blob: 3e9562cc4cc5e034d74750cf73cc44d1af6603cb [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_win.h"
#include <algorithm>
#include <cstdint>
#include <type_traits>
#include "base/bind.h"
#include "base/debug/alias.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/ranges.h"
#include "base/numerics/safe_conversions.h"
#include "base/trace_event/trace_event.h"
namespace base {
namespace {
enum MessageLoopProblems {
MESSAGE_POST_ERROR,
COMPLETION_POST_ERROR,
SET_TIMER_ERROR,
RECEIVED_WM_QUIT_ERROR,
MESSAGE_LOOP_PROBLEM_MAX,
};
// Returns the number of milliseconds before |next_task_time|, clamped between
// zero and the biggest DWORD value (or INFINITE if |next_task_time.is_max()|).
// Optionally, a recent value of Now() may be passed in to avoid resampling it.
DWORD GetSleepTimeoutMs(TimeTicks next_task_time,
TimeTicks recent_now = TimeTicks()) {
// Shouldn't need to sleep or install a timer when there's pending immediate
// work.
DCHECK(!next_task_time.is_null());
if (next_task_time.is_max())
return INFINITE;
auto now = recent_now.is_null() ? TimeTicks::Now() : recent_now;
auto timeout_ms = (next_task_time - now).InMillisecondsRoundedUp();
// A saturated_cast with an unsigned destination automatically clamps negative
// values at zero.
static_assert(!std::is_signed<DWORD>::value, "DWORD is unexpectedly signed");
return saturated_cast<DWORD>(timeout_ms);
}
} // namespace
// Message sent to get an additional time slice for pumping (processing) another
// task (a series of such messages creates a continuous task pump).
static const int kMsgHaveWork = WM_USER + 1;
//-----------------------------------------------------------------------------
// MessagePumpWin public:
MessagePumpWin::MessagePumpWin() = default;
MessagePumpWin::~MessagePumpWin() = default;
void MessagePumpWin::Run(Delegate* delegate) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
RunState s;
s.delegate = delegate;
s.should_quit = false;
s.run_depth = state_ ? state_->run_depth + 1 : 1;
RunState* previous_state = state_;
state_ = &s;
DoRunLoop();
state_ = previous_state;
}
void MessagePumpWin::Quit() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
DCHECK(state_);
state_->should_quit = true;
}
//-----------------------------------------------------------------------------
// MessagePumpForUI public:
MessagePumpForUI::MessagePumpForUI() {
bool succeeded = message_window_.Create(
BindRepeating(&MessagePumpForUI::MessageCallback, Unretained(this)));
DCHECK(succeeded);
}
MessagePumpForUI::~MessagePumpForUI() = default;
void MessagePumpForUI::ScheduleWork() {
// This is the only MessagePumpForUI method which can be called outside of
// |bound_thread_|.
bool not_scheduled = false;
if (!work_scheduled_.compare_exchange_strong(not_scheduled, true))
return; // Someone else continued the pumping.
// Make sure the MessagePump does some work for us.
BOOL ret = PostMessage(message_window_.hwnd(), kMsgHaveWork, 0, 0);
if (ret)
return; // There was room in the Window Message queue.
// We have failed to insert a have-work message, so there is a chance that we
// will starve tasks/timers while sitting in a nested run loop. Nested
// loops only look at Windows Message queues, and don't look at *our* task
// queues, etc., so we might not get a time slice in such. :-(
// We could abort here, but the fear is that this failure mode is plausibly
// common (queue is full, of about 2000 messages), so we'll do a near-graceful
// recovery. Nested loops are pretty transient (we think), so this will
// probably be recoverable.
// Clarify that we didn't really insert.
work_scheduled_ = false;
UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
MESSAGE_LOOP_PROBLEM_MAX);
}
void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// Since this is always called from |bound_thread_|, there is almost always
// nothing to do as the loop is already running. When the loop becomes idle,
// it will typically WaitForWork() in DoRunLoop() with the timeout provided by
// DoSomeWork(). The only alternative to this is entering a native nested loop
// (e.g. modal dialog) under a ScopedNestableTaskAllower, in which case
// HandleWorkMessage() will be invoked when the system picks up kMsgHaveWork
// and it will ScheduleNativeTimer() if it's out of immediate work. However,
// in that alternate scenario : it's possible for a Windows native task (e.g.
