blob: 14a6823f556d8b44d2dd8a8604fa3fcf372c8eab [file] [log] [blame]
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/capture/smooth_event_sampler.h"
#include "base/strings/stringprintf.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
namespace {
bool AddEventAndConsiderSampling(SmoothEventSampler* sampler,
base::TimeTicks event_time) {
sampler->ConsiderPresentationEvent(event_time);
return sampler->ShouldSample();
}
void SteadyStateSampleAndAdvance(base::TimeDelta vsync,
SmoothEventSampler* sampler,
base::TimeTicks* t) {
ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
sampler->RecordSample();
ASSERT_FALSE(sampler->HasUnrecordedEvent());
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
*t += vsync;
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
}
void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync,
SmoothEventSampler* sampler,
base::TimeTicks* t) {
ASSERT_FALSE(AddEventAndConsiderSampling(sampler, *t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
*t += vsync;
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
}
base::TimeTicks InitialTestTimeTicks() {
return base::TimeTicks() + base::TimeDelta::FromSeconds(1);
}
void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
int redundant_capture_goal,
SmoothEventSampler* sampler,
base::TimeTicks* t) {
// Before any events have been considered, we're overdue for sampling.
ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t));
// Consider the first event. We want to sample that.
ASSERT_FALSE(sampler->HasUnrecordedEvent());
ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
sampler->RecordSample();
ASSERT_FALSE(sampler->HasUnrecordedEvent());
// After more than 250 ms has passed without considering an event, we should
// repeatedly be overdue for sampling. However, once the redundant capture
// goal is achieved, we should no longer be overdue for sampling.
*t += base::TimeDelta::FromMilliseconds(250);
for (int i = 0; i < redundant_capture_goal; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_FALSE(sampler->HasUnrecordedEvent());
ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t))
<< "Should sample until redundant capture goal is hit";
sampler->RecordSample();
*t += capture_period; // Timer fires once every capture period.
}
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t))
<< "Should not be overdue once redundant capture goal achieved.";
}
} // namespace
// 60Hz sampled at 30Hz should produce 30Hz. In addition, this test contains
// much more comprehensive before/after/edge-case scenarios than the others.
TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 200;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60;
SmoothEventSampler sampler(capture_period, redundant_capture_goal);
base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture every other vsync, indefinitely.
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 14, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
ASSERT_TRUE(sampler.HasUnrecordedEvent());
t += vsync;
}
// Now suppose we can sample again. We should be back in the steady state,
// but at a different phase.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
}
// 50Hz sampled at 30Hz should produce a sequence where some frames are skipped.
TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 2;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50;
SmoothEventSampler sampler(capture_period, redundant_capture_goal);
base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture 1st, 2nd and 4th frames out of every five
// frames, indefinitely.
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 11, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
t += vsync;
}
// Now suppose we can sample again. We should be back in the steady state
// again.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
}
// 75Hz sampled at 30Hz should produce a sequence where some frames are skipped.
TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 32;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75;
SmoothEventSampler sampler(capture_period, redundant_capture_goal);
base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture 1st and 3rd frames out of every five
// frames, indefinitely.
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 16, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
t += vsync;
}
// Now suppose we can sample again. We capture the next frame, and not the one
// after that, and then we're back in the steady state again.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
}
// 30Hz sampled at 30Hz should produce 30Hz.
TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 1;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30;
SmoothEventSampler sampler(capture_period, redundant_capture_goal);
base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture every vsync, indefinitely.
for (int i = 0; i < 200; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 10; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
t += vsync;
}
// Now suppose we can sample again. We should be back in the steady state.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
}
// 24Hz sampled at 30Hz should produce 24Hz.
TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 333;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24;
SmoothEventSampler sampler(capture_period, redundant_capture_goal);
base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture every vsync, indefinitely.
for (int i = 0; i < 200; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 10; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 6, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
t += vsync;
}
// Now suppose we can sample again. We should be back in the steady state.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
}
// Tests that changing the minimum capture period during usage results in the
// desired behavior.
TEST(SmoothEventSamplerTest, Sample60HertzWithVariedCapturePeriods) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60;
const base::TimeDelta one_to_one_period = vsync;
const base::TimeDelta two_to_one_period = vsync * 2;
const base::TimeDelta two_and_three_to_one_period =
base::TimeDelta::FromSeconds(1) / 24;
const int redundant_capture_goal = 1;
SmoothEventSampler sampler(one_to_one_period, redundant_capture_goal);
base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(one_to_one_period, redundant_capture_goal,
&sampler, &t);
// With the capture rate at 60 Hz, we should capture every vsync.
