blob: 452a93a86caf7f1375ac9f1ea1ec28b0d7922897 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// The bulk of this file is support code; sorry about that. Here's an overview
// to hopefully help readers of this code:
// - RenderingHelper is charged with interacting with X11/{EGL/GLES2,GLX/GL} or
// Win/EGL.
// - ClientState is an enum for the state of the decode client used by the test.
// - ClientStateNotification is a barrier abstraction that allows the test code
// to be written sequentially and wait for the decode client to see certain
// state transitions.
// - GLRenderingVDAClient is a VideoDecodeAccelerator::Client implementation
// - Finally actual TEST cases are at the bottom of this file, using the above
// infrastructure.
#include <fcntl.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
#include <deque>
#include <map>
#include <memory>
#include <tuple>
#include <utility>
#include "base/at_exit.h"
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/command_line.h"
#include "base/files/file.h"
#include "base/files/file_util.h"
#include "base/format_macros.h"
#include "base/location.h"
#include "base/macros.h"
#include "base/md5.h"
#include "base/process/process_handle.h"
#include "base/single_thread_task_runner.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/stringize_macros.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/thread.h"
#include "base/threading/thread_task_runner_handle.h"
#include "build/build_config.h"
#include "gpu/command_buffer/service/gpu_preferences.h"
#include "media/filters/h264_parser.h"
#include "media/gpu/fake_video_decode_accelerator.h"
#include "media/gpu/gpu_video_decode_accelerator_factory_impl.h"
#include "media/gpu/rendering_helper.h"
#include "media/gpu/video_accelerator_unittest_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gl/gl_image.h"
#if defined(OS_WIN)
#include "base/win/windows_version.h"
#include "media/gpu/dxva_video_decode_accelerator_win.h"
#elif defined(OS_CHROMEOS)
#if defined(USE_V4L2_CODEC)
#include "media/gpu/v4l2_device.h"
#include "media/gpu/v4l2_slice_video_decode_accelerator.h"
#include "media/gpu/v4l2_video_decode_accelerator.h"
#endif
#if defined(ARCH_CPU_X86_FAMILY)
#include "media/gpu/vaapi_video_decode_accelerator.h"
#include "media/gpu/vaapi_wrapper.h"
#endif // defined(ARCH_CPU_X86_FAMILY)
#else
#error The VideoAccelerator tests are not supported on this platform.
#endif // OS_WIN
#if defined(USE_OZONE)
#include "ui/ozone/public/native_pixmap.h"
#include "ui/ozone/public/ozone_gpu_test_helper.h"
#include "ui/ozone/public/ozone_platform.h"
#include "ui/ozone/public/surface_factory_ozone.h"
#endif // defined(USE_OZONE)
using media::VideoDecodeAccelerator;
namespace media {
namespace {
// Values optionally filled in from flags; see main() below.
// The syntax of multiple test videos is:
// test-video1;test-video2;test-video3
// where only the first video is required and other optional videos would be
// decoded by concurrent decoders.
// The syntax of each test-video is:
// filename:width:height:numframes:numfragments:minFPSwithRender:minFPSnoRender
// where only the first field is required. Value details:
// - |filename| must be an h264 Annex B (NAL) stream or an IVF VP8/9 stream.
// - |width| and |height| are in pixels.
// - |numframes| is the number of picture frames in the file.
// - |numfragments| NALU (h264) or frame (VP8/9) count in the stream.
// - |minFPSwithRender| and |minFPSnoRender| are minimum frames/second speeds
// expected to be achieved with and without rendering to the screen, resp.
// (the latter tests just decode speed).
// - |profile| is the media::VideoCodecProfile set during Initialization.
// An empty value for a numeric field means "ignore".
const base::FilePath::CharType* g_test_video_data =
// FILE_PATH_LITERAL("test-25fps.vp8:320:240:250:250:50:175:11");
FILE_PATH_LITERAL("test-25fps.h264:320:240:250:258:50:175:1");
// The file path of the test output log. This is used to communicate the test
// results to CrOS autotests. We can enable the log and specify the filename by
// the "--output_log" switch.
const base::FilePath::CharType* g_output_log = NULL;
// The value is set by the switch "--rendering_fps".
double g_rendering_fps = 60;
// The value is set by the switch "--rendering_warm_up".
int g_rendering_warm_up = 0;
// The value is set by the switch "--num_play_throughs". The video will play
// the specified number of times. In different test cases, we have different
// values for |num_play_throughs|. This setting will override the value. A
// special value "0" means no override.
int g_num_play_throughs = 0;
// Fake decode
int g_fake_decoder = 0;
// Test buffer import into VDA, providing buffers allocated by us, instead of
// requesting the VDA itself to allocate buffers.
bool g_test_import = false;
// Environment to store rendering thread.
class VideoDecodeAcceleratorTestEnvironment;
VideoDecodeAcceleratorTestEnvironment* g_env;
// Magic constants for differentiating the reasons for NotifyResetDone being
// called.
enum ResetPoint {
// Reset() just after calling Decode() with a fragment containing config info.
