color_space, dst_color_space);
program_key.SetColorTransform(color_transform);
const bool is_root_render_pass =
current_frame()->current_render_pass == current_frame()->root_render_pass;
const SkMatrix44& output_color_matrix = output_surface_->color_matrix();
const bool has_output_color_matrix =
is_root_render_pass && !output_color_matrix.isIdentity();
program_key.set_has_output_color_matrix(has_output_color_matrix);
// Create and set the program if needed.
std::unique_ptr<Program>& program = program_cache_[program_key];
if (!program) {
program.reset(new Program);
program->Initialize(output_surface_->context_provider(), program_key);
}
DCHECK(program);
if (current_program_ != program.get()) {
current_program_ = program.get();
gl_->UseProgram(current_program_->program());
}
if (!current_program_->initialized()) {
DCHECK(IsContextLost());
return;
}
// Set uniforms that are common to all programs.
if (current_program_->sampler_location() != -1)
gl_->Uniform1i(current_program_->sampler_location(), 0);
if (current_program_->viewport_location() != -1) {
float viewport[4] = {
static_cast<float>(current_window_space_viewport_.x()),
static_cast<float>(current_window_space_viewport_.y()),
static_cast<float>(current_window_space_viewport_.width()),
static_cast<float>(current_window_space_viewport_.height()),
};
gl_->Uniform4fv(current_program_->viewport_location(), 1, viewport);
}
if (current_program_->lut_texture_location() != -1) {
ColorLUTCache::LUT lut = color_lut_cache_.GetLUT(color_transform);
gl_->ActiveTexture(GL_TEXTURE5);
gl_->BindTexture(GL_TEXTURE_2D, lut.texture);
gl_->Uniform1i(current_program_->lut_texture_location(), 5);
gl_->Uniform1f(current_program_->lut_size_location(), lut.size);
gl_->ActiveTexture(GL_TEXTURE0);
}
if (has_output_color_matrix) {
DCHECK_NE(current_program_->output_color_matrix_location(), -1);
float matrix[16];
output_color_matrix.asColMajorf(matrix);
gl_->UniformMatrix4fv(current_program_->output_color_matrix_location(), 1,
false, matrix);
}
}
const Program* GLRenderer::GetProgramIfInitialized(
const ProgramKey& desc) const {
const auto found = program_cache_.find(desc);
if (found == program_cache_.end())
return nullptr;
return found->second.get();
}
const gfx::ColorTransform* GLRenderer::GetColorTransform(
const gfx::ColorSpace& src,
const gfx::ColorSpace& dst) {
std::unique_ptr<gfx::ColorTransform>& transform =
color_transform_cache_[dst][src];
if (!transform) {
transform = gfx::ColorTransform::NewColorTransform(
src, dst, gfx::ColorTransform::Intent::INTENT_PERCEPTUAL);
}
return transform.get();
}
void GLRenderer::CleanupSharedObjects() {
shared_geometry_ = nullptr;
gl_->ReleaseShaderCompiler();
for (auto& iter : program_cache_)
iter.second->Cleanup(gl_);
program_cache_.clear();
color_transform_cache_.clear();
if (offscreen_framebuffer_id_)
gl_->DeleteFramebuffers(1, &offscreen_framebuffer_id_);
if (offscreen_stencil_renderbuffer_id_)
gl_->DeleteRenderbuffers(1, &offscreen_stencil_renderbuffer_id_);
}
void GLRenderer::ReinitializeGLState() {
is_scissor_enabled_ = false;
scissor_rect_ = gfx::Rect();
stencil_shadow_ = false;
blend_shadow_ = true;
current_program_ = nullptr;
RestoreGLState();
}
void GLRenderer::RestoreGLState() {
// This restores the current GLRenderer state to the GL context.
