blob: 70e13921fabfb2989164648262bd88f2b91cb15c [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/persistent_memory_allocator.h"
#include <memory>
#include "base/files/file.h"
#include "base/files/file_util.h"
#include "base/files/memory_mapped_file.h"
#include "base/files/scoped_temp_dir.h"
#include "base/memory/shared_memory.h"
#include "base/metrics/histogram.h"
#include "base/rand_util.h"
#include "base/strings/safe_sprintf.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/threading/simple_thread.h"
#include "testing/gmock/include/gmock/gmock.h"
namespace {
const uint32_t TEST_MEMORY_SIZE = 1 << 20; // 1 MiB
const uint32_t TEST_MEMORY_PAGE = 64 << 10; // 64 KiB
const uint32_t TEST_ID = 12345;
const char TEST_NAME[] = "TestAllocator";
} // namespace
namespace base {
typedef PersistentMemoryAllocator::Reference Reference;
class PersistentMemoryAllocatorTest : public testing::Test {
public:
// This can't be statically initialized because it's value isn't defined
// in the PersistentMemoryAllocator header file. Instead, it's simply set
// in the constructor.
uint32_t kAllocAlignment;
struct TestObject1 {
int onething;
char oranother;
};
struct TestObject2 {
int thiis;
long that;
float andthe;
char other;
double thing;
};
PersistentMemoryAllocatorTest() {
kAllocAlignment = PersistentMemoryAllocator::kAllocAlignment;
mem_segment_.reset(new char[TEST_MEMORY_SIZE]);
}
void SetUp() override {
allocator_.reset();
::memset(mem_segment_.get(), 0, TEST_MEMORY_SIZE);
allocator_.reset(new PersistentMemoryAllocator(
mem_segment_.get(), TEST_MEMORY_SIZE, TEST_MEMORY_PAGE,
TEST_ID, TEST_NAME, false));
allocator_->CreateTrackingHistograms(allocator_->Name());
}
void TearDown() override {
allocator_.reset();
}
unsigned CountIterables() {
PersistentMemoryAllocator::Iterator iter(allocator_.get());
uint32_t type;
unsigned count = 0;
while (iter.GetNext(&type) != 0) {
++count;
}
return count;
}
protected:
std::unique_ptr<char[]> mem_segment_;
std::unique_ptr<PersistentMemoryAllocator> allocator_;
};
TEST_F(PersistentMemoryAllocatorTest, AllocateAndIterate) {
std::string base_name(TEST_NAME);
EXPECT_EQ(TEST_ID, allocator_->Id());
EXPECT_TRUE(allocator_->used_histogram_);
EXPECT_EQ("UMA.PersistentAllocator." + base_name + ".UsedPct",
allocator_->used_histogram_->histogram_name());
EXPECT_TRUE(allocator_->allocs_histogram_);
EXPECT_EQ("UMA.PersistentAllocator." + base_name + ".Allocs",
allocator_->allocs_histogram_->histogram_name());
// Get base memory info for later comparison.
PersistentMemoryAllocator::MemoryInfo meminfo0;
allocator_->GetMemoryInfo(&meminfo0);
EXPECT_EQ(TEST_MEMORY_SIZE, meminfo0.total);
EXPECT_GT(meminfo0.total, meminfo0.free);
// Validate allocation of test object and make sure it can be referenced
// and all metadata looks correct.
Reference block1 = allocator_->Allocate(sizeof(TestObject1), 1);
EXPECT_NE(0U, block1);
EXPECT_NE(nullptr, allocator_->GetAsObject<TestObject1>(block1, 1));
EXPECT_EQ(nullptr, allocator_->GetAsObject<TestObject2>(block1, 1));
EXPECT_LE(sizeof(TestObject1), allocator_->GetAllocSize(block1));
EXPECT_GT(sizeof(TestObject1) + kAllocAlignment,
allocator_->GetAllocSize(block1));
PersistentMemoryAllocator::MemoryInfo meminfo1;
allocator_->GetMemoryInfo(&meminfo1);
EXPECT_EQ(meminfo0.total, meminfo1.total);
EXPECT_GT(meminfo0.free, meminfo1.free);
// Ensure that the test-object can be made iterable.