RESET_AFTER_FIRST_CONFIG_INFO = -4,
START_OF_STREAM_RESET = -3,
MID_STREAM_RESET = -2,
END_OF_STREAM_RESET = -1
};
const int kMaxResetAfterFrameNum = 100;
const int kMaxFramesToDelayReuse = 64;
const base::TimeDelta kReuseDelay = base::TimeDelta::FromSeconds(1);
// Simulate WebRTC and call VDA::Decode 30 times per second.
const int kWebRtcDecodeCallsPerSecond = 30;
// Simulate an adjustment to a larger number of pictures to make sure the
// decoder supports an upwards adjustment.
const int kExtraPictureBuffers = 2;
struct TestVideoFile {
explicit TestVideoFile(base::FilePath::StringType file_name)
: file_name(file_name),
width(-1),
height(-1),
num_frames(-1),
num_fragments(-1),
min_fps_render(-1),
min_fps_no_render(-1),
profile(media::VIDEO_CODEC_PROFILE_UNKNOWN),
reset_after_frame_num(END_OF_STREAM_RESET) {}
base::FilePath::StringType file_name;
int width;
int height;
int num_frames;
int num_fragments;
int min_fps_render;
int min_fps_no_render;
media::VideoCodecProfile profile;
int reset_after_frame_num;
std::string data_str;
};
const gfx::Size kThumbnailsPageSize(1600, 1200);
const gfx::Size kThumbnailSize(160, 120);
const int kMD5StringLength = 32;
// Read in golden MD5s for the thumbnailed rendering of this video
void ReadGoldenThumbnailMD5s(const TestVideoFile* video_file,
std::vector<std::string>* md5_strings) {
base::FilePath filepath(video_file->file_name);
filepath = filepath.AddExtension(FILE_PATH_LITERAL(".md5"));
std::string all_md5s;
base::ReadFileToString(filepath, &all_md5s);
*md5_strings = base::SplitString(all_md5s, "\n", base::TRIM_WHITESPACE,
base::SPLIT_WANT_ALL);
// Check these are legitimate MD5s.
for (const std::string& md5_string : *md5_strings) {
// Ignore the empty string added by SplitString
if (!md5_string.length())
continue;
// Ignore comments
if (md5_string.at(0) == '#')
continue;
LOG_ASSERT(static_cast<int>(md5_string.length()) == kMD5StringLength)
<< md5_string;
bool hex_only = std::count_if(md5_string.begin(), md5_string.end(),
isxdigit) == kMD5StringLength;
LOG_ASSERT(hex_only) << md5_string;
}
LOG_ASSERT(md5_strings->size() >= 1U) << " MD5 checksum file ("
<< filepath.MaybeAsASCII()
<< ") missing or empty.";
}
// State of the GLRenderingVDAClient below. Order matters here as the test
// makes assumptions about it.
enum ClientState {
CS_CREATED = 0,
CS_DECODER_SET = 1,
CS_INITIALIZED = 2,
CS_FLUSHING = 3,
CS_FLUSHED = 4,
CS_RESETTING = 5,
CS_RESET = 6,
CS_ERROR = 7,
CS_DESTROYED = 8,
CS_MAX, // Must be last entry.
};
// Initialize the GPU thread for rendering. We only need to setup once
// for all test cases.
class VideoDecodeAcceleratorTestEnvironment : public ::testing::Environment {
public:
VideoDecodeAcceleratorTestEnvironment()
: rendering_thread_("GLRenderingVDAClientThread") {}
void SetUp() override {
rendering_thread_.Start();
base::WaitableEvent done(false, false);
rendering_thread_.task_runner()->PostTask(
FROM_HERE, base::Bind(&RenderingHelper::InitializeOneOff, &done));
done.Wait();
#if defined(USE_OZONE)
gpu_helper_.reset(new ui::OzoneGpuTestHelper());
// Need to initialize after the rendering side since the rendering side
// initializes the "GPU" parts of Ozone.
//
// This also needs to be done in the test environment since this shouldn't
// be initialized multiple times for the same Ozone platform.
gpu_helper_->Initialize(base::ThreadTaskRunnerHandle::Get(),
GetRenderingTaskRunner());
#endif
}
void TearDown() override {
#if defined(USE_OZONE)
gpu_helper_.reset();
#endif
rendering_thread_.Stop();
}
scoped_refptr<base::SingleThreadTaskRunner> GetRenderingTaskRunner() const {
return rendering_thread_.task_runner();
}
private:
base::Thread rendering_thread_;
#if defined(USE_OZONE)
std::unique_ptr<ui::OzoneGpuTestHelper> gpu_helper_;
#endif
DISALLOW_COPY_AND_ASSIGN(VideoDecodeAcceleratorTestEnvironment);
};
// A helper class used to manage the lifetime of a Texture. Can be backed by
// either a buffer allocated by the VDA, or by a preallocated pixmap.
