blob: aa8ba94829b78c3f59a480229d9f7fa8483fe677 [file] [log] [blame]
// Copyright (c) 2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process_util.h"
#include <ctype.h>
#include <dirent.h>
#include <fcntl.h>
#include <unistd.h>
#include <string>
#include <sys/types.h>
#include <sys/wait.h>
#include "base/file_util.h"
#include "base/logging.h"
#include "base/platform_thread.h"
#include "base/string_tokenizer.h"
#include "base/string_util.h"
#include "base/time.h"
namespace {
enum ParsingState {
KEY_NAME,
KEY_VALUE
};
} // namespace
namespace base {
bool LaunchApp(const std::vector<std::string>& argv,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle) {
bool retval = true;
char* argv_copy[argv.size() + 1];
for (size_t i = 0; i < argv.size(); i++) {
argv_copy[i] = new char[argv[i].size() + 1];
strcpy(argv_copy[i], argv[i].c_str());
}
argv_copy[argv.size()] = NULL;
// Make sure we don't leak any FDs to the child process by marking all FDs
// as close-on-exec.
int max_files = GetMaxFilesOpenInProcess();
for (int i = STDERR_FILENO + 1; i < max_files; i++) {
int flags = fcntl(i, F_GETFD);
if (flags != -1) {
fcntl(i, F_SETFD, flags | FD_CLOEXEC);
}
}
int pid = fork();
if (pid == 0) {
for (file_handle_mapping_vector::const_iterator it = fds_to_remap.begin();
it != fds_to_remap.end();
++it) {
int src_fd = it->first;
int dest_fd = it->second;
if (src_fd == dest_fd) {
int flags = fcntl(src_fd, F_GETFD);
if (flags != -1) {
fcntl(src_fd, F_SETFD, flags & ~FD_CLOEXEC);
}
} else {
dup2(src_fd, dest_fd);
}
}
execvp(argv_copy[0], argv_copy);
} else if (pid < 0) {
retval = false;
} else {
if (wait)
waitpid(pid, 0, 0);
if(process_handle)
*process_handle = pid;
}
for (size_t i = 0; i < argv.size(); i++)
delete[] argv_copy[i];
return retval;
}
bool LaunchApp(const CommandLine& cl,
bool wait, bool start_hidden, ProcessHandle* process_handle) {
file_handle_mapping_vector no_files;
return LaunchApp(cl.argv(), no_files, wait, process_handle);
}
bool DidProcessCrash(ProcessHandle handle) {
int status;
if (waitpid(handle, &status, WNOHANG)) {
// I feel like dancing!
return false;
}
if (WIFSIGNALED(status)) {
int signum = WTERMSIG(status);
return (signum == SIGSEGV || signum == SIGILL || signum == SIGABRT || signum == SIGFPE);
}
if (WIFEXITED(status)) {
int exitcode = WEXITSTATUS(status);
return (exitcode != 0);
}
return false;
}
NamedProcessIterator::NamedProcessIterator(const std::wstring& executable_name,
const ProcessFilter* filter)
:
executable_name_(executable_name),
filter_(filter) {
procfs_dir_ = opendir("/proc");
}
NamedProcessIterator::~NamedProcessIterator() {
if (procfs_dir_) {
closedir(procfs_dir_);
procfs_dir_ = 0;
}
}
const ProcessEntry* NamedProcessIterator::NextProcessEntry() {
bool result = false;
do {
result = CheckForNextProcess();
} while (result && !IncludeEntry());
if (result)
return &entry_;
return NULL;
}
bool NamedProcessIterator::CheckForNextProcess() {
// TODO(port): skip processes owned by different UID
dirent* slot = 0;
const char* openparen;
const char* closeparen;
// Arbitrarily guess that there will never be more than 200 non-process files in /proc.
// (Hardy has 53.)
int skipped = 0;
const int kSkipLimit = 200;
while (skipped < kSkipLimit) {
slot = readdir(procfs_dir_);
// all done looking through /proc?
if (!slot)
return false;
// If not a process, keep looking for one.
bool notprocess = false;
int i;
for (i=0; i < NAME_MAX && slot->d_name[i]; ++i) {
if (!isdigit(slot->d_name[i])) {
notprocess = true;
break;
}
}
if (i == NAME_MAX || notprocess) {
skipped++;
continue;
}
// Read the process's status.
char buf[NAME_MAX + 12];
sprintf(buf, "/proc/%s/stat", slot->d_name);
FILE *fp = fopen(buf, "r");
if (!fp)
return false;
const char* result = fgets(buf, sizeof(buf), fp);
fclose(fp);
if (!result)
return false;
// Parse the status. It is formatted like this:
// %d (%s) %c %d ...