// https://docs.microsoft.com/en-us/windows/desktop/winmsg/using-hooks) to
// wake the native nested loop and PostDelayedTask() to the current thread
// from it. This is the only case where we must install/adjust the native
// timer from ScheduleDelayedWork() because if we don't, the native loop will
// go back to sleep, unaware of the new |delayed_work_time|.
// TODO(gab): This could potentially be replaced by a ForegroundIdleProc hook
// if Windows ends up being the only platform requiring ScheduleDelayedWork().
if (in_native_loop_ && !work_scheduled_) {
// TODO(gab): Consider passing a NextWorkInfo object to ScheduleDelayedWork
// to take advantage of |recent_now| here too.
ScheduleNativeTimer({delayed_work_time, TimeTicks::Now()});
}
}
void MessagePumpForUI::EnableWmQuit() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
enable_wm_quit_ = true;
}
void MessagePumpForUI::AddObserver(Observer* observer) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
observers_.AddObserver(observer);
}
void MessagePumpForUI::RemoveObserver(Observer* observer) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
observers_.RemoveObserver(observer);
}
//-----------------------------------------------------------------------------
// MessagePumpForUI private:
bool MessagePumpForUI::MessageCallback(
UINT message, WPARAM wparam, LPARAM lparam, LRESULT* result) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
switch (message) {
case kMsgHaveWork:
HandleWorkMessage();
break;
case WM_TIMER:
if (wparam == reinterpret_cast<UINT_PTR>(this))
HandleTimerMessage();
break;
}
return false;
}
void MessagePumpForUI::DoRunLoop() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// IF this was just a simple PeekMessage() loop (servicing all possible work
// queues), then Windows would try to achieve the following order according
// to MSDN documentation about PeekMessage with no filter):
// * Sent messages
// * Posted messages
// * Sent messages (again)
// * WM_PAINT messages
// * WM_TIMER messages
//
// Summary: none of the above classes is starved, and sent messages has twice
// the chance of being processed (i.e., reduced service time).
for (;;) {
// If we do any work, we may create more messages etc., and more work may
// possibly be waiting in another task group. When we (for example)
// ProcessNextWindowsMessage(), there is a good chance there are still more
// messages waiting. On the other hand, when any of these methods return
// having done no work, then it is pretty unlikely that calling them again
// quickly will find any work to do. Finally, if they all say they had no
// work, then it is a good time to consider sleeping (waiting) for more
// work.
in_native_loop_ = false;
state_->delegate->BeforeDoInternalWork();
DCHECK(!in_native_loop_);
bool more_work_is_plausible = ProcessNextWindowsMessage();
in_native_loop_ = false;
if (state_->should_quit)
break;
Delegate::NextWorkInfo next_work_info = state_->delegate->DoSomeWork();
in_native_loop_ = false;
more_work_is_plausible |= next_work_info.is_immediate();
if (state_->should_quit)
break;
if (installed_native_timer_) {
// As described in ScheduleNativeTimer(), the native timer is only
// installed and needed while in a nested native loop. If it is installed,
// it means the above work entered such a loop. Having now resumed, the
// native timer is no longer needed.
KillNativeTimer();
}
if (more_work_is_plausible)
continue;
more_work_is_plausible = state_->delegate->DoIdleWork();
// DoIdleWork() shouldn't end up in native nested loops and thus shouldn't
// have any chance of reinstalling a native timer.
DCHECK(!in_native_loop_);
DCHECK(!installed_native_timer_);
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
// WaitForWork() does some work itself, so notify the delegate of it.
state_->delegate->BeforeDoInternalWork();
WaitForWork(next_work_info);
}
}
void MessagePumpForUI::WaitForWork(Delegate::NextWorkInfo next_work_info) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// Wait until a message is available, up to the time needed by the timer
// manager to fire the next set of timers.