bound_geometry_ = NO_BINDING;
PrepareGeometry(SHARED_BINDING);
gl_->Disable(GL_DEPTH_TEST);
gl_->Disable(GL_CULL_FACE);
gl_->ColorMask(true, true, true, true);
gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
gl_->ActiveTexture(GL_TEXTURE0);
if (current_program_)
gl_->UseProgram(current_program_->program());
if (stencil_shadow_)
gl_->Enable(GL_STENCIL_TEST);
else
gl_->Disable(GL_STENCIL_TEST);
if (blend_shadow_)
gl_->Enable(GL_BLEND);
else
gl_->Disable(GL_BLEND);
if (is_scissor_enabled_)
gl_->Enable(GL_SCISSOR_TEST);
else
gl_->Disable(GL_SCISSOR_TEST);
gl_->Scissor(scissor_rect_.x(), scissor_rect_.y(), scissor_rect_.width(),
scissor_rect_.height());
}
bool GLRenderer::IsContextLost() {
return gl_->GetGraphicsResetStatusKHR() != GL_NO_ERROR;
}
void GLRenderer::ScheduleCALayers() {
// The use of OverlayTextures for RenderPasses is only supported on the code
// paths for |release_overlay_resources_after_gpu_query| at the moment. See
// SwapBuffersComplete for notes on the missing support for other paths. This
// method uses ScheduleRenderPassDrawQuad to send RenderPass outputs as
// overlays, so it can only be used because this setting is true.
if (!settings_->release_overlay_resources_after_gpu_query)
return;
scoped_refptr<CALayerOverlaySharedState> shared_state;
size_t copied_render_pass_count = 0;
for (const CALayerOverlay& ca_layer_overlay :
current_frame()->ca_layer_overlay_list) {
if (ca_layer_overlay.rpdq) {
std::unique_ptr<OverlayTexture> overlay_texture =
ScheduleRenderPassDrawQuad(&ca_layer_overlay);
if (overlay_texture)
awaiting_swap_overlay_textures_.push_back(std::move(overlay_texture));
shared_state = nullptr;
++copied_render_pass_count;
continue;
}
ResourceId contents_resource_id = ca_layer_overlay.contents_resource_id;
unsigned texture_id = 0;
if (contents_resource_id) {
pending_overlay_resources_.push_back(
std::make_unique<DisplayResourceProvider::ScopedReadLockGL>(
resource_provider_, contents_resource_id));
texture_id = pending_overlay_resources_.back()->texture_id();
}
GLfloat contents_rect[4] = {
ca_layer_overlay.contents_rect.x(), ca_layer_overlay.contents_rect.y(),
ca_layer_overlay.contents_rect.width(),
ca_layer_overlay.contents_rect.height(),
};
GLfloat bounds_rect[4] = {
ca_layer_overlay.bounds_rect.x(), ca_layer_overlay.bounds_rect.y(),
ca_layer_overlay.bounds_rect.width(),
ca_layer_overlay.bounds_rect.height(),
};
GLboolean is_clipped = ca_layer_overlay.shared_state->is_clipped;
GLfloat clip_rect[4] = {ca_layer_overlay.shared_state->clip_rect.x(),
ca_layer_overlay.shared_state->clip_rect.y(),
ca_layer_overlay.shared_state->clip_rect.width(),
ca_layer_overlay.shared_state->clip_rect.height()};
GLint sorting_context_id =
ca_layer_overlay.shared_state->sorting_context_id;
GLfloat transform[16];
ca_layer_overlay.shared_state->transform.asColMajorf(transform);
unsigned filter = ca_layer_overlay.filter;
if (ca_layer_overlay.shared_state != shared_state) {
shared_state = ca_layer_overlay.shared_state;
gl_->ScheduleCALayerSharedStateCHROMIUM(
ca_layer_overlay.shared_state->opacity, is_clipped, clip_rect,
sorting_context_id, transform);
}
gl_->ScheduleCALayerCHROMIUM(
texture_id, contents_rect, ca_layer_overlay.background_color,
ca_layer_overlay.edge_aa_mask, bounds_rect, filter);
}
ReduceAvailableOverlayTextures();
}
void GLRenderer::ScheduleDCLayers() {
for (DCLayerOverlay& dc_layer_overlay :
current_frame()->dc_layer_overlay_list) {
ResourceId resource_ids[] = {dc_layer_overlay.y_resource_id,
dc_layer_overlay.uv_resource_id};
GLuint texture_ids[2] = {};
size_t i = 0;
for (ResourceId resource_id : resource_ids) {
DCHECK(resource_id);
pending_overlay_resources_.push_back(
std::make_unique<DisplayResourceProvider::ScopedReadLockGL>(
resource_provider_, resource_id));
texture_ids[i++] = pending_overlay_resources_.back()->texture_id();
}
GLuint y_texture_id = texture_ids[0];
GLuint uv_texture_id = texture_ids[1];
DCHECK(y_texture_id && uv_texture_id);
// TODO(sunnyps): Set color space in renderer like we do for tiles.