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
// Now change to the capture rate to 30 Hz, and we should capture every other
// vsync.
sampler.SetMinCapturePeriod(two_to_one_period);
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
// Now change the capture rate back to 60 Hz, and we should capture every
// vsync again.
sampler.SetMinCapturePeriod(one_to_one_period);
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
// Now change the capture rate to 24 Hz, and we should capture with a 2-3-2-3
// cadence.
sampler.SetMinCapturePeriod(two_and_three_to_one_period);
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
}
TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1);
SmoothEventSampler sampler(capture_period, 1);
base::TimeTicks t = InitialTestTimeTicks();
ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
sampler.RecordSample();
ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t))
<< "Sampled last event; should not be dirty.";
t += overdue_period;
// Now simulate 2 events with the same clock value.
ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
sampler.RecordSample();
ASSERT_FALSE(AddEventAndConsiderSampling(&sampler, t))
<< "Two events at same time -- expected second not to be sampled.";
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t + overdue_period))
<< "Second event should dirty the capture state.";
sampler.RecordSample();
ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t + overdue_period));
}
namespace {
struct DataPoint {
bool should_capture;
double increment_ms;
};
void ReplayCheckingSamplerDecisions(const DataPoint* data_points,
size_t num_data_points,
SmoothEventSampler* sampler) {
base::TimeTicks t = InitialTestTimeTicks();
for (size_t i = 0; i < num_data_points; ++i) {
t += base::TimeDelta::FromMicroseconds(
static_cast<int64>(data_points[i].increment_ms * 1000));
ASSERT_EQ(data_points[i].should_capture,
AddEventAndConsiderSampling(sampler, t))
<< "at data_points[" << i << ']';
if (data_points[i].should_capture)
sampler->RecordSample();
}
}
} // namespace
TEST(SmoothEventSamplerTest, DrawingAt24FpsWith60HzVsyncSampledAt30Hertz) {
// Actual capturing of timing data: Initial instability as a 24 FPS video was
// started from a still screen, then clearly followed by steady-state.
static const DataPoint data_points[] = {
{ true, 1437.93 }, { true, 150.484 }, { true, 217.362 }, { true, 50.161 },
{ true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 66.88 },
{ true, 50.161 }, { false, 0 }, { false, 0 }, { true, 50.16 },
{ true, 33.441 }, { true, 16.72 }, { false, 16.72 }, { true, 117.041 },
{ true, 16.72 }, { false, 16.72 }, { true, 50.161 }, { true, 50.16 },
{ true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { true, 16.72 },
{ false, 0 }, { true, 50.161 }, { false, 0 }, { true, 33.44 },
{ true, 16.72 }, { false, 16.721 }, { true, 66.881 }, { false, 0 },
{ true, 33.441 }, { true, 16.72 }, { true, 50.16 }, { true, 16.72 },
{ false, 16.721 }, { true, 50.161 }, { true, 50.16 }, { false, 0 },
{ true, 33.441 }, { true, 50.337 }, { true, 50.183 }, { true, 16.722 },
{ true, 50.161 }, { true, 33.441 }, { true, 50.16 }, { true, 33.441 },
{ true, 50.16 }, { true, 33.441 }, { true, 50.16 }, { true, 33.44 },
{ true, 50.161 }, { true, 50.16 }, { true, 33.44 }, { true, 33.441 },
{ true, 50.16 }, { true, 50.161 }, { true, 33.44 }, { true, 33.441 },
{ true, 50.16 }, { true, 33.44 }, { true, 50.161 }, { true, 33.44 },
{ true, 50.161 }, { true, 33.44 }, { true, 50.161 }, { true, 33.44 },
{ true, 83.601 }, { true, 16.72 }, { true, 33.44 }, { false, 0 }
};
SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, 3);
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}
TEST(SmoothEventSamplerTest, DrawingAt30FpsWith60HzVsyncSampledAt30Hertz) {
// Actual capturing of timing data: Initial instability as a 30 FPS video was
// started from a still screen, then followed by steady-state. Drawing
// framerate from the video rendering was a bit volatile, but averaged 30 FPS.