DWORD wait_flags = MWMO_INPUTAVAILABLE;
for (DWORD delay = GetSleepTimeoutMs(next_work_info.delayed_run_time,
next_work_info.recent_now);
delay != 0; delay = GetSleepTimeoutMs(next_work_info.delayed_run_time)) {
// Tell the optimizer to retain these values to simplify analyzing hangs.
base::debug::Alias(&delay);
base::debug::Alias(&wait_flags);
DWORD result = MsgWaitForMultipleObjectsEx(0, nullptr, delay, QS_ALLINPUT,
wait_flags);
if (WAIT_OBJECT_0 == result) {
// A WM_* message is available.
// If a parent child relationship exists between windows across threads
// then their thread inputs are implicitly attached.
// This causes the MsgWaitForMultipleObjectsEx API to return indicating
// that messages are ready for processing (Specifically, mouse messages
// intended for the child window may appear if the child window has
// capture).
// The subsequent PeekMessages call may fail to return any messages thus
// causing us to enter a tight loop at times.
// The code below is a workaround to give the child window
// some time to process its input messages by looping back to
// MsgWaitForMultipleObjectsEx above when there are no messages for the
// current thread.
MSG msg = {0};
bool has_pending_sent_message =
(HIWORD(::GetQueueStatus(QS_SENDMESSAGE)) & QS_SENDMESSAGE) != 0;
if (has_pending_sent_message ||
::PeekMessage(&msg, nullptr, 0, 0, PM_NOREMOVE)) {
return;
}
// We know there are no more messages for this thread because PeekMessage
// has returned false. Reset |wait_flags| so that we wait for a *new*
// message.
wait_flags = 0;
}
DCHECK_NE(WAIT_FAILED, result) << GetLastError();
}
}
void MessagePumpForUI::HandleWorkMessage() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// The kMsgHaveWork message was consumed by a native loop, we must assume
// we're in one until DoRunLoop() gets control back.
in_native_loop_ = true;
// If we are being called outside of the context of Run, then don't try to do
// any work. This could correspond to a MessageBox call or something of that
// sort.
if (!state_) {
// Since we handled a kMsgHaveWork message, we must still update this flag.
work_scheduled_ = false;
return;
}
// Let whatever would have run had we not been putting messages in the queue
// run now. This is an attempt to make our dummy message not starve other
// messages that may be in the Windows message queue.
ProcessPumpReplacementMessage();
Delegate::NextWorkInfo next_work_info = state_->delegate->DoSomeWork();
if (next_work_info.is_immediate()) {
ScheduleWork();
} else {
ScheduleNativeTimer(next_work_info);
}
}
void MessagePumpForUI::HandleTimerMessage() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// ::KillTimer doesn't remove pending WM_TIMER messages from the queue,
// explicitly ignore the last WM_TIMER message in that case to avoid handling
// work from here when DoRunLoop() is active (which could result in scheduling
// work from two places at once). Note: we're still fine in the event that a
// second native nested loop is entered before such a dead WM_TIMER message is
// discarded because ::SetTimer merely resets the timer if invoked twice with
// the same id.
if (!installed_native_timer_)
return;
// We only need to fire once per specific delay, another timer may be
// scheduled below but we're done with this one.
KillNativeTimer();
// If we are being called outside of the context of Run, then don't do
// anything. This could correspond to a MessageBox call or something of
// that sort.
if (!state_)
return;
Delegate::NextWorkInfo next_work_info = state_->delegate->DoSomeWork();
if (next_work_info.is_immediate()) {
ScheduleWork();
} else {
ScheduleNativeTimer(next_work_info);
}
}
void MessagePumpForUI::ScheduleNativeTimer(
Delegate::NextWorkInfo next_work_info) {
DCHECK(!next_work_info.is_immediate());
DCHECK(in_native_loop_);
// Do not redundantly set the same native timer again if it was already set.