gl_->SetColorSpaceMetadataCHROMIUM(
y_texture_id,
reinterpret_cast<GLColorSpace>(&dc_layer_overlay.color_space));
int z_order = dc_layer_overlay.z_order;
const gfx::Rect& content_rect = dc_layer_overlay.content_rect;
const gfx::Rect& quad_rect = dc_layer_overlay.quad_rect;
DCHECK(dc_layer_overlay.transform.IsFlat());
const SkMatrix44& transform = dc_layer_overlay.transform.matrix();
bool is_clipped = dc_layer_overlay.is_clipped;
const gfx::Rect& clip_rect = dc_layer_overlay.clip_rect;
unsigned protected_video_type =
static_cast<unsigned>(dc_layer_overlay.protected_video_type);
gl_->ScheduleDCLayerCHROMIUM(
y_texture_id, uv_texture_id, z_order, content_rect.x(),
content_rect.y(), content_rect.width(), content_rect.height(),
quad_rect.x(), quad_rect.y(), quad_rect.width(), quad_rect.height(),
transform.get(0, 0), transform.get(0, 1), transform.get(1, 0),
transform.get(1, 1), transform.get(0, 3), transform.get(1, 3),
is_clipped, clip_rect.x(), clip_rect.y(), clip_rect.width(),
clip_rect.height(), protected_video_type);
}
}
void GLRenderer::ScheduleOverlays() {
if (current_frame()->overlay_list.empty())
return;
OverlayCandidateList& overlays = current_frame()->overlay_list;
for (const auto& overlay_candidate : overlays) {
unsigned texture_id = 0;
if (overlay_candidate.use_output_surface_for_resource) {
texture_id = output_surface_->GetOverlayTextureId();
DCHECK(texture_id || IsContextLost());
} else {
pending_overlay_resources_.push_back(
std::make_unique<DisplayResourceProvider::ScopedReadLockGL>(
resource_provider_, overlay_candidate.resource_id));
texture_id = pending_overlay_resources_.back()->texture_id();
}
context_support_->ScheduleOverlayPlane(
overlay_candidate.plane_z_order, overlay_candidate.transform,
texture_id, ToNearestRect(overlay_candidate.display_rect),
overlay_candidate.uv_rect, !overlay_candidate.is_opaque,
overlay_candidate.gpu_fence_id);
}
}
// This function draws the RenderPassDrawQuad into a temporary
// texture/framebuffer, and then copies the result into an IOSurface. The
// inefficient (but simple) way to do this would be to:
// 1. Allocate a framebuffer the size of the screen.
// 2. Draw using all the normal RPDQ draw logic.
//
// Instead, this method does the following:
// 1. Configure parameters as if drawing to a framebuffer the size of the
// screen. This reuses most of the RPDQ draw logic.
// 2. Update parameters to draw into a framebuffer only as large as needed.
// 3. Fix shader uniforms that were broken by (2).
//
// Then:
// 4. Allocate an IOSurface as the drawing destination.
// 5. Draw the RPDQ.
void GLRenderer::CopyRenderPassDrawQuadToOverlayResource(
const CALayerOverlay* ca_layer_overlay,
std::unique_ptr<OverlayTexture>* overlay_texture,
gfx::RectF* new_bounds) {
// Don't carry over any GL state from previous RenderPass draw operations.
ReinitializeGLState();
auto contents_texture_it =
render_pass_textures_.find(ca_layer_overlay->rpdq->render_pass_id);
DCHECK(contents_texture_it != render_pass_textures_.end());
// Configure parameters as if drawing to a framebuffer the size of the
// screen.
DrawRenderPassDrawQuadParams params;
params.quad = ca_layer_overlay->rpdq;
params.flip_texture = true;
params.contents_texture = &contents_texture_it->second;
params.quad_to_target_transform =
params.quad->shared_quad_state->quad_to_target_transform;
params.tex_coord_rect = params.quad->tex_coord_rect;
// Calculate projection and window matrices using InitializeViewport(). This
// requires creating a dummy DrawingFrame.