PersistentMemoryAllocator::Iterator iter1a(allocator_.get());
uint32_t type;
EXPECT_EQ(0U, iter1a.GetNext(&type));
allocator_->MakeIterable(block1);
EXPECT_EQ(block1, iter1a.GetNext(&type));
EXPECT_EQ(1U, type);
EXPECT_EQ(0U, iter1a.GetNext(&type));
// Create second test-object and ensure everything is good and it cannot
// be confused with test-object of another type.
Reference block2 = allocator_->Allocate(sizeof(TestObject2), 2);
EXPECT_NE(0U, block2);
EXPECT_NE(nullptr, allocator_->GetAsObject<TestObject2>(block2, 2));
EXPECT_EQ(nullptr, allocator_->GetAsObject<TestObject2>(block2, 1));
EXPECT_LE(sizeof(TestObject2), allocator_->GetAllocSize(block2));
EXPECT_GT(sizeof(TestObject2) + kAllocAlignment,
allocator_->GetAllocSize(block2));
PersistentMemoryAllocator::MemoryInfo meminfo2;
allocator_->GetMemoryInfo(&meminfo2);
EXPECT_EQ(meminfo1.total, meminfo2.total);
EXPECT_GT(meminfo1.free, meminfo2.free);
// Ensure that second test-object can also be made iterable.
allocator_->MakeIterable(block2);
EXPECT_EQ(block2, iter1a.GetNext(&type));
EXPECT_EQ(2U, type);
EXPECT_EQ(0U, iter1a.GetNext(&type));
// Check that iteration can begin after an arbitrary location.
PersistentMemoryAllocator::Iterator iter1b(allocator_.get(), block1);
EXPECT_EQ(block2, iter1b.GetNext(&type));
EXPECT_EQ(0U, iter1b.GetNext(&type));
// Ensure nothing has gone noticably wrong.
EXPECT_FALSE(allocator_->IsFull());
EXPECT_FALSE(allocator_->IsCorrupt());
// Check the internal histogram record of used memory.
allocator_->UpdateTrackingHistograms();
std::unique_ptr<HistogramSamples> used_samples(
allocator_->used_histogram_->SnapshotSamples());
EXPECT_TRUE(used_samples);
EXPECT_EQ(1, used_samples->TotalCount());
// Check the internal histogram record of allocation requests.
std::unique_ptr<HistogramSamples> allocs_samples(
allocator_->allocs_histogram_->SnapshotSamples());
EXPECT_TRUE(allocs_samples);
EXPECT_EQ(2, allocs_samples->TotalCount());
EXPECT_EQ(0, allocs_samples->GetCount(0));
EXPECT_EQ(1, allocs_samples->GetCount(sizeof(TestObject1)));
EXPECT_EQ(1, allocs_samples->GetCount(sizeof(TestObject2)));
#if !DCHECK_IS_ON() // DCHECK builds will die at a NOTREACHED().
EXPECT_EQ(0U, allocator_->Allocate(TEST_MEMORY_SIZE + 1, 0));
allocs_samples = allocator_->allocs_histogram_->SnapshotSamples();
EXPECT_EQ(3, allocs_samples->TotalCount());
EXPECT_EQ(1, allocs_samples->GetCount(0));
#endif
// Check that an objcet's type can be changed.
EXPECT_EQ(2U, allocator_->GetType(block2));
allocator_->SetType(block2, 3);
EXPECT_EQ(3U, allocator_->GetType(block2));
allocator_->SetType(block2, 2);
EXPECT_EQ(2U, allocator_->GetType(block2));
// Create second allocator (read/write) using the same memory segment.
std::unique_ptr<PersistentMemoryAllocator> allocator2(
new PersistentMemoryAllocator(mem_segment_.get(), TEST_MEMORY_SIZE,
TEST_MEMORY_PAGE, 0, "", false));
EXPECT_EQ(TEST_ID, allocator2->Id());
EXPECT_FALSE(allocator2->used_histogram_);
EXPECT_FALSE(allocator2->allocs_histogram_);
EXPECT_NE(allocator2->allocs_histogram_, allocator_->allocs_histogram_);
// Ensure that iteration and access through second allocator works.