// This can happen when a nested native loop goes idle with pending delayed
// tasks, then gets woken up by an immediate task, and goes back to idle with
// the same pending delay. No need to kill the native timer if there is
// already one but the |delayed_run_time| has changed as ::SetTimer reuses the
// same id and will replace and reset the existing timer.
if (installed_native_timer_ &&
*installed_native_timer_ == next_work_info.delayed_run_time) {
return;
}
if (next_work_info.delayed_run_time.is_max())
return;
// We do not use native Windows timers in general as they have a poor, 10ms,
// granularity. Instead we rely on MsgWaitForMultipleObjectsEx's
// high-resolution timeout to sleep without timers in WaitForWork(). However,
// when entering a nested native ::GetMessage() loop (e.g. native modal
// windows) under a ScopedNestableTaskAllower, we have to rely on a native
// timer when HandleWorkMessage() runs out of immediate work. Since
// ScopedNestableTaskAllower invokes ScheduleWork() : we are guaranteed that
// HandleWorkMessage() will be called after entering a nested native loop that
// should process application tasks. But once HandleWorkMessage() is out of
// immediate work, ::SetTimer() is used to guarantee we are invoked again
// should the next delayed task expire before the nested native loop ends. The
// native timer being unnecessary once we return to our DoRunLoop(), we
// ::KillTimer when it resumes (nested native loops should be rare so we're
// not worried about ::SetTimer<=>::KillTimer churn).
// TODO(gab): The long-standing legacy dependency on the behavior of
// ScopedNestableTaskAllower is unfortunate, would be nice to make this a
// MessagePump concept (instead of requiring impls to invoke ScheduleWork()
// one-way and no-op DoWork() the other way).
UINT delay_msec = strict_cast<UINT>(GetSleepTimeoutMs(
next_work_info.delayed_run_time, next_work_info.recent_now));
if (delay_msec == 0) {
ScheduleWork();
} else {
// TODO(gab): ::SetTimer()'s documentation claims it does this for us.
// Consider removing this safety net.
delay_msec = ClampToRange(delay_msec, UINT(USER_TIMER_MINIMUM),
UINT(USER_TIMER_MAXIMUM));
// Tell the optimizer to retain the delay to simplify analyzing hangs.
base::debug::Alias(&delay_msec);
UINT_PTR ret =
::SetTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this),
delay_msec, nullptr);
installed_native_timer_ = next_work_info.delayed_run_time;
if (ret)
return;
// If we can't set timers, we are in big trouble... but cross our fingers
// for now.
// TODO(jar): If we don't see this error, use a CHECK() here instead.
UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
MESSAGE_LOOP_PROBLEM_MAX);
}
}
void MessagePumpForUI::KillNativeTimer() {
DCHECK(installed_native_timer_);
const bool success =
::KillTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this));
DPCHECK(success);
installed_native_timer_.reset();
}
bool MessagePumpForUI::ProcessNextWindowsMessage() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// If there are sent messages in the queue then PeekMessage internally
// dispatches the message and returns false. We return true in this
// case to ensure that the message loop peeks again instead of calling
// MsgWaitForMultipleObjectsEx.
bool sent_messages_in_queue = false;
DWORD queue_status = ::GetQueueStatus(QS_SENDMESSAGE);
if (HIWORD(queue_status) & QS_SENDMESSAGE)
sent_messages_in_queue = true;
MSG msg;
if (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE)
return ProcessMessageHelper(msg);
return sent_messages_in_queue;
}
bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
TRACE_EVENT1("base,toplevel", "MessagePumpForUI::ProcessMessageHelper",
"message", msg.message);
if (WM_QUIT == msg.message) {
// WM_QUIT is the standard way to exit a ::GetMessage() loop. Our
// MessageLoop has its own quit mechanism, so WM_QUIT should only terminate
// it if |enable_wm_quit_| is explicitly set (and is generally unexpected
// otherwise).
