blob: d4d94a285e18671a20f141761813dda091876cce [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <string.h>
#include <cstring>
#include <memory>
#include <string>
#include "base/command_line.h"
#include "base/containers/queue.h"
#include "base/containers/span.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "media/base/test_data_util.h"
#include "media/gpu/h264_decoder.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::_;
using ::testing::Args;
using ::testing::Expectation;
using ::testing::InSequence;
using ::testing::Invoke;
using ::testing::MakeMatcher;
using ::testing::Matcher;
using ::testing::MatcherInterface;
using ::testing::MatchResultListener;
using ::testing::Mock;
using ::testing::Return;
using ::testing::WithArg;
namespace media {
namespace {
const std::string kBaselineFrame0 = "bear-320x192-baseline-frame-0.h264";
const std::string kBaselineFrame1 = "bear-320x192-baseline-frame-1.h264";
const std::string kBaselineFrame2 = "bear-320x192-baseline-frame-2.h264";
const std::string kBaselineFrame3 = "bear-320x192-baseline-frame-3.h264";
const std::string kHighFrame0 = "bear-320x192-high-frame-0.h264";
const std::string kHighFrame1 = "bear-320x192-high-frame-1.h264";
const std::string kHighFrame2 = "bear-320x192-high-frame-2.h264";
const std::string kHighFrame3 = "bear-320x192-high-frame-3.h264";
// Checks whether the decrypt config in the picture matches the decrypt config
// passed to this matcher.
MATCHER_P(DecryptConfigMatches, decrypt_config, "") {
return arg->decrypt_config()->Matches(*decrypt_config);
}
MATCHER(SubsampleSizeMatches, "Verify subsample sizes match buffer size") {
const size_t buffer_size = ::testing::get<0>(arg);
const std::vector<SubsampleEntry>& subsamples = ::testing::get<1>(arg);
size_t subsample_total_size = 0;
for (const auto& sample : subsamples) {
subsample_total_size += sample.cypher_bytes;
subsample_total_size += sample.clear_bytes;
}
return subsample_total_size == buffer_size;
}
// Given a H264NALU (arg0), compute the slice header and store a copy in
// both |arg1| and |slice_header|. This assumes that the NALU comes from
// kBaselineFrame0.
ACTION_P(ComputeSliceHeader, slice_header) {
const H264NALU& slice_nalu = arg0;
// |arg1| and |slice_header| are H264SliceHeader*.
// Ideally we could just parse |slice_nalu|, but the parser needs additional
// data (like SPS and PPS entries) which we don't have. So this simulates
// parsing of |slice_nalu| by simply setting the appropriate fields
// Zero out |slice_header| so there is no need to set a lot of default values.
std::memset(slice_header, 0, sizeof(H264SliceHeader));
// Extract the values directly from the H264NALU provided.
slice_header->idr_pic_flag = (slice_nalu.nal_unit_type == 5);
slice_header->nal_ref_idc = slice_nalu.nal_ref_idc;
slice_header->nalu_data = slice_nalu.data;
slice_header->nalu_size = slice_nalu.size;
// Don't want to duplicate all the work of H264Parser.ParseSliceHeader(),
// so the following were determined by looking at the slice header after
// H264_Parser.ParseSliceHeader() was called on kBaselineFrame0.
slice_header->header_bit_size = 0x24;
slice_header->slice_type = 7;
slice_header->slice_qp_delta = 8;
slice_header->dec_ref_pic_marking_bit_size = 2u;
// Now that we have created our local copy of the slice header, copy it into
// |arg1| and return success.
std::memcpy(arg1, slice_header, sizeof(H264SliceHeader));
return H264Decoder::H264Accelerator::Status::kOk;
}
// Compare 2 H264SliceHeader objects for equality.
MATCHER_P(SliceHeaderMatches, slice_header, "Verify H264SliceHeader objects") {
// Rather than match pointers, the contents must be the same.