PersistentMemoryAllocator::Iterator iter2(allocator2.get());
EXPECT_EQ(block1, iter2.GetNext(&type));
EXPECT_EQ(block2, iter2.GetNext(&type));
EXPECT_EQ(0U, iter2.GetNext(&type));
EXPECT_NE(nullptr, allocator2->GetAsObject<TestObject1>(block1, 1));
EXPECT_NE(nullptr, allocator2->GetAsObject<TestObject2>(block2, 2));
// Create a third allocator (read-only) using the same memory segment.
std::unique_ptr<const PersistentMemoryAllocator> allocator3(
new PersistentMemoryAllocator(mem_segment_.get(), TEST_MEMORY_SIZE,
TEST_MEMORY_PAGE, 0, "", true));
EXPECT_EQ(TEST_ID, allocator3->Id());
EXPECT_FALSE(allocator3->used_histogram_);
EXPECT_FALSE(allocator3->allocs_histogram_);
// Ensure that iteration and access through third allocator works.
PersistentMemoryAllocator::Iterator iter3(allocator3.get());
EXPECT_EQ(block1, iter3.GetNext(&type));
EXPECT_EQ(block2, iter3.GetNext(&type));
EXPECT_EQ(0U, iter3.GetNext(&type));
EXPECT_NE(nullptr, allocator3->GetAsObject<TestObject1>(block1, 1));
EXPECT_NE(nullptr, allocator3->GetAsObject<TestObject2>(block2, 2));
// Ensure that GetNextOfType works.
PersistentMemoryAllocator::Iterator iter1c(allocator_.get());
EXPECT_EQ(block2, iter1c.GetNextOfType(2));
EXPECT_EQ(0U, iter1c.GetNextOfType(2));
}
TEST_F(PersistentMemoryAllocatorTest, PageTest) {
// This allocation will go into the first memory page.
Reference block1 = allocator_->Allocate(TEST_MEMORY_PAGE / 2, 1);
EXPECT_LT(0U, block1);
EXPECT_GT(TEST_MEMORY_PAGE, block1);
// This allocation won't fit in same page as previous block.
Reference block2 =
allocator_->Allocate(TEST_MEMORY_PAGE - 2 * kAllocAlignment, 2);
EXPECT_EQ(TEST_MEMORY_PAGE, block2);
// This allocation will also require a new page.
Reference block3 = allocator_->Allocate(2 * kAllocAlignment + 99, 3);
EXPECT_EQ(2U * TEST_MEMORY_PAGE, block3);
}
// A simple thread that takes an allocator and repeatedly allocates random-
// sized chunks from it until no more can be done.
class AllocatorThread : public SimpleThread {
public:
AllocatorThread(const std::string& name,
void* base,
uint32_t size,
uint32_t page_size)
: SimpleThread(name, Options()),
count_(0),
iterable_(0),
allocator_(base, size, page_size, 0, std::string(), false) {}
void Run() override {
for (;;) {
uint32_t size = RandInt(1, 99);
uint32_t type = RandInt(100, 999);
Reference block = allocator_.Allocate(size, type);
if (!block)
break;
count_++;
if (RandInt(0, 1)) {
allocator_.MakeIterable(block);
iterable_++;
}
}
}
unsigned iterable() { return iterable_; }
unsigned count() { return count_; }
private:
unsigned count_;
unsigned iterable_;
PersistentMemoryAllocator allocator_;
};
// Test parallel allocation/iteration and ensure consistency across all
// instances.