class TextureRef : public base::RefCounted<TextureRef> {
public:
static scoped_refptr<TextureRef> Create(
uint32_t texture_id,
const base::Closure& no_longer_needed_cb);
static scoped_refptr<TextureRef> CreatePreallocated(
uint32_t texture_id,
const base::Closure& no_longer_needed_cb,
media::VideoPixelFormat pixel_format,
const gfx::Size& size);
gfx::GpuMemoryBufferHandle ExportGpuMemoryBufferHandle() const;
int32_t texture_id() const { return texture_id_; }
private:
friend class base::RefCounted<TextureRef>;
TextureRef(uint32_t texture_id, const base::Closure& no_longer_needed_cb)
: texture_id_(texture_id), no_longer_needed_cb_(no_longer_needed_cb) {}
~TextureRef();
uint32_t texture_id_;
base::Closure no_longer_needed_cb_;
#if defined(USE_OZONE)
scoped_refptr<ui::NativePixmap> pixmap_;
#endif
};
TextureRef::~TextureRef() {
base::ResetAndReturn(&no_longer_needed_cb_).Run();
}
// static
scoped_refptr<TextureRef> TextureRef::Create(
uint32_t texture_id,
const base::Closure& no_longer_needed_cb) {
return make_scoped_refptr(new TextureRef(texture_id, no_longer_needed_cb));
}
#if defined(USE_OZONE)
gfx::BufferFormat VideoPixelFormatToGfxBufferFormat(
media::VideoPixelFormat pixel_format) {
switch (pixel_format) {
case media::VideoPixelFormat::PIXEL_FORMAT_ARGB:
return gfx::BufferFormat::BGRA_8888;
case media::VideoPixelFormat::PIXEL_FORMAT_XRGB:
return gfx::BufferFormat::BGRX_8888;
case media::VideoPixelFormat::PIXEL_FORMAT_NV12:
return gfx::BufferFormat::YUV_420_BIPLANAR;
default:
LOG_ASSERT(false) << "Unknown VideoPixelFormat";
return gfx::BufferFormat::BGRX_8888;
}
}
#endif
// static
scoped_refptr<TextureRef> TextureRef::CreatePreallocated(
uint32_t texture_id,
const base::Closure& no_longer_needed_cb,
media::VideoPixelFormat pixel_format,
const gfx::Size& size) {
scoped_refptr<TextureRef> texture_ref;
#if defined(USE_OZONE)
texture_ref = TextureRef::Create(texture_id, no_longer_needed_cb);
LOG_ASSERT(texture_ref);
ui::OzonePlatform* platform = ui::OzonePlatform::GetInstance();
ui::SurfaceFactoryOzone* factory = platform->GetSurfaceFactoryOzone();
gfx::BufferFormat buffer_format =
VideoPixelFormatToGfxBufferFormat(pixel_format);
texture_ref->pixmap_ =
factory->CreateNativePixmap(gfx::kNullAcceleratedWidget, size,
buffer_format, gfx::BufferUsage::SCANOUT);
LOG_ASSERT(texture_ref->pixmap_);
#endif
return texture_ref;
}
gfx::GpuMemoryBufferHandle TextureRef::ExportGpuMemoryBufferHandle() const {
gfx::GpuMemoryBufferHandle handle;
#if defined(USE_OZONE)
CHECK(pixmap_);
int duped_fd = HANDLE_EINTR(dup(pixmap_->GetDmaBufFd(0)));
LOG_ASSERT(duped_fd != -1) << "Failed duplicating dmabuf fd";
handle.type = gfx::OZONE_NATIVE_PIXMAP;
handle.native_pixmap_handle.fds.emplace_back(
base::FileDescriptor(duped_fd, true));
handle.native_pixmap_handle.strides.push_back(pixmap_->GetDmaBufPitch(0));
#endif
return handle;
}
// Client that can accept callbacks from a VideoDecodeAccelerator and is used by
// the TESTs below.
class GLRenderingVDAClient
: public VideoDecodeAccelerator::Client,
public base::SupportsWeakPtr<GLRenderingVDAClient> {
public:
// |window_id| the window_id of the client, which is used to identify the
// rendering area in the |rendering_helper|.
// Doesn't take ownership of |rendering_helper| or |note|, which must outlive
// |*this|.
// |num_play_throughs| indicates how many times to play through the video.
// |reset_after_frame_num| can be a frame number >=0 indicating a mid-stream
// Reset() should be done after that frame number is delivered, or
// END_OF_STREAM_RESET to indicate no mid-stream Reset().
// |delete_decoder_state| indicates when the underlying decoder should be
// Destroy()'d and deleted and can take values: N<0: delete after -N Decode()
// calls have been made, N>=0 means interpret as ClientState.
// Both |reset_after_frame_num| & |delete_decoder_state| apply only to the
// last play-through (governed by |num_play_throughs|).
// |suppress_rendering| indicates GL rendering is supressed or not.
// After |delay_reuse_after_frame_num| frame has been delivered, the client
// will start delaying the call to ReusePictureBuffer() for kReuseDelay.
// |decode_calls_per_second| is the number of VDA::Decode calls per second.
// If |decode_calls_per_second| > 0, |num_in_flight_decodes| must be 1.
GLRenderingVDAClient(size_t window_id,
RenderingHelper* rendering_helper,
ClientStateNotification<ClientState>* note,
const std::string& encoded_data,
int num_in_flight_decodes,
int num_play_throughs,
int reset_after_frame_num,
int delete_decoder_state,
int frame_width,
int frame_height,
media::VideoCodecProfile profile,
int fake_decoder,
bool suppress_rendering,
int delay_reuse_after_frame_num,
int decode_calls_per_second,
bool render_as_thumbnails);
~GLRenderingVDAClient() override;
void CreateAndStartDecoder();
// VideoDecodeAccelerator::Client implementation.
// The heart of the Client.
void ProvidePictureBuffers(uint32_t requested_num_of_buffers,
VideoPixelFormat format,
uint32_t textures_per_buffer,
const gfx::Size& dimensions,
uint32_t texture_target) override;
void DismissPictureBuffer(int32_t picture_buffer_id) override;
void PictureReady(const media::Picture& picture) override;
// Simple state changes.
void NotifyEndOfBitstreamBuffer(int32_t bitstream_buffer_id) override;
void NotifyFlushDone() override;
void NotifyResetDone() override;
void NotifyError(VideoDecodeAccelerator::Error error) override;
void OutputFrameDeliveryTimes(base::File* output);
// Simple getters for inspecting the state of the Client.
int num_done_bitstream_buffers() { return num_done_bitstream_buffers_; }
int num_skipped_fragments() { return num_skipped_fragments_; }
int num_queued_fragments() { return num_queued_fragments_; }
int num_decoded_frames() { return num_decoded_frames_; }
double frames_per_second();
// Return the median of the decode time of all decoded frames.
base::TimeDelta decode_time_median();
bool decoder_deleted() { return !decoder_.get(); }
private:
typedef std::map<int32_t, scoped_refptr<TextureRef>> TextureRefMap;
void SetState(ClientState new_state);
void FinishInitialization();
void ReturnPicture(int32_t picture_buffer_id);
// Delete the associated decoder helper.
void DeleteDecoder();
// Compute & return the first encoded bytes (including a start frame) to send
// to the decoder, starting at |start_pos| and returning one fragment. Skips
// to the first decodable position.
std::string GetBytesForFirstFragment(size_t start_pos, size_t* end_pos);
// Compute & return the encoded bytes of next fragment to send to the decoder
// (based on |start_pos|).
std::string GetBytesForNextFragment(size_t start_pos, size_t* end_pos);
// Helpers for GetBytesForNextFragment above.
void GetBytesForNextNALU(size_t start_pos, size_t* end_pos); // For h.264.
std::string GetBytesForNextFrame(size_t start_pos,
size_t* end_pos); // For VP8/9.