return std::memcmp(arg, slice_header, sizeof(H264SliceHeader)) == 0;
}
class MockH264Accelerator : public H264Decoder::H264Accelerator {
public:
MockH264Accelerator() = default;
MOCK_METHOD0(CreateH264Picture, scoped_refptr<H264Picture>());
MOCK_METHOD1(SubmitDecode, Status(scoped_refptr<H264Picture> pic));
MOCK_METHOD7(SubmitFrameMetadata,
Status(const H264SPS* sps,
const H264PPS* pps,
const H264DPB& dpb,
const H264Picture::Vector& ref_pic_listp0,
const H264Picture::Vector& ref_pic_listb0,
const H264Picture::Vector& ref_pic_listb1,
scoped_refptr<H264Picture> pic));
MOCK_METHOD8(SubmitSlice,
Status(const H264PPS* pps,
const H264SliceHeader* slice_hdr,
const H264Picture::Vector& ref_pic_list0,
const H264Picture::Vector& ref_pic_list1,
scoped_refptr<H264Picture> pic,
const uint8_t* data,
size_t size,
const std::vector<SubsampleEntry>& subsamples));
MOCK_METHOD1(OutputPicture, bool(scoped_refptr<H264Picture> pic));
MOCK_METHOD2(SetStream,
Status(base::span<const uint8_t> stream,
const DecryptConfig* decrypt_config));
void Reset() override {}
};
// Test H264Decoder by feeding different of h264 frame sequences and make
// sure it behaves as expected.
class H264DecoderTest : public ::testing::Test {
public:
H264DecoderTest() = default;
void SetUp() override;
// Sets the bitstreams to be decoded, frame by frame. The content of each
// file is the encoded bitstream of a single video frame.
void SetInputFrameFiles(const std::vector<std::string>& frame_files);
// Keeps decoding the input bitstream set at |SetInputFrameFiles| until the
// decoder has consumed all bitstreams or returned from
// |H264Decoder::Decode|. Returns the same result as |H264Decoder::Decode|.
AcceleratedVideoDecoder::DecodeResult Decode();
protected:
std::unique_ptr<H264Decoder> decoder_;
MockH264Accelerator* accelerator_;
private:
base::queue<std::string> input_frame_files_;
std::string bitstream_;
};
void H264DecoderTest::SetUp() {
auto mock_accelerator = std::make_unique<MockH264Accelerator>();
accelerator_ = mock_accelerator.get();
decoder_.reset(new H264Decoder(std::move(mock_accelerator)));
// Sets default behaviors for mock methods for convenience.
ON_CALL(*accelerator_, CreateH264Picture()).WillByDefault(Invoke([]() {
return new H264Picture();
}));
ON_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _))
.WillByDefault(Return(H264Decoder::H264Accelerator::Status::kOk));
ON_CALL(*accelerator_, SubmitDecode(_))
.WillByDefault(Return(H264Decoder::H264Accelerator::Status::kOk));
ON_CALL(*accelerator_, OutputPicture(_)).WillByDefault(Return(true));
ON_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _))
.With(Args<6, 7>(SubsampleSizeMatches()))
.WillByDefault(Return(H264Decoder::H264Accelerator::Status::kOk));
ON_CALL(*accelerator_, SetStream(_, _))
.WillByDefault(
Return(H264Decoder::H264Accelerator::Status::kNotSupported));
}
void H264DecoderTest::SetInputFrameFiles(
const std::vector<std::string>& input_frame_files) {
for (auto f : input_frame_files)
input_frame_files_.push(f);
}
AcceleratedVideoDecoder::DecodeResult H264DecoderTest::Decode() {
while (true) {
auto result = decoder_->Decode();
int32_t bitstream_id = 0;
if (result != AcceleratedVideoDecoder::kRanOutOfStreamData ||
input_frame_files_.empty())
return result;
auto input_file = GetTestDataFilePath(input_frame_files_.front());
input_frame_files_.pop();
CHECK(base::ReadFileToString(input_file, &bitstream_));
decoder_->SetStream(bitstream_id++,
reinterpret_cast<const uint8_t*>(bitstream_.data()),
bitstream_.size());
}
}
// To have better description on mismatch.