TEST_F(PersistentMemoryAllocatorTest, ParallelismTest) {
void* memory = mem_segment_.get();
AllocatorThread t1("t1", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t2("t2", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t3("t3", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t4("t4", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t5("t5", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
t1.Start();
t2.Start();
t3.Start();
t4.Start();
t5.Start();
unsigned last_count = 0;
do {
unsigned count = CountIterables();
EXPECT_LE(last_count, count);
} while (!allocator_->IsCorrupt() && !allocator_->IsFull());
t1.Join();
t2.Join();
t3.Join();
t4.Join();
t5.Join();
EXPECT_FALSE(allocator_->IsCorrupt());
EXPECT_TRUE(allocator_->IsFull());
EXPECT_EQ(CountIterables(),
t1.iterable() + t2.iterable() + t3.iterable() + t4.iterable() +
t5.iterable());
}
// A simple thread that counts objects by iterating through an allocator.
class CounterThread : public SimpleThread {
public:
CounterThread(const std::string& name,
PersistentMemoryAllocator::Iterator* iterator,
Lock* lock,
ConditionVariable* condition)
: SimpleThread(name, Options()),
iterator_(iterator),
lock_(lock),
condition_(condition),
count_(0) {}
void Run() override {
// Wait so all threads can start at approximately the same time.
// Best performance comes from releasing a single worker which then
// releases the next, etc., etc.
{
AutoLock autolock(*lock_);
condition_->Wait();
condition_->Signal();
}
uint32_t type;
while (iterator_->GetNext(&type) != 0) {
++count_;
}
}
unsigned count() { return count_; }
private:
PersistentMemoryAllocator::Iterator* iterator_;
Lock* lock_;
ConditionVariable* condition_;
unsigned count_;
};
// Ensure that parallel iteration returns the same number of objects as
// single-threaded iteration.
TEST_F(PersistentMemoryAllocatorTest, IteratorParallelismTest) {
// Fill the memory segment with random allocations.
unsigned iterable_count = 0;
for (;;) {
uint32_t size = RandInt(1, 99);
uint32_t type = RandInt(100, 999);
Reference block = allocator_->Allocate(size, type);
if (!block)
break;
allocator_->MakeIterable(block);
++iterable_count;
}
EXPECT_FALSE(allocator_->IsCorrupt());
EXPECT_TRUE(allocator_->IsFull());
EXPECT_EQ(iterable_count, CountIterables());
PersistentMemoryAllocator::Iterator iter(allocator_.get());
Lock lock;
ConditionVariable condition(&lock);
CounterThread t1("t1", &iter, &lock, &condition);
CounterThread t2("t2", &iter, &lock, &condition);
CounterThread t3("t3", &iter, &lock, &condition);
CounterThread t4("t4", &iter, &lock, &condition);
CounterThread t5("t5", &iter, &lock, &condition);
t1.Start();
t2.Start();
t3.Start();
t4.Start();
t5.Start();
// This will release all the waiting threads.
condition.Signal();
t1.Join();
t2.Join();
t3.Join();
t4.Join();
t5.Join();
EXPECT_EQ(iterable_count,
t1.count() + t2.count() + t3.count() + t4.count() + t5.count());
#if 0
// These ensure that the threads don't run sequentially. It shouldn't be
// enabled in general because it could lead to a flaky test if it happens
// simply by chance but it is useful during development to ensure that the
// test is working correctly.
EXPECT_NE(iterable_count, t1.count());
EXPECT_NE(iterable_count, t2.count());
EXPECT_NE(iterable_count, t3.count());
EXPECT_NE(iterable_count, t4.count());
EXPECT_NE(iterable_count, t5.count());
#endif
}
// This test doesn't verify anything other than it doesn't crash. Its goal
// is to find coding errors that aren't otherwise tested for, much like a
// "fuzzer" would.
// This test is suppsoed to fail on TSAN bot (crbug.com/579867).