// Request decode of the next fragment in the encoded data.
void DecodeNextFragment();
size_t window_id_;
RenderingHelper* rendering_helper_;
gfx::Size frame_size_;
std::string encoded_data_;
const int num_in_flight_decodes_;
int outstanding_decodes_;
size_t encoded_data_next_pos_to_decode_;
int next_bitstream_buffer_id_;
ClientStateNotification<ClientState>* note_;
std::unique_ptr<VideoDecodeAccelerator> decoder_;
base::WeakPtr<VideoDecodeAccelerator> weak_vda_;
std::unique_ptr<base::WeakPtrFactory<VideoDecodeAccelerator>>
weak_vda_ptr_factory_;
std::unique_ptr<GpuVideoDecodeAcceleratorFactoryImpl> vda_factory_;
int remaining_play_throughs_;
int reset_after_frame_num_;
int delete_decoder_state_;
ClientState state_;
int num_skipped_fragments_;
int num_queued_fragments_;
int num_decoded_frames_;
int num_done_bitstream_buffers_;
base::TimeTicks initialize_done_ticks_;
media::VideoCodecProfile profile_;
int fake_decoder_;
GLenum texture_target_;
VideoPixelFormat pixel_format_;
bool suppress_rendering_;
std::vector<base::TimeTicks> frame_delivery_times_;
int delay_reuse_after_frame_num_;
// A map from bitstream buffer id to the decode start time of the buffer.
std::map<int, base::TimeTicks> decode_start_time_;
// The decode time of all decoded frames.
std::vector<base::TimeDelta> decode_time_;
// The number of VDA::Decode calls per second. This is to simulate webrtc.
int decode_calls_per_second_;
bool render_as_thumbnails_;
// A map of the textures that are currently active for the decoder, i.e.,
// have been created via AssignPictureBuffers() and not dismissed via
// DismissPictureBuffer(). The keys in the map are the IDs of the
// corresponding picture buffers, and the values are TextureRefs to the
// textures.
TextureRefMap active_textures_;
// A map of the textures that are still pending in the renderer.
// We check this to ensure all frames are rendered before entering the
// CS_RESET_State.
TextureRefMap pending_textures_;
int32_t next_picture_buffer_id_;
base::WeakPtr<GLRenderingVDAClient> weak_this_;
base::WeakPtrFactory<GLRenderingVDAClient> weak_this_factory_;
DISALLOW_IMPLICIT_CONSTRUCTORS(GLRenderingVDAClient);
};
static bool DoNothingReturnTrue() {
return true;
}
static bool DummyBindImage(uint32_t client_texture_id,
uint32_t texture_target,
const scoped_refptr<gl::GLImage>& image,
bool can_bind_to_sampler) {
return true;
}
GLRenderingVDAClient::GLRenderingVDAClient(
size_t window_id,
RenderingHelper* rendering_helper,
ClientStateNotification<ClientState>* note,
const std::string& encoded_data,
int num_in_flight_decodes,
int num_play_throughs,
int reset_after_frame_num,
int delete_decoder_state,
int frame_width,
int frame_height,
media::VideoCodecProfile profile,
int fake_decoder,
bool suppress_rendering,
int delay_reuse_after_frame_num,
int decode_calls_per_second,
bool render_as_thumbnails)
: window_id_(window_id),
rendering_helper_(rendering_helper),
frame_size_(frame_width, frame_height),
encoded_data_(encoded_data),
num_in_flight_decodes_(num_in_flight_decodes),
outstanding_decodes_(0),
encoded_data_next_pos_to_decode_(0),
next_bitstream_buffer_id_(0),
note_(note),
remaining_play_throughs_(num_play_throughs),
reset_after_frame_num_(reset_after_frame_num),
delete_decoder_state_(delete_decoder_state),
state_(CS_CREATED),
num_skipped_fragments_(0),
num_queued_fragments_(0),
num_decoded_frames_(0),
num_done_bitstream_buffers_(0),
fake_decoder_(fake_decoder),
texture_target_(0),
pixel_format_(PIXEL_FORMAT_UNKNOWN),
suppress_rendering_(suppress_rendering),
delay_reuse_after_frame_num_(delay_reuse_after_frame_num),
decode_calls_per_second_(decode_calls_per_second),
render_as_thumbnails_(render_as_thumbnails),
next_picture_buffer_id_(1),
weak_this_factory_(this) {
LOG_ASSERT(num_in_flight_decodes > 0);
LOG_ASSERT(num_play_throughs > 0);
// |num_in_flight_decodes_| is unsupported if |decode_calls_per_second_| > 0.
if (decode_calls_per_second_ > 0)
LOG_ASSERT(1 == num_in_flight_decodes_);
// Default to H264 baseline if no profile provided.
profile_ = (profile != media::VIDEO_CODEC_PROFILE_UNKNOWN
? profile
: media::H264PROFILE_BASELINE);
weak_this_ = weak_this_factory_.GetWeakPtr();
}
GLRenderingVDAClient::~GLRenderingVDAClient() {
DeleteDecoder(); // Clean up in case of expected error.