class WithPocMatcher : public MatcherInterface<scoped_refptr<H264Picture>> {
public:
explicit WithPocMatcher(int expected_poc) : expected_poc_(expected_poc) {}
bool MatchAndExplain(scoped_refptr<H264Picture> p,
MatchResultListener* listener) const override {
if (p->pic_order_cnt == expected_poc_)
return true;
*listener << "with poc: " << p->pic_order_cnt;
return false;
}
void DescribeTo(std::ostream* os) const override {
*os << "with poc " << expected_poc_;
}
private:
int expected_poc_;
};
inline Matcher<scoped_refptr<H264Picture>> WithPoc(int expected_poc) {
return MakeMatcher(new WithPocMatcher(expected_poc));
}
// Test Cases
TEST_F(H264DecoderTest, DecodeSingleFrame) {
SetInputFrameFiles({kBaselineFrame0});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
EXPECT_CALL(*accelerator_, CreateH264Picture()).WillOnce(Return(nullptr));
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfSurfaces, Decode());
ASSERT_TRUE(Mock::VerifyAndClearExpectations(&*accelerator_));
{
InSequence sequence;
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitDecode(_));
EXPECT_CALL(*accelerator_, OutputPicture(_));
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
ASSERT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, SkipNonIDRFrames) {
SetInputFrameFiles({kBaselineFrame1, kBaselineFrame2, kBaselineFrame0});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitDecode(_));
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0)));
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
ASSERT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, DecodeProfileBaseline) {
SetInputFrameFiles({
kBaselineFrame0, kBaselineFrame1, kBaselineFrame2, kBaselineFrame3,
});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
EXPECT_CALL(*accelerator_, CreateH264Picture()).Times(4);
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _)).Times(4);
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _)).Times(4);
Expectation decode_poc0, decode_poc2, decode_poc4, decode_poc6;
{
InSequence decode_order;
decode_poc0 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(0)));
decode_poc2 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(2)));
decode_poc4 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(4)));
decode_poc6 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(6)));
}
{
InSequence display_order;
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0))).After(decode_poc0);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(2))).After(decode_poc2);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(4))).After(decode_poc4);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(6))).After(decode_poc6);
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
ASSERT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, DecodeProfileHigh) {
SetInputFrameFiles({kHighFrame0, kHighFrame1, kHighFrame2, kHighFrame3});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(16u, decoder_->GetRequiredNumOfPictures());
// Two pictures will be kept in DPB for reordering. The first picture should
// be outputted after feeding the third frame.
EXPECT_CALL(*accelerator_, CreateH264Picture()).Times(4);
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _)).Times(4);
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _)).Times(4);
Expectation decode_poc0, decode_poc2, decode_poc4, decode_poc6;
{
InSequence decode_order;
decode_poc0 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(0)));
decode_poc4 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(4)));
decode_poc2 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(2)));
decode_poc6 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(6)));
}
{
InSequence display_order;
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0))).After(decode_poc0);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(2))).After(decode_poc2);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(4))).After(decode_poc4);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(6))).After(decode_poc6);
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
ASSERT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, SwitchBaselineToHigh) {
SetInputFrameFiles({
kBaselineFrame0, kHighFrame0, kHighFrame1, kHighFrame2, kHighFrame3,
});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitDecode(_));
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0)));
}
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(16u, decoder_->GetRequiredNumOfPictures());
ASSERT_TRUE(Mock::VerifyAndClearExpectations(&*accelerator_));
EXPECT_CALL(*accelerator_, CreateH264Picture()).Times(4);
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _)).Times(4);
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _)).Times(4);
Expectation decode_poc0, decode_poc2, decode_poc4, decode_poc6;
{
InSequence decode_order;
decode_poc0 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(0)));
decode_poc4 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(4)));
decode_poc2 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(2)));
decode_poc6 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(6)));
}
{
InSequence display_order;
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0))).After(decode_poc0);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(2))).After(decode_poc2);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(4))).After(decode_poc4);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(6))).After(decode_poc6);
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
ASSERT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, SwitchHighToBaseline) {
SetInputFrameFiles({
kHighFrame0, kBaselineFrame0, kBaselineFrame1, kBaselineFrame2,
kBaselineFrame3,
});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(16u, decoder_->GetRequiredNumOfPictures());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitDecode(_));
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0)));
}
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
ASSERT_TRUE(Mock::VerifyAndClearExpectations(&*accelerator_));
EXPECT_CALL(*accelerator_, CreateH264Picture()).Times(4);
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _)).Times(4);
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _)).Times(4);
Expectation decode_poc0, decode_poc2, decode_poc4, decode_poc6;
{
InSequence decode_order;
decode_poc0 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(0)));
decode_poc2 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(2)));
decode_poc4 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(4)));
decode_poc6 = EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(6)));
}
{
InSequence display_order;
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0))).After(decode_poc0);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(2))).After(decode_poc2);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(4))).After(decode_poc4);
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(6))).After(decode_poc6);
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
ASSERT_TRUE(decoder_->Flush());
}
// Verify that the decryption config is passed to the accelerator.