{
DrawingFrame dummy_frame;
gfx::Rect frame_rect(current_frame()->device_viewport_size);
force_drawing_frame_framebuffer_unflipped_ = true;
InitializeViewport(&dummy_frame, frame_rect, frame_rect, frame_rect.size());
force_drawing_frame_framebuffer_unflipped_ = false;
params.projection_matrix = dummy_frame.projection_matrix;
params.window_matrix = dummy_frame.window_matrix;
}
// Perform basic initialization with the screen-sized viewport.
if (!InitializeRPDQParameters(&params))
return;
if (!UpdateRPDQWithSkiaFilters(&params))
return;
// |params.dst_rect| now contain values that reflect a potentially increased
// size quad.
gfx::RectF updated_dst_rect = params.dst_rect;
gfx::Size dst_pixel_size = gfx::ToCeiledSize(updated_dst_rect.size());
int iosurface_width = dst_pixel_size.width();
int iosurface_height = dst_pixel_size.height();
if (!settings_->dont_round_texture_sizes_for_pixel_tests) {
// Round the size of the IOSurface to a multiple of 64 pixels. This reduces
// memory fragmentation. https://crbug.com/146070. This also allows
// IOSurfaces to be more easily reused during a resize operation.
int iosurface_multiple = 64;
iosurface_width =
cc::MathUtil::CheckedRoundUp(iosurface_width, iosurface_multiple);
iosurface_height =
cc::MathUtil::CheckedRoundUp(iosurface_height, iosurface_multiple);
}
*overlay_texture = FindOrCreateOverlayTexture(
params.quad->render_pass_id, iosurface_width, iosurface_height,
current_frame()->root_render_pass->color_space);
*new_bounds = gfx::RectF(updated_dst_rect.origin(),
gfx::SizeF((*overlay_texture)->texture.size()));
// Calculate new projection and window matrices for a minimally sized viewport
// using InitializeViewport(). This requires creating a dummy DrawingFrame.
{
DrawingFrame dummy_frame;
force_drawing_frame_framebuffer_unflipped_ = true;
gfx::Rect frame_rect =
gfx::Rect(0, 0, updated_dst_rect.width(), updated_dst_rect.height());
InitializeViewport(&dummy_frame, frame_rect, frame_rect, frame_rect.size());
force_drawing_frame_framebuffer_unflipped_ = false;
params.projection_matrix = dummy_frame.projection_matrix;
params.window_matrix = dummy_frame.window_matrix;
}
// Calculate a new quad_to_target_transform.
params.quad_to_target_transform = gfx::Transform();
params.quad_to_target_transform.Translate(-updated_dst_rect.x(),
-updated_dst_rect.y());
// Antialiasing works by fading out content that is close to the edge of the
// viewport. All of these values need to be recalculated.
if (params.use_aa) {
current_window_space_viewport_ =
gfx::Rect(0, 0, updated_dst_rect.width(), updated_dst_rect.height());
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, params.quad_to_target_transform,
updated_dst_rect);
params.contents_device_transform =
params.window_matrix * params.projection_matrix * quad_rect_matrix;
bool clipped = false;
params.contents_device_transform.FlattenTo2d();
gfx::QuadF device_layer_quad = cc::MathUtil::MapQuad(
params.contents_device_transform, SharedGeometryQuad(), &clipped);
LayerQuad device_layer_edges(device_layer_quad);
InflateAntiAliasingDistances(device_layer_quad, &device_layer_edges,
params.edge);
}
// Establish destination texture.
