blob: 04c3d1f7dc7fed79c35030f0a92241aac5d50852 [file] [log] [blame]
_forceinline void Unpack::InsertOldDist(uint Distance)
{
OldDist[3]=OldDist[2];
OldDist[2]=OldDist[1];
OldDist[1]=OldDist[0];
OldDist[0]=Distance;
}
#ifdef _MSC_VER
#define FAST_MEMCPY
#endif
_forceinline void Unpack::CopyString(uint Length,uint Distance)
{
size_t SrcPtr=UnpPtr-Distance;
if (SrcPtr<MaxWinSize-MAX_INC_LZ_MATCH && UnpPtr<MaxWinSize-MAX_INC_LZ_MATCH)
{
// If we are not close to end of window, we do not need to waste time
// to "& MaxWinMask" pointer protection.
byte *Src=Window+SrcPtr;
byte *Dest=Window+UnpPtr;
UnpPtr+=Length;
#ifdef FAST_MEMCPY
if (Distance<Length) // Overlapping strings
#endif
while (Length>=8)
{
Dest[0]=Src[0];
Dest[1]=Src[1];
Dest[2]=Src[2];
Dest[3]=Src[3];
Dest[4]=Src[4];
Dest[5]=Src[5];
Dest[6]=Src[6];
Dest[7]=Src[7];
Src+=8;
Dest+=8;
Length-=8;
}
#ifdef FAST_MEMCPY
else
while (Length>=8)
{
// In theory we still could overlap here.
// Supposing Distance == MaxWinSize - 1 we have memcpy(Src, Src + 1, 8).
// But for real RAR archives Distance <= MaxWinSize - MAX_INC_LZ_MATCH
// always, so overlap here is impossible.
// This memcpy expanded inline by MSVC. We could also use uint64
// assignment, which seems to provide about the same speed.
memcpy(Dest,Src,8);
Src+=8;
Dest+=8;
Length-=8;
}
#endif
// Unroll the loop for 0 - 7 bytes left. Note that we use nested "if"s.
if (Length>0) { Dest[0]=Src[0];
if (Length>1) { Dest[1]=Src[1];
if (Length>2) { Dest[2]=Src[2];
if (Length>3) { Dest[3]=Src[3];
if (Length>4) { Dest[4]=Src[4];
if (Length>5) { Dest[5]=Src[5];
if (Length>6) { Dest[6]=Src[6]; } } } } } } } // Close all nested "if"s.
}
else
while (Length-- > 0) // Slow copying with all possible precautions.
{
Window[UnpPtr]=Window[SrcPtr++ & MaxWinMask];
// We need to have masked UnpPtr after quit from loop, so it must not
// be replaced with 'Window[UnpPtr++ & MaxWinMask]'
UnpPtr=(UnpPtr+1) & MaxWinMask;
}
}
_forceinline uint Unpack::DecodeNumber(BitInput &Inp,DecodeTable *Dec)
{
// Left aligned 15 bit length raw bit field.
uint BitField=Inp.getbits() & 0xfffe;
if (BitField<Dec->DecodeLen[Dec->QuickBits])
{
uint Code=BitField>>(16-Dec->QuickBits);
Inp.addbits(Dec->QuickLen[Code]);
return Dec->QuickNum[Code];
}
// Detect the real bit length for current code.
uint Bits=15;
for (uint I=Dec->QuickBits+1;I<15;I++)
if (BitField<Dec->DecodeLen[I])
{
Bits=I;
break;
}
Inp.addbits(Bits);
// Calculate the distance from the start code for current bit length.
uint Dist=BitField-Dec->DecodeLen[Bits-1];
// Start codes are left aligned, but we need the normal right aligned
// number. So we shift the distance to the right.
Dist>>=(16-Bits);
// Now we can calculate the position in the code list. It is the sum
// of first position for current bit length and right aligned distance
// between our bit field and start code for current bit length.
uint Pos=Dec->DecodePos[Bits]+Dist;
// Out of bounds safety check required for damaged archives.
if (Pos>=Dec->MaxNum)
Pos=0;
// Convert the position in the code list to position in alphabet
// and return it.
return Dec->DecodeNum[Pos];
}
_forceinline uint Unpack::SlotToLength(BitInput &Inp,uint Slot)
{
uint LBits,Length=2;
if (Slot<8)
{
LBits=0;
Length+=Slot;
}
else
{
LBits=Slot/4-1;
Length+=(4 | (Slot & 3)) << LBits;
}
if (LBits>0)
{
Length+=Inp.getbits()>>(16-LBits);
Inp.addbits(LBits);
}
return Length;
}