#if defined(THREAD_SANITIZER)
#define MAYBE_CorruptionTest DISABLED_CorruptionTest
#else
#define MAYBE_CorruptionTest CorruptionTest
#endif
TEST_F(PersistentMemoryAllocatorTest, MAYBE_CorruptionTest) {
char* memory = mem_segment_.get();
AllocatorThread t1("t1", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t2("t2", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t3("t3", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t4("t4", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t5("t5", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
t1.Start();
t2.Start();
t3.Start();
t4.Start();
t5.Start();
do {
size_t offset = RandInt(0, TEST_MEMORY_SIZE - 1);
char value = RandInt(0, 255);
memory[offset] = value;
} while (!allocator_->IsCorrupt() && !allocator_->IsFull());
t1.Join();
t2.Join();
t3.Join();
t4.Join();
t5.Join();
CountIterables();
}
// Attempt to cause crashes or loops by expressly creating dangerous conditions.
TEST_F(PersistentMemoryAllocatorTest, MaliciousTest) {
Reference block1 = allocator_->Allocate(sizeof(TestObject1), 1);
Reference block2 = allocator_->Allocate(sizeof(TestObject1), 2);
Reference block3 = allocator_->Allocate(sizeof(TestObject1), 3);
Reference block4 = allocator_->Allocate(sizeof(TestObject1), 3);
Reference block5 = allocator_->Allocate(sizeof(TestObject1), 3);
allocator_->MakeIterable(block1);
allocator_->MakeIterable(block2);
allocator_->MakeIterable(block3);
allocator_->MakeIterable(block4);
allocator_->MakeIterable(block5);
EXPECT_EQ(5U, CountIterables());
EXPECT_FALSE(allocator_->IsCorrupt());
// Create loop in iterable list and ensure it doesn't hang. The return value
// from CountIterables() in these cases is unpredictable. If there is a
// failure, the call will hang and the test killed for taking too long.
uint32_t* header4 = (uint32_t*)(mem_segment_.get() + block4);
EXPECT_EQ(block5, header4[3]);
header4[3] = block4;
CountIterables(); // loop: 1-2-3-4-4
EXPECT_TRUE(allocator_->IsCorrupt());
// Test where loop goes back to previous block.
header4[3] = block3;
CountIterables(); // loop: 1-2-3-4-3
// Test where loop goes back to the beginning.
header4[3] = block1;
CountIterables(); // loop: 1-2-3-4-1
}
//----- LocalPersistentMemoryAllocator -----------------------------------------
TEST(LocalPersistentMemoryAllocatorTest, CreationTest) {
LocalPersistentMemoryAllocator allocator(TEST_MEMORY_SIZE, 42, "");
EXPECT_EQ(42U, allocator.Id());
EXPECT_NE(0U, allocator.Allocate(24, 1));
EXPECT_FALSE(allocator.IsFull());
EXPECT_FALSE(allocator.IsCorrupt());
}
//----- SharedPersistentMemoryAllocator ----------------------------------------
TEST(SharedPersistentMemoryAllocatorTest, CreationTest) {
SharedMemoryHandle shared_handle;
PersistentMemoryAllocator::MemoryInfo meminfo1;
Reference r123, r456, r789;
{
std::unique_ptr<SharedMemory> shmem1(new SharedMemory());
ASSERT_TRUE(shmem1->CreateAndMapAnonymous(TEST_MEMORY_SIZE));
SharedPersistentMemoryAllocator local(std::move(shmem1), TEST_ID, "",
false);
EXPECT_FALSE(local.IsReadonly());
r123 = local.Allocate(123, 123);
r456 = local.Allocate(456, 456);
r789 = local.Allocate(789, 789);
local.MakeIterable(r123);
local.SetType(r456, 654);
local.MakeIterable(r789);
local.GetMemoryInfo(&meminfo1);
EXPECT_FALSE(local.IsFull());
EXPECT_FALSE(local.IsCorrupt());
ASSERT_TRUE(local.shared_memory()->ShareToProcess(
GetCurrentProcessHandle(),
&shared_handle));
}
// Read-only test.