GLuint temp_fbo;
gl_->GenFramebuffers(1, &temp_fbo);
gl_->BindFramebuffer(GL_FRAMEBUFFER, temp_fbo);
gl_->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
(*overlay_texture)->texture.target(),
(*overlay_texture)->texture.id(), 0);
DCHECK(gl_->CheckFramebufferStatus(GL_FRAMEBUFFER) ==
GL_FRAMEBUFFER_COMPLETE ||
IsContextLost());
// Clear to 0 to ensure the background is transparent.
gl_->ClearColor(0, 0, 0, 0);
gl_->Clear(GL_COLOR_BUFFER_BIT);
UpdateRPDQTexturesForSampling(&params);
UpdateRPDQBlendMode(&params);
ChooseRPDQProgram(&params, (*overlay_texture)->texture.color_space());
UpdateRPDQUniforms(&params);
// Prior to drawing, set up the destination framebuffer and viewport.
gl_->BindFramebuffer(GL_FRAMEBUFFER, temp_fbo);
gl_->Viewport(0, 0, updated_dst_rect.width(), updated_dst_rect.height());
DrawRPDQ(params);
if (params.background_texture) {
gl_->DeleteTextures(1, &params.background_texture);
params.background_texture = 0;
}
gl_->DeleteFramebuffers(1, &temp_fbo);
}
std::unique_ptr<GLRenderer::OverlayTexture>
GLRenderer::FindOrCreateOverlayTexture(const RenderPassId& render_pass_id,
int width,
int height,
const gfx::ColorSpace& color_space) {
// First try to use a texture for the same RenderPassId, to keep things more
// stable and less likely to clobber each others textures.
auto match_with_id = [&](const std::unique_ptr<OverlayTexture>& overlay) {
return overlay->render_pass_id == render_pass_id &&
overlay->texture.size().width() >= width &&
overlay->texture.size().height() >= height &&
overlay->texture.size().width() <= width * 2 &&
overlay->texture.size().height() <= height * 2;
};
auto it = std::find_if(available_overlay_textures_.begin(),
available_overlay_textures_.end(), match_with_id);
if (it != available_overlay_textures_.end()) {
std::unique_ptr<OverlayTexture> result = std::move(*it);
available_overlay_textures_.erase(it);
result->render_pass_id = render_pass_id;
return result;
}
// Then fallback to trying other textures that still match.
auto match = [&](const std::unique_ptr<OverlayTexture>& overlay) {
return overlay->texture.size().width() >= width &&
overlay->texture.size().height() >= height &&
overlay->texture.size().width() <= width * 2 &&
overlay->texture.size().height() <= height * 2;
};
it = std::find_if(available_overlay_textures_.begin(),
available_overlay_textures_.end(), match);
if (it != available_overlay_textures_.end()) {
std::unique_ptr<OverlayTexture> result = std::move(*it);
available_overlay_textures_.erase(it);
result->render_pass_id = render_pass_id;
return result;
}
// Make a new texture if we could not find a match. Sadtimes.
auto result = std::make_unique<OverlayTexture>();
result->texture = ScopedGpuMemoryBufferTexture(
output_surface_->context_provider(),
gfx::Size(width, height), color_space);
result->render_pass_id = render_pass_id;
return result;
}
void GLRenderer::ReduceAvailableOverlayTextures() {
// Overlay resources may get returned back to the compositor at varying rates,
// so we may get a number of resources returned at once, then none for a
// while. As such, we want to hold onto enough resources to not have to create
// any when none are released for a while. Emperical study by erikchen@ on
// crbug.com/636884 found that saving 5 spare textures per RenderPass was
// sufficient for important benchmarks. This seems to imply that the OS may
// hold up to 5 frames of textures before releasing them.
static const int kKeepCountPerRenderPass = 5;
// In order to accomodate the above requirements, we hold any released texture
// in the |available_overlay_textures_| set for up to 5 frames before
// discarding it.