LOG_ASSERT(decoder_deleted());
SetState(CS_DESTROYED);
}
void GLRenderingVDAClient::CreateAndStartDecoder() {
LOG_ASSERT(decoder_deleted());
LOG_ASSERT(!decoder_.get());
if (fake_decoder_) {
decoder_.reset(new FakeVideoDecodeAccelerator(
frame_size_, base::Bind(&DoNothingReturnTrue)));
LOG_ASSERT(decoder_->Initialize(profile_, this));
} else {
if (!vda_factory_) {
vda_factory_ = GpuVideoDecodeAcceleratorFactoryImpl::Create(
base::Bind(&RenderingHelper::GetGLContext,
base::Unretained(rendering_helper_)),
base::Bind(&DoNothingReturnTrue), base::Bind(&DummyBindImage));
LOG_ASSERT(vda_factory_);
}
VideoDecodeAccelerator::Config config(profile_);
if (g_test_import) {
config.output_mode =
media::VideoDecodeAccelerator::Config::OutputMode::IMPORT;
}
gpu::GpuPreferences gpu_preferences;
decoder_ = vda_factory_->CreateVDA(this, config, gpu_preferences);
}
LOG_ASSERT(decoder_) << "Failed creating a VDA";
decoder_->TryToSetupDecodeOnSeparateThread(
weak_this_, base::ThreadTaskRunnerHandle::Get());
weak_vda_ptr_factory_.reset(
new base::WeakPtrFactory<VideoDecodeAccelerator>(decoder_.get()));
weak_vda_ = weak_vda_ptr_factory_->GetWeakPtr();
SetState(CS_DECODER_SET);
FinishInitialization();
}
void GLRenderingVDAClient::ProvidePictureBuffers(
uint32_t requested_num_of_buffers,
VideoPixelFormat pixel_format,
uint32_t textures_per_buffer,
const gfx::Size& dimensions,
uint32_t texture_target) {
if (decoder_deleted())
return;
LOG_ASSERT(textures_per_buffer == 1u);
std::vector<media::PictureBuffer> buffers;
requested_num_of_buffers += kExtraPictureBuffers;
if (pixel_format == media::PIXEL_FORMAT_UNKNOWN)
pixel_format = media::PIXEL_FORMAT_ARGB;
LOG_ASSERT((pixel_format_ == PIXEL_FORMAT_UNKNOWN) ||
(pixel_format_ == pixel_format));
pixel_format_ = pixel_format;
texture_target_ = texture_target;
for (uint32_t i = 0; i < requested_num_of_buffers; ++i) {
uint32_t texture_id;
base::WaitableEvent done(false, false);
rendering_helper_->CreateTexture(texture_target_, &texture_id, dimensions,
&done);
done.Wait();
scoped_refptr<TextureRef> texture_ref;
base::Closure delete_texture_cb =
base::Bind(&RenderingHelper::DeleteTexture,
base::Unretained(rendering_helper_), texture_id);
if (g_test_import) {
texture_ref = TextureRef::CreatePreallocated(
texture_id, delete_texture_cb, pixel_format, dimensions);
} else {
texture_ref = TextureRef::Create(texture_id, delete_texture_cb);
}
LOG_ASSERT(texture_ref);
int32_t picture_buffer_id = next_picture_buffer_id_++;
LOG_ASSERT(
active_textures_.insert(std::make_pair(picture_buffer_id, texture_ref))
.second);
media::PictureBuffer::TextureIds ids;
ids.push_back(texture_id);
buffers.push_back(media::PictureBuffer(picture_buffer_id, dimensions, ids));
}
decoder_->AssignPictureBuffers(buffers);
if (g_test_import) {
for (const auto& buffer : buffers) {
TextureRefMap::iterator texture_it = active_textures_.find(buffer.id());
ASSERT_NE(active_textures_.end(), texture_it);
const gfx::GpuMemoryBufferHandle& handle =
texture_it->second->ExportGpuMemoryBufferHandle();
LOG_ASSERT(!handle.is_null()) << "Failed producing GMB handle";
decoder_->ImportBufferForPicture(buffer.id(), handle);
}
}
}
void GLRenderingVDAClient::DismissPictureBuffer(int32_t picture_buffer_id) {
LOG_ASSERT(1U == active_textures_.erase(picture_buffer_id));
}
void GLRenderingVDAClient::PictureReady(const media::Picture& picture) {
// We shouldn't be getting pictures delivered after Reset has completed.
LOG_ASSERT(state_ < CS_RESET);
if (decoder_deleted())
return;
base::TimeTicks now = base::TimeTicks::Now();
frame_delivery_times_.push_back(now);
// Save the decode time of this picture.
std::map<int, base::TimeTicks>::iterator it =
decode_start_time_.find(picture.bitstream_buffer_id());
ASSERT_NE(decode_start_time_.end(), it);
decode_time_.push_back(now - it->second);
decode_start_time_.erase(it);
LOG_ASSERT(picture.bitstream_buffer_id() <= next_bitstream_buffer_id_);
++num_decoded_frames_;
// Mid-stream reset applies only to the last play-through per constructor
// comment.
if (remaining_play_throughs_ == 1 &&
reset_after_frame_num_ == num_decoded_frames_) {
reset_after_frame_num_ = MID_STREAM_RESET;
decoder_->Reset();
// Re-start decoding from the beginning of the stream to avoid needing to
// know how to find I-frames and so on in this test.