std::unique_ptr<SharedMemory> shmem2(new SharedMemory(shared_handle,
/*readonly=*/true));
ASSERT_TRUE(shmem2->Map(TEST_MEMORY_SIZE));
SharedPersistentMemoryAllocator shalloc2(std::move(shmem2), 0, "", true);
EXPECT_TRUE(shalloc2.IsReadonly());
EXPECT_EQ(TEST_ID, shalloc2.Id());
EXPECT_FALSE(shalloc2.IsFull());
EXPECT_FALSE(shalloc2.IsCorrupt());
PersistentMemoryAllocator::Iterator iter2(&shalloc2);
uint32_t type;
EXPECT_EQ(r123, iter2.GetNext(&type));
EXPECT_EQ(r789, iter2.GetNext(&type));
EXPECT_EQ(0U, iter2.GetNext(&type));
EXPECT_EQ(123U, shalloc2.GetType(r123));
EXPECT_EQ(654U, shalloc2.GetType(r456));
EXPECT_EQ(789U, shalloc2.GetType(r789));
PersistentMemoryAllocator::MemoryInfo meminfo2;
shalloc2.GetMemoryInfo(&meminfo2);
EXPECT_EQ(meminfo1.total, meminfo2.total);
EXPECT_EQ(meminfo1.free, meminfo2.free);
// Read/write test.
std::unique_ptr<SharedMemory> shmem3(new SharedMemory(shared_handle,
/*readonly=*/false));
ASSERT_TRUE(shmem3->Map(TEST_MEMORY_SIZE));
SharedPersistentMemoryAllocator shalloc3(std::move(shmem3), 0, "", false);
EXPECT_FALSE(shalloc3.IsReadonly());
EXPECT_EQ(TEST_ID, shalloc3.Id());
EXPECT_FALSE(shalloc3.IsFull());
EXPECT_FALSE(shalloc3.IsCorrupt());
PersistentMemoryAllocator::Iterator iter3(&shalloc3);
EXPECT_EQ(r123, iter3.GetNext(&type));
EXPECT_EQ(r789, iter3.GetNext(&type));
EXPECT_EQ(0U, iter3.GetNext(&type));
EXPECT_EQ(123U, shalloc3.GetType(r123));
EXPECT_EQ(654U, shalloc3.GetType(r456));
EXPECT_EQ(789U, shalloc3.GetType(r789));
PersistentMemoryAllocator::MemoryInfo meminfo3;
shalloc3.GetMemoryInfo(&meminfo3);
EXPECT_EQ(meminfo1.total, meminfo3.total);
EXPECT_EQ(meminfo1.free, meminfo3.free);
// Interconnectivity test.
Reference obj = shalloc3.Allocate(42, 42);
ASSERT_TRUE(obj);
shalloc3.MakeIterable(obj);
EXPECT_EQ(obj, iter2.GetNext(&type));
EXPECT_EQ(42U, type);
}
//----- FilePersistentMemoryAllocator ------------------------------------------
TEST(FilePersistentMemoryAllocatorTest, CreationTest) {
ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
FilePath file_path = temp_dir.path().AppendASCII("persistent_memory");
PersistentMemoryAllocator::MemoryInfo meminfo1;
Reference r123, r456, r789;
{
LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
EXPECT_FALSE(local.IsReadonly());
r123 = local.Allocate(123, 123);
r456 = local.Allocate(456, 456);
r789 = local.Allocate(789, 789);
local.MakeIterable(r123);
local.SetType(r456, 654);
local.MakeIterable(r789);
local.GetMemoryInfo(&meminfo1);
EXPECT_FALSE(local.IsFull());
EXPECT_FALSE(local.IsCorrupt());
File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
ASSERT_TRUE(writer.IsValid());
writer.Write(0, (const char*)local.data(), local.used());
}
std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
mmfile->Initialize(file_path);
EXPECT_TRUE(mmfile->IsValid());
const size_t mmlength = mmfile->length();
EXPECT_GE(meminfo1.total, mmlength);
FilePersistentMemoryAllocator file(std::move(mmfile), 0, "");
EXPECT_TRUE(file.IsReadonly());
EXPECT_EQ(TEST_ID, file.Id());
EXPECT_FALSE(file.IsFull());
EXPECT_FALSE(file.IsCorrupt());
PersistentMemoryAllocator::Iterator iter(&file);
uint32_t type;
EXPECT_EQ(r123, iter.GetNext(&type));
EXPECT_EQ(r789, iter.GetNext(&type));
EXPECT_EQ(0U, iter.GetNext(&type));
EXPECT_EQ(123U, file.GetType(r123));
