blob: b65640aa988ba2666ea5902beea48f4ca0cc9242 [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/pem.h"
#include "base/base64.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
namespace {
const char kPEMSearchBlock[] = "-----BEGIN ";
const char kPEMBeginBlock[] = "-----BEGIN %s-----";
const char kPEMEndBlock[] = "-----END %s-----";
} // namespace
namespace net {
using base::StringPiece;
struct PEMTokenizer::PEMType {
std::string type;
std::string header;
std::string footer;
};
PEMTokenizer::PEMTokenizer(
const StringPiece& str,
const std::vector<std::string>& allowed_block_types) {
Init(str, allowed_block_types);
}
PEMTokenizer::~PEMTokenizer() = default;
bool PEMTokenizer::GetNext() {
while (pos_ != StringPiece::npos) {
// Scan for the beginning of the next PEM encoded block.
pos_ = str_.find(kPEMSearchBlock, pos_);
if (pos_ == StringPiece::npos)
return false; // No more PEM blocks
std::vector<PEMType>::const_iterator it;
// Check to see if it is of an acceptable block type.
for (it = block_types_.begin(); it != block_types_.end(); ++it) {
if (!str_.substr(pos_).starts_with(it->header))
continue;
// Look for a footer matching the header. If none is found, then all
// data following this point is invalid and should not be parsed.
StringPiece::size_type footer_pos = str_.find(it->footer, pos_);
if (footer_pos == StringPiece::npos) {
pos_ = StringPiece::npos;
return false;
}
// Chop off the header and footer and parse the data in between.
StringPiece::size_type data_begin = pos_ + it->header.size();
pos_ = footer_pos + it->footer.size();
block_type_ = it->type;
StringPiece encoded = str_.substr(data_begin, footer_pos - data_begin);
if (!base::Base64Decode(
base::CollapseWhitespaceASCII(encoded.as_string(), true),
&data_)) {
// The most likely cause for a decode failure is a datatype that
// includes PEM headers, which are not supported.
break;
}
return true;
}
// If the block did not match any acceptable type, move past it and
// continue the search. Otherwise, |pos_| has been updated to the most
// appropriate search position to continue searching from and should not
// be adjusted.
if (it == block_types_.end())
pos_ += sizeof(kPEMSearchBlock);
}
return false;
}
void PEMTokenizer::Init(const StringPiece& str,
const std::vector<std::string>& allowed_block_types) {
str_ = str;
pos_ = 0;
// Construct PEM header/footer strings for all the accepted types, to
// reduce parsing later.
for (auto it = allowed_block_types.begin(); it != allowed_block_types.end();
++it) {
PEMType allowed_type;
allowed_type.type = *it;
allowed_type.header = base::StringPrintf(kPEMBeginBlock, it->c_str());
allowed_type.footer = base::StringPrintf(kPEMEndBlock, it->c_str());
block_types_.push_back(allowed_type);
}
}
std::string PEMEncode(base::StringPiece data, const std::string& type) {
std::string b64_encoded;
base::Base64Encode(data, &b64_encoded);
// Divide the Base-64 encoded data into 64-character chunks, as per
// 4.3.2.4 of RFC 1421.
static const size_t kChunkSize = 64;
size_t chunks = (b64_encoded.size() + (kChunkSize - 1)) / kChunkSize;
std::string pem_encoded;
pem_encoded.reserve(
// header & footer
17 + 15 + type.size() * 2 +
// encoded data
b64_encoded.size() +
// newline characters for line wrapping in encoded data
chunks);
pem_encoded = "-----BEGIN ";
pem_encoded.append(type);
pem_encoded.append("-----\n");
for (size_t i = 0, chunk_offset = 0; i < chunks;
++i, chunk_offset += kChunkSize) {
pem_encoded.append(b64_encoded, chunk_offset, kChunkSize);
pem_encoded.append("\n");
}
pem_encoded.append("-----END ");
pem_encoded.append(type);
pem_encoded.append("-----\n");
return pem_encoded;
}
} // namespace net