encoded_data_next_pos_to_decode_ = 0;
}
TextureRefMap::iterator texture_it =
active_textures_.find(picture.picture_buffer_id());
ASSERT_NE(active_textures_.end(), texture_it);
scoped_refptr<VideoFrameTexture> video_frame = new VideoFrameTexture(
texture_target_, texture_it->second->texture_id(),
base::Bind(&GLRenderingVDAClient::ReturnPicture, AsWeakPtr(),
picture.picture_buffer_id()));
ASSERT_TRUE(pending_textures_.insert(*texture_it).second);
if (render_as_thumbnails_) {
rendering_helper_->RenderThumbnail(video_frame->texture_target(),
video_frame->texture_id());
} else if (!suppress_rendering_) {
rendering_helper_->QueueVideoFrame(window_id_, video_frame);
}
}
void GLRenderingVDAClient::ReturnPicture(int32_t picture_buffer_id) {
if (decoder_deleted())
return;
LOG_ASSERT(1U == pending_textures_.erase(picture_buffer_id));
if (pending_textures_.empty() && state_ == CS_RESETTING) {
SetState(CS_RESET);
DeleteDecoder();
return;
}
if (num_decoded_frames_ > delay_reuse_after_frame_num_) {
base::ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE, base::Bind(&VideoDecodeAccelerator::ReusePictureBuffer,
weak_vda_, picture_buffer_id),
kReuseDelay);
} else {
decoder_->ReusePictureBuffer(picture_buffer_id);
}
}
void GLRenderingVDAClient::NotifyEndOfBitstreamBuffer(
int32_t bitstream_buffer_id) {
// TODO(fischman): this test currently relies on this notification to make
// forward progress during a Reset(). But the VDA::Reset() API doesn't
// guarantee this, so stop relying on it (and remove the notifications from
// VaapiVideoDecodeAccelerator::FinishReset()).
++num_done_bitstream_buffers_;
--outstanding_decodes_;
// Flush decoder after all BitstreamBuffers are processed.
if (encoded_data_next_pos_to_decode_ == encoded_data_.size()) {
// TODO(owenlin): We should not have to check the number of
// |outstanding_decodes_|. |decoder_| should be able to accept Flush()
// before it's done with outstanding decodes. (crbug.com/528183)
if (outstanding_decodes_ == 0) {
decoder_->Flush();
SetState(CS_FLUSHING);
}
} else if (decode_calls_per_second_ == 0) {
DecodeNextFragment();
}
}
void GLRenderingVDAClient::NotifyFlushDone() {
if (decoder_deleted())
return;
SetState(CS_FLUSHED);
--remaining_play_throughs_;
DCHECK_GE(remaining_play_throughs_, 0);
if (decoder_deleted())
return;
decoder_->Reset();
SetState(CS_RESETTING);
}
void GLRenderingVDAClient::NotifyResetDone() {
if (decoder_deleted())
return;
if (reset_after_frame_num_ == MID_STREAM_RESET) {
reset_after_frame_num_ = END_OF_STREAM_RESET;
DecodeNextFragment();
return;
} else if (reset_after_frame_num_ == START_OF_STREAM_RESET) {
reset_after_frame_num_ = END_OF_STREAM_RESET;
for (int i = 0; i < num_in_flight_decodes_; ++i)
DecodeNextFragment();
return;
}
if (remaining_play_throughs_) {
encoded_data_next_pos_to_decode_ = 0;
FinishInitialization();
return;
}
rendering_helper_->Flush(window_id_);
if (pending_textures_.empty()) {
SetState(CS_RESET);
DeleteDecoder();
}
}
void GLRenderingVDAClient::NotifyError(VideoDecodeAccelerator::Error error) {
SetState(CS_ERROR);
}
void GLRenderingVDAClient::OutputFrameDeliveryTimes(base::File* output) {
std::string s = base::StringPrintf("frame count: %" PRIuS "\n",
frame_delivery_times_.size());
output->WriteAtCurrentPos(s.data(), s.length());
base::TimeTicks t0 = initialize_done_ticks_;
for (size_t i = 0; i < frame_delivery_times_.size(); ++i) {
s = base::StringPrintf("frame %04" PRIuS ": %" PRId64 " us\n", i,
(frame_delivery_times_[i] - t0).InMicroseconds());
t0 = frame_delivery_times_[i];
output->WriteAtCurrentPos(s.data(), s.length());
}
}
static bool LookingAtNAL(const std::string& encoded, size_t pos) {
return encoded[pos] == 0 && encoded[pos + 1] == 0 && encoded[pos + 2] == 0 &&
encoded[pos + 3] == 1;
}
void GLRenderingVDAClient::SetState(ClientState new_state) {
note_->Notify(new_state);
state_ = new_state;
if (!remaining_play_throughs_ && new_state == delete_decoder_state_) {
LOG_ASSERT(!decoder_deleted());
DeleteDecoder();
}
}
void GLRenderingVDAClient::FinishInitialization() {
SetState(CS_INITIALIZED);
initialize_done_ticks_ = base::TimeTicks::Now();
if (reset_after_frame_num_ == START_OF_STREAM_RESET) {
reset_after_frame_num_ = MID_STREAM_RESET;
decoder_->Reset();
return;
}
for (int i = 0; i < num_in_flight_decodes_; ++i)
DecodeNextFragment();
DCHECK_EQ(outstanding_decodes_, num_in_flight_decodes_);
}
void GLRenderingVDAClient::DeleteDecoder() {
if (decoder_deleted())
return;
weak_vda_ptr_factory_->InvalidateWeakPtrs();
decoder_.reset();
STLClearObject(&encoded_data_);
active_textures_.clear();
// Cascade through the rest of the states to simplify test code below.