// pid (name) runstate ppid
// To avoid being fooled by names containing a closing paren, scan backwards.
openparen = strchr(buf, '(');
closeparen = strrchr(buf, ')');
if (!openparen || !closeparen)
return false;
char runstate = closeparen[2];
// Is the process in 'Zombie' state, i.e. dead but waiting to be reaped?
// Allowed values: D R S T Z
if (runstate != 'Z')
break;
// Nope, it's a zombie; somebody isn't cleaning up after their children.
// (e.g. WaitForProcessesToExit doesn't clean up after dead children yet.)
// There could be a lot of zombies, can't really decrement i here.
}
if (skipped >= kSkipLimit) {
NOTREACHED();
return false;
}
entry_.pid = atoi(slot->d_name);
entry_.ppid = atoi(closeparen+3);
// TODO(port): read pid's commandline's $0, like killall does.
// Using the short name between openparen and closeparen won't work for long names!
int len = closeparen - openparen - 1;
if (len > NAME_MAX)
len = NAME_MAX;
memcpy(entry_.szExeFile, openparen + 1, len);
entry_.szExeFile[len] = 0;
return true;
}
bool NamedProcessIterator::IncludeEntry() {
// TODO(port): make this also work for non-ASCII filenames
bool result = strcmp(WideToASCII(executable_name_).c_str(), entry_.szExeFile) == 0 &&
(!filter_ || filter_->Includes(entry_.pid, entry_.ppid));
return result;
}
int GetProcessCount(const std::wstring& executable_name,
const ProcessFilter* filter) {
int count = 0;
NamedProcessIterator iter(executable_name, filter);
while (iter.NextProcessEntry())
++count;
return count;
}
bool KillProcesses(const std::wstring& executable_name, int exit_code,
const ProcessFilter* filter) {
bool result = true;
const ProcessEntry* entry;
NamedProcessIterator iter(executable_name, filter);
while ((entry = iter.NextProcessEntry()) != NULL)
result = KillProcess((*entry).pid, exit_code, true) && result;
return result;
}
bool WaitForProcessesToExit(const std::wstring& executable_name,
int wait_milliseconds,
const ProcessFilter* filter) {
bool result = false;
// TODO(port): This is inefficient, but works if there are multiple procs.
// TODO(port): use waitpid to avoid leaving zombies around
base::Time end_time = base::Time::Now() + base::TimeDelta::FromMilliseconds(wait_milliseconds);
do {
NamedProcessIterator iter(executable_name, filter);
if (!iter.NextProcessEntry()) {
result = true;
break;
}
PlatformThread::Sleep(100);
} while ((base::Time::Now() - end_time) > base::TimeDelta());
return result;
}
bool CleanupProcesses(const std::wstring& executable_name,
int wait_milliseconds,
int exit_code,
const ProcessFilter* filter) {
bool exited_cleanly =
WaitForProcessesToExit(executable_name, wait_milliseconds,
filter);
if (!exited_cleanly)
KillProcesses(executable_name, exit_code, filter);
return exited_cleanly;
}
///////////////////////////////////////////////////////////////////////////////
//// ProcessMetrics
// To have /proc/self/io file you must enable CONFIG_TASK_IO_ACCOUNTING
// in your kernel configuration.
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) {
std::string proc_io_contents;
if (!file_util::ReadFileToString(L"/proc/self/io", &proc_io_contents))
return false;
(*io_counters).OtherOperationCount = 0;
(*io_counters).OtherTransferCount = 0;
StringTokenizer tokenizer(proc_io_contents, ": \n");
ParsingState state = KEY_NAME;
std::string last_key_name;
while (tokenizer.GetNext()) {
switch (state) {
case KEY_NAME:
last_key_name = tokenizer.token();
state = KEY_VALUE;
break;
case KEY_VALUE:
DCHECK(!last_key_name.empty());
if (last_key_name == "syscr") {
(*io_counters).ReadOperationCount = StringToInt64(tokenizer.token());
} else if (last_key_name == "syscw") {
(*io_counters).WriteOperationCount = StringToInt64(tokenizer.token());
} else if (last_key_name == "rchar") {
(*io_counters).ReadTransferCount = StringToInt64(tokenizer.token());
} else if (last_key_name == "wchar") {
(*io_counters).WriteTransferCount = StringToInt64(tokenizer.token());
}
state = KEY_NAME;
break;
}
}
return true;
}
} // namespace base