TEST_F(H264DecoderTest, SetEncryptedStream) {
std::string bitstream;
auto input_file = GetTestDataFilePath(kBaselineFrame0);
CHECK(base::ReadFileToString(input_file, &bitstream));
const char kAnyKeyId[] = "any_16byte_keyid";
const char kAnyIv[] = "any_16byte_iv___";
const std::vector<SubsampleEntry> subsamples = {
// No encrypted bytes. This test only checks whether the data is passed
// thru to the acclerator so making this completely clear.
{bitstream.size(), 0},
};
std::unique_ptr<DecryptConfig> decrypt_config =
DecryptConfig::CreateCencConfig(kAnyKeyId, kAnyIv, subsamples);
EXPECT_CALL(*accelerator_,
SubmitFrameMetadata(_, _, _, _, _, _,
DecryptConfigMatches(decrypt_config.get())))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kOk));
EXPECT_CALL(*accelerator_,
SubmitDecode(DecryptConfigMatches(decrypt_config.get())))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kOk));
decoder_->SetStream(0, reinterpret_cast<const uint8_t*>(bitstream.data()),
bitstream.size(), decrypt_config.get());
EXPECT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, decoder_->Decode());
EXPECT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, decoder_->Decode());
EXPECT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, SubmitFrameMetadataRetry) {
SetInputFrameFiles({kBaselineFrame0});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kTryAgain));
}
ASSERT_EQ(AcceleratedVideoDecoder::kTryAgain, Decode());
// Try again, assuming key still not set. Only SubmitFrameMetadata()
// should be called again.
EXPECT_CALL(*accelerator_, CreateH264Picture()).Times(0);
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kTryAgain));
ASSERT_EQ(AcceleratedVideoDecoder::kTryAgain, Decode());
// Assume key has been provided now, next call to Decode() should proceed.
{
InSequence sequence;
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(0)));
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0)));
}
ASSERT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, SubmitSliceRetry) {
SetInputFrameFiles({kBaselineFrame0});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kTryAgain));
}
ASSERT_EQ(AcceleratedVideoDecoder::kTryAgain, Decode());
// Try again, assuming key still not set. Only SubmitSlice() should be
// called again.
EXPECT_CALL(*accelerator_, CreateH264Picture()).Times(0);
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _)).Times(0);
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kTryAgain));
ASSERT_EQ(AcceleratedVideoDecoder::kTryAgain, Decode());
// Assume key has been provided now, next call to Decode() should proceed.
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(0)));
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0)));
}
ASSERT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, SubmitDecodeRetry) {
SetInputFrameFiles({kBaselineFrame0, kBaselineFrame1});
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitDecode(_))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kTryAgain));
}
ASSERT_EQ(AcceleratedVideoDecoder::kTryAgain, Decode());
// Try again, assuming key still not set. Only SubmitDecode() should be
// called again.
EXPECT_CALL(*accelerator_, CreateH264Picture()).Times(0);
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _)).Times(0);
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _)).Times(0);
EXPECT_CALL(*accelerator_, SubmitDecode(_))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kTryAgain));
ASSERT_EQ(AcceleratedVideoDecoder::kTryAgain, Decode());
// Assume key has been provided now, next call to Decode() should output
// the first frame.
{
InSequence sequence;
EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(0)));
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0)));
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(2)));
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(2)));
}
ASSERT_TRUE(decoder_->Flush());
}
TEST_F(H264DecoderTest, SetStreamRetry) {
SetInputFrameFiles({kBaselineFrame0});
EXPECT_CALL(*accelerator_, SetStream(_, _))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kTryAgain))
.WillOnce(Return(H264Decoder::H264Accelerator::Status::kOk));
ASSERT_EQ(AcceleratedVideoDecoder::kTryAgain, Decode());
ASSERT_EQ(AcceleratedVideoDecoder::kAllocateNewSurfaces, Decode());
EXPECT_EQ(gfx::Size(320, 192), decoder_->GetPicSize());
EXPECT_LE(9u, decoder_->GetRequiredNumOfPictures());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, CreateH264Picture());
EXPECT_CALL(*accelerator_, SubmitFrameMetadata(_, _, _, _, _, _, _));
EXPECT_CALL(*accelerator_, SubmitSlice(_, _, _, _, _, _, _, _));
}
ASSERT_EQ(AcceleratedVideoDecoder::kRanOutOfStreamData, Decode());
{
InSequence sequence;
EXPECT_CALL(*accelerator_, SubmitDecode(WithPoc(0)));
EXPECT_CALL(*accelerator_, OutputPicture(WithPoc(0)));
}
ASSERT_TRUE(decoder_->Flush());
}
} // namespace
} // namespace media