for (int i = state_ + 1; i < CS_MAX; ++i)
SetState(static_cast<ClientState>(i));
}
std::string GLRenderingVDAClient::GetBytesForFirstFragment(size_t start_pos,
size_t* end_pos) {
if (profile_ < media::H264PROFILE_MAX) {
*end_pos = start_pos;
while (*end_pos + 4 < encoded_data_.size()) {
if ((encoded_data_[*end_pos + 4] & 0x1f) == 0x7) // SPS start frame
return GetBytesForNextFragment(*end_pos, end_pos);
GetBytesForNextNALU(*end_pos, end_pos);
num_skipped_fragments_++;
}
*end_pos = start_pos;
return std::string();
}
DCHECK_LE(profile_, media::VP9PROFILE_MAX);
return GetBytesForNextFragment(start_pos, end_pos);
}
std::string GLRenderingVDAClient::GetBytesForNextFragment(size_t start_pos,
size_t* end_pos) {
if (profile_ < media::H264PROFILE_MAX) {
*end_pos = start_pos;
GetBytesForNextNALU(*end_pos, end_pos);
if (start_pos != *end_pos) {
num_queued_fragments_++;
}
return encoded_data_.substr(start_pos, *end_pos - start_pos);
}
DCHECK_LE(profile_, media::VP9PROFILE_MAX);
return GetBytesForNextFrame(start_pos, end_pos);
}
void GLRenderingVDAClient::GetBytesForNextNALU(size_t start_pos,
size_t* end_pos) {
*end_pos = start_pos;
if (*end_pos + 4 > encoded_data_.size())
return;
LOG_ASSERT(LookingAtNAL(encoded_data_, start_pos));
*end_pos += 4;
while (*end_pos + 4 <= encoded_data_.size() &&
!LookingAtNAL(encoded_data_, *end_pos)) {
++*end_pos;
}
if (*end_pos + 3 >= encoded_data_.size())
*end_pos = encoded_data_.size();
}
std::string GLRenderingVDAClient::GetBytesForNextFrame(size_t start_pos,
size_t* end_pos) {
// Helpful description: http://wiki.multimedia.cx/index.php?title=IVF
std::string bytes;
if (start_pos == 0)
start_pos = 32; // Skip IVF header.
*end_pos = start_pos;
uint32_t frame_size = *reinterpret_cast<uint32_t*>(&encoded_data_[*end_pos]);
*end_pos += 12; // Skip frame header.
bytes.append(encoded_data_.substr(*end_pos, frame_size));
*end_pos += frame_size;
num_queued_fragments_++;
return bytes;
}
static bool FragmentHasConfigInfo(const uint8_t* data,
size_t size,
media::VideoCodecProfile profile) {
if (profile >= media::H264PROFILE_MIN && profile <= media::H264PROFILE_MAX) {
media::H264Parser parser;
parser.SetStream(data, size);
media::H264NALU nalu;
media::H264Parser::Result result = parser.AdvanceToNextNALU(&nalu);
if (result != media::H264Parser::kOk) {
// Let the VDA figure out there's something wrong with the stream.
return false;
}
return nalu.nal_unit_type == media::H264NALU::kSPS;
} else if (profile >= media::VP8PROFILE_MIN &&
profile <= media::VP9PROFILE_MAX) {
return (size > 0 && !(data[0] & 0x01));
}
// Shouldn't happen at this point.
LOG(FATAL) << "Invalid profile: " << profile;
return false;
}
void GLRenderingVDAClient::DecodeNextFragment() {
if (decoder_deleted())
return;
if (encoded_data_next_pos_to_decode_ == encoded_data_.size())
return;
size_t end_pos;
std::string next_fragment_bytes;
if (encoded_data_next_pos_to_decode_ == 0) {
next_fragment_bytes = GetBytesForFirstFragment(0, &end_pos);
} else {
next_fragment_bytes =
GetBytesForNextFragment(encoded_data_next_pos_to_decode_, &end_pos);
}
size_t next_fragment_size = next_fragment_bytes.size();
// Call Reset() just after Decode() if the fragment contains config info.
// This tests how the VDA behaves when it gets a reset request before it has
// a chance to ProvidePictureBuffers().
bool reset_here = false;
if (reset_after_frame_num_ == RESET_AFTER_FIRST_CONFIG_INFO) {
reset_here = FragmentHasConfigInfo(
reinterpret_cast<const uint8_t*>(next_fragment_bytes.data()),
next_fragment_size, profile_);
if (reset_here)
reset_after_frame_num_ = END_OF_STREAM_RESET;
}
// Populate the shared memory buffer w/ the fragment, duplicate its handle,
// and hand it off to the decoder.
base::SharedMemory shm;
LOG_ASSERT(shm.CreateAndMapAnonymous(next_fragment_size));
memcpy(shm.memory(), next_fragment_bytes.data(), next_fragment_size);
base::SharedMemoryHandle dup_handle;
bool result =
shm.ShareToProcess(base::GetCurrentProcessHandle(), &dup_handle);
LOG_ASSERT(result);
media::BitstreamBuffer bitstream_buffer(next_bitstream_buffer_id_, dup_handle,
next_fragment_size);
decode_start_time_[next_bitstream_buffer_id_] = base::TimeTicks::Now();
// Mask against 30 bits, to avoid (undefined) wraparound on signed integer.
next_bitstream_buffer_id_ = (next_bitstream_buffer_id_ + 1) & 0x3FFFFFFF;
decoder_->Decode(bitstream_buffer);
++outstanding_decodes_;
if (!remaining_play_throughs_ &&
-delete_decoder_state_ == next_bitstream_buffer_id_) {
DeleteDecoder();
}
if (reset_here) {
reset_after_frame_num_ = MID_STREAM_RESET;
decoder_->Reset();
// Restart from the beginning to re-Decode() the SPS we just sent.