if (enable_wm_quit_) {
state_->should_quit = true;
return false;
}
UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem",
RECEIVED_WM_QUIT_ERROR, MESSAGE_LOOP_PROBLEM_MAX);
return true;
}
// While running our main message pump, we discard kMsgHaveWork messages.
if (msg.message == kMsgHaveWork && msg.hwnd == message_window_.hwnd())
return ProcessPumpReplacementMessage();
for (Observer& observer : observers_)
observer.WillDispatchMSG(msg);
::TranslateMessage(&msg);
::DispatchMessage(&msg);
for (Observer& observer : observers_)
observer.DidDispatchMSG(msg);
return true;
}
bool MessagePumpForUI::ProcessPumpReplacementMessage() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// When we encounter a kMsgHaveWork message, this method is called to peek and
// process a replacement message. The goal is to make the kMsgHaveWork as non-
// intrusive as possible, even though a continuous stream of such messages are
// posted. This method carefully peeks a message while there is no chance for
// a kMsgHaveWork to be pending, then resets the |have_work_| flag (allowing a
// replacement kMsgHaveWork to possibly be posted), and finally dispatches
// that peeked replacement. Note that the re-post of kMsgHaveWork may be
// asynchronous to this thread!!
MSG msg;
const bool have_message =
::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE;
// Expect no message or a message different than kMsgHaveWork.
DCHECK(!have_message || kMsgHaveWork != msg.message ||
msg.hwnd != message_window_.hwnd());
// Since we discarded a kMsgHaveWork message, we must update the flag.
DCHECK(work_scheduled_);
work_scheduled_ = false;
// We don't need a special time slice if we didn't |have_message| to process.
if (!have_message)
return false;
if (WM_QUIT == msg.message) {
// If we're in a nested ::GetMessage() loop then we must let that loop see
// the WM_QUIT in order for it to exit. If we're in DoRunLoop then the re-
// posted WM_QUIT will be either ignored, or handled, by
// ProcessMessageHelper() called directly from ProcessNextWindowsMessage().
::PostQuitMessage(static_cast<int>(msg.wParam));
// Note: we *must not* ScheduleWork() here as WM_QUIT is a low-priority
// message on Windows (it is only returned by ::PeekMessage() when idle) :
// https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453. As
// such posting a kMsgHaveWork message via ScheduleWork() would cause an
// infinite loop (kMsgHaveWork message handled first means we end up here
// again and repost WM_QUIT+ScheduleWork() again, etc.). Not leaving a
// kMsgHaveWork message behind however is also problematic as unwinding
// multiple layers of nested ::GetMessage() loops can result in starving
// application tasks. TODO(https://crbug.com/890016) : Fix this.
// The return value is mostly irrelevant but return true like we would after
// processing a QuitClosure() task.
return true;
}
// Guarantee we'll get another time slice in the case where we go into native
// windows code. This ScheduleWork() may hurt performance a tiny bit when
// tasks appear very infrequently, but when the event queue is busy, the
// kMsgHaveWork events get (percentage wise) rarer and rarer.
ScheduleWork();
return ProcessMessageHelper(msg);
}
//-----------------------------------------------------------------------------
// MessagePumpForIO public:
MessagePumpForIO::IOContext::IOContext() {
memset(&overlapped, 0, sizeof(overlapped));
}
MessagePumpForIO::MessagePumpForIO() {
port_.Set(::CreateIoCompletionPort(INVALID_HANDLE_VALUE, nullptr,
reinterpret_cast<ULONG_PTR>(nullptr), 1));
DCHECK(port_.IsValid());
}
MessagePumpForIO::~MessagePumpForIO() = default;
void MessagePumpForIO::ScheduleWork() {
// This is the only MessagePumpForIO method which can be called outside of
// |bound_thread_|.
bool not_scheduled = false;
if (!work_scheduled_.compare_exchange_strong(not_scheduled, true))
return; // Someone else continued the pumping.
// Make sure the MessagePump does some work for us.