for (const auto& overlay : available_overlay_textures_)
overlay->frames_waiting_for_reuse++;
base::EraseIf(available_overlay_textures_,
[](const std::unique_ptr<OverlayTexture>& overlay) {
return overlay->frames_waiting_for_reuse >=
kKeepCountPerRenderPass;
});
}
std::unique_ptr<GLRenderer::OverlayTexture>
GLRenderer::ScheduleRenderPassDrawQuad(const CALayerOverlay* ca_layer_overlay) {
DCHECK(ca_layer_overlay->rpdq);
std::unique_ptr<OverlayTexture> overlay_texture;
gfx::RectF new_bounds;
CopyRenderPassDrawQuadToOverlayResource(ca_layer_overlay, &overlay_texture,
&new_bounds);
if (!overlay_texture)
return {};
GLfloat contents_rect[4] = {
ca_layer_overlay->contents_rect.x(), ca_layer_overlay->contents_rect.y(),
ca_layer_overlay->contents_rect.width(),
ca_layer_overlay->contents_rect.height(),
};
GLfloat bounds_rect[4] = {
new_bounds.x(), new_bounds.y(), new_bounds.width(), new_bounds.height(),
};
GLboolean is_clipped = ca_layer_overlay->shared_state->is_clipped;
GLfloat clip_rect[4] = {ca_layer_overlay->shared_state->clip_rect.x(),
ca_layer_overlay->shared_state->clip_rect.y(),
ca_layer_overlay->shared_state->clip_rect.width(),
ca_layer_overlay->shared_state->clip_rect.height()};
GLint sorting_context_id = ca_layer_overlay->shared_state->sorting_context_id;
SkMatrix44 transform = ca_layer_overlay->shared_state->transform;
GLfloat gl_transform[16];
transform.asColMajorf(gl_transform);
unsigned filter = ca_layer_overlay->filter;
// The alpha has already been applied when copying the RPDQ to an IOSurface.
GLfloat alpha = 1;
gl_->ScheduleCALayerSharedStateCHROMIUM(alpha, is_clipped, clip_rect,
sorting_context_id, gl_transform);
gl_->ScheduleCALayerCHROMIUM(overlay_texture->texture.id(), contents_rect,
ca_layer_overlay->background_color,
ca_layer_overlay->edge_aa_mask, bounds_rect,
filter);
return overlay_texture;
}
void GLRenderer::SetupOverdrawFeedback() {
gl_->StencilFunc(GL_ALWAYS, 1, 0xffffffff);
// First two values are ignored as test always passes.
gl_->StencilOp(GL_KEEP, GL_KEEP, GL_INCR);
gl_->StencilMask(0xffffffff);
}
void GLRenderer::FlushOverdrawFeedback(const gfx::Rect& output_rect) {
DCHECK(stencil_shadow_);
// Test only, keep everything.
gl_->StencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
EnsureScissorTestDisabled();
SetBlendEnabled(true);
PrepareGeometry(SHARED_BINDING);
SetUseProgram(ProgramKey::DebugBorder(), gfx::ColorSpace::CreateSRGB(),
current_frame()->root_render_pass->color_space);
gfx::Transform render_matrix;
render_matrix.Translate(0.5 * output_rect.width() + output_rect.x(),
0.5 * output_rect.height() + output_rect.y());
render_matrix.Scale(output_rect.width(), output_rect.height());
SetShaderMatrix(current_frame()->projection_matrix * render_matrix);
// Produce hinting for the amount of overdraw on screen for each pixel by
// drawing hint colors to the framebuffer based on the current stencil value.
struct {
int multiplier;
GLenum func;
GLint ref;
SkColor color;
} stencil_tests[] = {
{1, GL_EQUAL, 2, 0x2f0000ff}, // Blue: Overdrawn once.
{2, GL_EQUAL, 3, 0x2f00ff00}, // Green: Overdrawn twice.
{3, GL_EQUAL, 4, 0x3fff0000}, // Pink: Overdrawn three times.
{4, GL_LESS, 4, 0x7fff0000}, // Red: Overdrawn four or more times.
};
// Occlusion queries can be expensive, so only collect trace data if we select
// cc.debug.overdraw.
bool tracing_enabled;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("viz.overdraw"),
&tracing_enabled);
// Trace only the root render pass.
if (current_frame()->current_render_pass != current_frame()->root_render_pass)
tracing_enabled = false;
// ARB_occlusion_query is required for tracing.
if (!use_occlusion_query_)
tracing_enabled = false;
// Use the current surface area as max result. The effect is that overdraw
// is reported as a percentage of the output surface size. ie. 2x overdraw
// for the whole screen is reported as 200.
int max_result = current_surface_size_.GetArea();
DCHECK_GT(max_result, 0);
// Callback is repeating to allow sharing the owned vector<int>.
auto overdraw_feedback_callback = base::BindRepeating(
&GLRenderer::ProcessOverdrawFeedback, weak_ptr_factory_.GetWeakPtr(),
base::Owned(new std::vector<int>), base::size(stencil_tests), max_result);
for (const auto& test : stencil_tests) {
GLuint query = 0;
if (tracing_enabled) {
gl_->GenQueriesEXT(1, &query);
gl_->BeginQueryEXT(GL_SAMPLES_PASSED_ARB, query);
}
gl_->StencilFunc(test.func, test.ref, 0xffffffff);
// Transparent color unless color-coding of overdraw is enabled.