EXPECT_EQ(654U, file.GetType(r456));
EXPECT_EQ(789U, file.GetType(r789));
PersistentMemoryAllocator::MemoryInfo meminfo2;
file.GetMemoryInfo(&meminfo2);
EXPECT_GE(meminfo1.total, meminfo2.total);
EXPECT_GE(meminfo1.free, meminfo2.free);
EXPECT_EQ(mmlength, meminfo2.total);
EXPECT_EQ(0U, meminfo2.free);
}
TEST(FilePersistentMemoryAllocatorTest, AcceptableTest) {
ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
FilePath file_path_base = temp_dir.path().AppendASCII("persistent_memory_");
LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
local.MakeIterable(local.Allocate(1, 1));
local.MakeIterable(local.Allocate(11, 11));
const size_t minsize = local.used();
std::unique_ptr<char[]> garbage(new char[minsize]);
RandBytes(garbage.get(), minsize);
std::unique_ptr<MemoryMappedFile> mmfile;
char filename[100];
for (size_t filesize = minsize; filesize > 0; --filesize) {
strings::SafeSPrintf(filename, "memory_%d_A", filesize);
FilePath file_path = temp_dir.path().AppendASCII(filename);
ASSERT_FALSE(PathExists(file_path));
{
File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
ASSERT_TRUE(writer.IsValid());
writer.Write(0, (const char*)local.data(), filesize);
}
ASSERT_TRUE(PathExists(file_path));
mmfile.reset(new MemoryMappedFile());
mmfile->Initialize(file_path);
EXPECT_EQ(filesize, mmfile->length());
if (FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile)) {
// Make sure construction doesn't crash. It will, however, cause
// error messages warning about about a corrupted memory segment.
FilePersistentMemoryAllocator allocator(std::move(mmfile), 0, "");
// Also make sure that iteration doesn't crash.
PersistentMemoryAllocator::Iterator iter(&allocator);
uint32_t type_id;
Reference ref;
while ((ref = iter.GetNext(&type_id)) != 0) {
const char* data = allocator.GetAsObject<char>(ref, 0);
uint32_t type = allocator.GetType(ref);
size_t size = allocator.GetAllocSize(ref);
// Ensure compiler can't optimize-out above variables.
(void)data;
(void)type;
(void)size;
}
// Ensure that short files are detected as corrupt and full files are not.
EXPECT_EQ(filesize != minsize, allocator.IsCorrupt());
} else {
// For filesize >= minsize, the file must be acceptable. This
// else clause (file-not-acceptable) should be reached only if
// filesize < minsize.
EXPECT_LT(filesize, minsize);
}
strings::SafeSPrintf(filename, "memory_%d_B", filesize);
file_path = temp_dir.path().AppendASCII(filename);
ASSERT_FALSE(PathExists(file_path));
{
File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
ASSERT_TRUE(writer.IsValid());
writer.Write(0, (const char*)garbage.get(), filesize);
}
ASSERT_TRUE(PathExists(file_path));
mmfile.reset(new MemoryMappedFile());
mmfile->Initialize(file_path);
EXPECT_EQ(filesize, mmfile->length());
if (FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile)) {
// Make sure construction doesn't crash. It will, however, cause
// error messages warning about about a corrupted memory segment.
FilePersistentMemoryAllocator allocator(std::move(mmfile), 0, "");
EXPECT_TRUE(allocator.IsCorrupt()); // Garbage data so it should be.
} else {
// For filesize >= minsize, the file must be acceptable. This
// else clause (file-not-acceptable) should be reached only if
// filesize < minsize.
EXPECT_GT(minsize, filesize);
}
}
}
} // namespace base