static const DataPoint data_points[] = {
{ true, 2407.69 }, { true, 16.733 }, { true, 217.362 }, { true, 33.441 },
{ true, 33.44 }, { true, 33.44 }, { true, 33.441 }, { true, 33.44 },
{ true, 33.44 }, { true, 33.441 }, { true, 33.44 }, { true, 33.44 },
{ true, 16.721 }, { true, 33.44 }, { false, 0 }, { true, 50.161 },
{ true, 50.16 }, { false, 0 }, { true, 50.161 }, { true, 33.44 },
{ true, 16.72 }, { false, 0 }, { false, 16.72 }, { true, 66.881 },
{ false, 0 }, { true, 33.44 }, { true, 16.72 }, { true, 50.161 },
{ false, 0 }, { true, 33.538 }, { true, 33.526 }, { true, 33.447 },
{ true, 33.445 }, { true, 33.441 }, { true, 16.721 }, { true, 33.44 },
{ true, 33.44 }, { true, 50.161 }, { true, 16.72 }, { true, 33.44 },
{ true, 33.441 }, { true, 33.44 }, { false, 0 }, { false, 16.72 },
{ true, 66.881 }, { true, 16.72 }, { false, 16.72 }, { true, 50.16 },
{ true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { true, 33.44 },
{ true, 33.441 }, { true, 33.44 }, { true, 50.161 }, { false, 0 },
{ true, 33.44 }, { true, 33.44 }, { true, 50.161 }, { true, 16.72 },
{ true, 33.44 }, { true, 33.441 }, { false, 0 }, { true, 66.88 },
{ true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { false, 0 },
{ true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { false, 0 },
{ true, 16.72 }, { true, 50.161 }, { false, 0 }, { true, 50.16 },
{ false, 0.001 }, { true, 16.721 }, { true, 66.88 }, { true, 33.44 },
{ true, 33.441 }, { true, 33.44 }, { true, 50.161 }, { true, 16.72 },
{ false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 66.881 },
{ true, 33.44 }, { true, 16.72 }, { true, 33.441 }, { false, 16.72 },
{ true, 66.88 }, { true, 16.721 }, { true, 50.16 }, { true, 33.44 },
{ true, 16.72 }, { true, 33.441 }, { true, 33.44 }, { true, 33.44 }
};
SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, 3);
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}
TEST(SmoothEventSamplerTest, DrawingAt60FpsWith60HzVsyncSampledAt30Hertz) {
// Actual capturing of timing data: WebGL Acquarium demo
// (http://webglsamples.googlecode.com/hg/aquarium/aquarium.html) which ran
// between 55-60 FPS in the steady-state.
static const DataPoint data_points[] = {
{ true, 16.72 }, { true, 16.72 }, { true, 4163.29 }, { true, 50.193 },
{ true, 117.041 }, { true, 50.161 }, { true, 50.16 }, { true, 33.441 },
{ true, 50.16 }, { true, 33.44 }, { false, 0 }, { false, 0 },
{ true, 50.161 }, { true, 83.601 }, { true, 50.16 }, { true, 16.72 },
{ true, 33.441 }, { false, 16.72 }, { true, 50.16 }, { true, 16.72 },
{ false, 0.001 }, { true, 33.441 }, { false, 16.72 }, { true, 16.72 },
{ true, 50.16 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
{ false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 16.72 },
{ true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.44 },
{ false, 0 }, { true, 33.44 }, { false, 16.721 }, { true, 16.721 },
{ true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
{ false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 33.44 },
{ false, 0 }, { true, 16.721 }, { true, 50.161 }, { false, 0 },
{ true, 33.44 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
{ false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 16.72 },
{ true, 50.16 }, { false, 0 }, { true, 16.721 }, { true, 33.44 },
{ false, 0 }, { true, 33.44 }, { false, 16.721 }, { true, 16.721 },
{ true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.44 },
{ false, 0 }, { true, 33.441 }, { false, 16.72 }, { true, 16.72 },
{ true, 50.16 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
{ true, 33.44 }, { false, 0 }, { true, 33.44 }, { true, 33.441 },
{ false, 0 }, { true, 33.44 }, { true, 33.441 }, { false, 0 },
{ true, 33.44 }, { false, 0 }, { true, 33.44 }, { false, 16.72 },
{ true, 16.721 }, { true, 50.161 }, { false, 0 }, { true, 16.72 },
{ true, 33.44 }, { true, 33.441 }, { false, 0 }, { true, 33.44 },
{ true, 33.44 }, { false, 0 }, { true, 33.441 }, { false, 16.72 },
{ true, 16.72 }, { true, 50.16 }, { false, 0 }, { true, 16.72 },
{ true, 33.441 }, { false, 0 }, { true, 33.44 }, { false, 16.72 },
{ true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 50.161 },
{ false, 0 }, { true, 16.72 }, { true, 33.44 }, { false, 0 },
{ true, 33.441 }, { false, 16.72 }, { true, 16.72 }, { true, 50.16 }
};
SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, 3);
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}
} // namespace media