SetShaderColor(settings_->show_overdraw_feedback ? test.color : 0, 1.f);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, nullptr);
if (query) {
gl_->EndQueryEXT(GL_SAMPLES_PASSED_ARB);
context_support_->SignalQuery(
query,
base::BindOnce(overdraw_feedback_callback, query, test.multiplier));
}
}
}
void GLRenderer::ProcessOverdrawFeedback(std::vector<int>* overdraw,
size_t num_expected_results,
int max_result,
unsigned query,
int multiplier) {
unsigned result = 0;
if (query) {
gl_->GetQueryObjectuivEXT(query, GL_QUERY_RESULT_EXT, &result);
gl_->DeleteQueriesEXT(1, &query);
}
// Apply multiplier to get the amount of overdraw.
overdraw->push_back(result * multiplier);
// Return early if we are expecting more results.
if (overdraw->size() < num_expected_results)
return;
// Report GPU overdraw as a percentage of |max_result|.
TRACE_COUNTER1(
TRACE_DISABLED_BY_DEFAULT("viz.overdraw"), "GPU Overdraw",
(std::accumulate(overdraw->begin(), overdraw->end(), 0) * 100) /
max_result);
}
void GLRenderer::UpdateRenderPassTextures(
const RenderPassList& render_passes_in_draw_order,
const base::flat_map<RenderPassId, RenderPassRequirements>&
render_passes_in_frame) {
// Collect RenderPass textures that should be deleted.
std::vector<RenderPassId> passes_to_delete;
for (const auto& pair : render_pass_textures_) {
auto render_pass_it = render_passes_in_frame.find(pair.first);
if (render_pass_it == render_passes_in_frame.end()) {
passes_to_delete.push_back(pair.first);
continue;
}
const RenderPassRequirements& requirements = render_pass_it->second;
const ScopedRenderPassTexture& texture = pair.second;
bool size_appropriate =
texture.size().width() >= requirements.size.width() &&
texture.size().height() >= requirements.size.height();
bool mipmap_appropriate = !requirements.mipmap || texture.mipmap();
if (!size_appropriate || !mipmap_appropriate)
passes_to_delete.push_back(pair.first);
}
// Delete RenderPass textures from the previous frame that will not be used
// again.
for (size_t i = 0; i < passes_to_delete.size(); ++i)
render_pass_textures_.erase(passes_to_delete[i]);
}
ResourceFormat GLRenderer::BackbufferFormat() const {
const auto& caps = output_surface_->context_provider()->ContextCapabilities();
if (current_frame()->current_render_pass->color_space.IsHDR()) {
// If a platform does not support half-float renderbuffers then it should
// not should request HDR rendering.
DCHECK(caps.texture_half_float_linear);
DCHECK(caps.color_buffer_half_float_rgba);
return RGBA_F16;
}
return PlatformColor::BestSupportedTextureFormat(caps);
}
void GLRenderer::AllocateRenderPassResourceIfNeeded(
const RenderPassId& render_pass_id,
const RenderPassRequirements& requirements) {
auto contents_texture_it = render_pass_textures_.find(render_pass_id);
if (contents_texture_it != render_pass_textures_.end())
return;
ScopedRenderPassTexture contents_texture(
output_surface_->context_provider(), requirements.size,
BackbufferFormat(), current_frame()->current_render_pass->color_space,
requirements.mipmap);
render_pass_textures_[render_pass_id] = std::move(contents_texture);
}
bool GLRenderer::IsRenderPassResourceAllocated(
const RenderPassId& render_pass_id) const {
auto texture_it = render_pass_textures_.find(render_pass_id);
return texture_it != render_pass_textures_.end();
}
gfx::Size GLRenderer::GetRenderPassBackingPixelSize(
const RenderPassId& render_pass_id) {
auto texture_it = render_pass_textures_.find(render_pass_id);
DCHECK(texture_it != render_pass_textures_.end());
return texture_it->second.size();
}
} // namespace viz