BOOL ret = ::PostQueuedCompletionStatus(port_.Get(), 0,
reinterpret_cast<ULONG_PTR>(this),
reinterpret_cast<OVERLAPPED*>(this));
if (ret)
return; // Post worked perfectly.
// See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
work_scheduled_ = false; // Clarify that we didn't succeed.
UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
MESSAGE_LOOP_PROBLEM_MAX);
}
void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// Since this is always called from |bound_thread_|, there is nothing to do as
// the loop is already running. It will WaitForWork() in
// DoRunLoop() with the correct timeout when it's out of immediate tasks.
}
HRESULT MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
IOHandler* handler) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
HANDLE port = ::CreateIoCompletionPort(
file_handle, port_.Get(), reinterpret_cast<ULONG_PTR>(handler), 1);
return (port != nullptr) ? S_OK : HRESULT_FROM_WIN32(GetLastError());
}
bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
IOHandler* handler) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
info.CompletionKey = handler;
info.CompletionPort = port_.Get();
return ::SetInformationJobObject(job_handle,
JobObjectAssociateCompletionPortInformation,
&info, sizeof(info)) != FALSE;
}
//-----------------------------------------------------------------------------
// MessagePumpForIO private:
void MessagePumpForIO::DoRunLoop() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
for (;;) {
// If we do any work, we may create more messages etc., and more work may
// possibly be waiting in another task group. When we (for example)
// WaitForIOCompletion(), there is a good chance there are still more
// messages waiting. On the other hand, when any of these methods return
// having done no work, then it is pretty unlikely that calling them
// again quickly will find any work to do. Finally, if they all say they
// had no work, then it is a good time to consider sleeping (waiting) for
// more work.
Delegate::NextWorkInfo next_work_info = state_->delegate->DoSomeWork();
bool more_work_is_plausible = next_work_info.is_immediate();
if (state_->should_quit)
break;
more_work_is_plausible |= WaitForIOCompletion(0, nullptr);
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
more_work_is_plausible = state_->delegate->DoIdleWork();
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
WaitForWork(next_work_info);
}
}
// Wait until IO completes, up to the time needed by the timer manager to fire
// the next set of timers.
void MessagePumpForIO::WaitForWork(Delegate::NextWorkInfo next_work_info) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// We do not support nested IO message loops. This is to avoid messy
// recursion problems.
DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
DWORD timeout = GetSleepTimeoutMs(next_work_info.delayed_run_time,
next_work_info.recent_now);
// Tell the optimizer to retain these values to simplify analyzing hangs.
base::debug::Alias(&timeout);
WaitForIOCompletion(timeout, nullptr);
}
bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
IOItem item;
if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
// We have to ask the system for another IO completion.
if (!GetIOItem(timeout, &item))
return false;
if (ProcessInternalIOItem(item))
return true;
}
if (filter && item.handler != filter) {
// Save this item for later
completed_io_.push_back(item);
} else {
item.handler->OnIOCompleted(item.context, item.bytes_transfered,
item.error);
}
return true;
}
// Asks the OS for another IO completion result.
bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
memset(item, 0, sizeof(*item));
ULONG_PTR key = reinterpret_cast<ULONG_PTR>(nullptr);
OVERLAPPED* overlapped = nullptr;
if (!::GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
&overlapped, timeout)) {
if (!overlapped)
return false; // Nothing in the queue.
item->error = GetLastError();
item->bytes_transfered = 0;
}
item->handler = reinterpret_cast<IOHandler*>(key);
item->context = reinterpret_cast<IOContext*>(overlapped);
return true;
}
bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
if (reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.context) &&
reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.handler)) {
// This is our internal completion.
DCHECK(!item.bytes_transfered);
work_scheduled_ = false;
return true;
}
return false;
}
// Returns a completion item that was previously received.
bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
DCHECK(!completed_io_.empty());
for (std::list<IOItem>::iterator it = completed_io_.begin();
it != completed_io_.end(); ++it) {
if (!filter || it->handler == filter) {
*item = *it;
completed_io_.erase(it);
return true;
}
}
return false;
}
} // namespace base