encoded_data_next_pos_to_decode_ = 0;
} else {
encoded_data_next_pos_to_decode_ = end_pos;
}
if (decode_calls_per_second_ > 0) {
base::ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind(&GLRenderingVDAClient::DecodeNextFragment, AsWeakPtr()),
base::TimeDelta::FromSeconds(1) / decode_calls_per_second_);
}
}
double GLRenderingVDAClient::frames_per_second() {
base::TimeDelta delta = frame_delivery_times_.back() - initialize_done_ticks_;
return num_decoded_frames_ / delta.InSecondsF();
}
base::TimeDelta GLRenderingVDAClient::decode_time_median() {
if (decode_time_.size() == 0)
return base::TimeDelta();
std::sort(decode_time_.begin(), decode_time_.end());
int index = decode_time_.size() / 2;
if (decode_time_.size() % 2 != 0)
return decode_time_[index];
return (decode_time_[index] + decode_time_[index - 1]) / 2;
}
class VideoDecodeAcceleratorTest : public ::testing::Test {
protected:
VideoDecodeAcceleratorTest();
void SetUp() override;
void TearDown() override;
// Parse |data| into its constituent parts, set the various output fields
// accordingly, and read in video stream. CHECK-fails on unexpected or
// missing required data. Unspecified optional fields are set to -1.
void ParseAndReadTestVideoData(base::FilePath::StringType data,
std::vector<TestVideoFile*>* test_video_files);
// Update the parameters of |test_video_files| according to
// |num_concurrent_decoders| and |reset_point|. Ex: the expected number of
// frames should be adjusted if decoder is reset in the middle of the stream.
void UpdateTestVideoFileParams(size_t num_concurrent_decoders,
int reset_point,
std::vector<TestVideoFile*>* test_video_files);
void InitializeRenderingHelper(const RenderingHelperParams& helper_params);
void CreateAndStartDecoder(GLRenderingVDAClient* client,
ClientStateNotification<ClientState>* note);
void WaitUntilDecodeFinish(ClientStateNotification<ClientState>* note);
void WaitUntilIdle();
void OutputLogFile(const base::FilePath::CharType* log_path,
const std::string& content);
std::vector<TestVideoFile*> test_video_files_;
RenderingHelper rendering_helper_;
private:
// Required for Thread to work. Not used otherwise.
base::ShadowingAtExitManager at_exit_manager_;
DISALLOW_COPY_AND_ASSIGN(VideoDecodeAcceleratorTest);
};
VideoDecodeAcceleratorTest::VideoDecodeAcceleratorTest() {}
void VideoDecodeAcceleratorTest::SetUp() {
ParseAndReadTestVideoData(g_test_video_data, &test_video_files_);
}
void VideoDecodeAcceleratorTest::TearDown() {
g_env->GetRenderingTaskRunner()->PostTask(
FROM_HERE, base::Bind(&STLDeleteElements<std::vector<TestVideoFile*>>,
&test_video_files_));
base::WaitableEvent done(false, false);
g_env->GetRenderingTaskRunner()->PostTask(
FROM_HERE, base::Bind(&RenderingHelper::UnInitialize,
base::Unretained(&rendering_helper_), &done));
done.Wait();
rendering_helper_.TearDown();
}
void VideoDecodeAcceleratorTest::ParseAndReadTestVideoData(
base::FilePath::StringType data,
std::vector<TestVideoFile*>* test_video_files) {
std::vector<base::FilePath::StringType> entries =
base::SplitString(data, base::FilePath::StringType(1, ';'),
base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
LOG_ASSERT(entries.size() >= 1U) << data;
for (size_t index = 0; index < entries.size(); ++index) {
std::vector<base::FilePath::StringType> fields =
base::SplitString(entries[index], base::FilePath::StringType(1, ':'),
base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
LOG_ASSERT(fields.size() >= 1U) << entries[index];
LOG_ASSERT(fields.size() <= 8U) << entries[index];
TestVideoFile* video_file = new TestVideoFile(fields[0]);
if (!fields[1].empty())
LOG_ASSERT(base::StringToInt(fields[1], &video_file->width));
if (!fields[2].empty())
LOG_ASSERT(base::StringToInt(fields[2], &video_file->height));
if (!fields[3].empty())
LOG_ASSERT(base::StringToInt(fields[3], &video_file->num_frames));
if (!fields[4].empty())
LOG_ASSERT(base::StringToInt(fields[4], &video_file->num_fragments));
if (!fields[5].empty())
LOG_ASSERT(base::StringToInt(fields[5], &video_file->min_fps_render));
if (!fields[6].empty())
LOG_ASSERT(base::StringToInt(fields[6], &video_file->min_fps_no_render));
int profile = -1;
if (!fields[7].empty())
LOG_ASSERT(base::StringToInt(fields[7], &profile));
video_file->profile = static_cast<media::VideoCodecProfile>(profile);
// Read in the video data.
base::FilePath filepath(video_file->file_name);
LOG_ASSERT(base::ReadFileToString(filepath, &video_file->data_str))
<< "test_video_file: " << filepath.MaybeAsASCII();
test_video_files->push_back(video_file);
}
}
void VideoDecodeAcceleratorTest::UpdateTestVideoFileParams(
size_t num_concurrent_decoders,
int reset_point,
std::vector<TestVideoFile*>* test_video_files) {
for (size_t i = 0; i < test_video_files->size(); i++) {
TestVideoFile* video_file = (*test_video_files)[i];
if (reset_point == MID_STREAM_RESET) {
// Reset should not go beyond the last frame;
// reset in the middle of the stream for short videos.
video_file->reset_after_frame_num = kMaxResetAfterFrameNum;
if (video_file->num_frames <= video_file->reset_after_frame_num)
video_file->reset_after_frame_num = video_file->num_frames / 2;
video_file->num_frames += video_file->reset_after_frame_num;
} else {
video_file->reset_after_frame_num = reset_point;
}
if (video_file->min_fps_render != -1)
video_file->min_fps_render /= num_concurrent_decoders;
if (video_file->min_fps_no_render != -1)
video_file->min_fps_no_render /= num_concurrent_decoders;
}
}
void VideoDecodeAcceleratorTest::InitializeRenderingHelper(
const RenderingHelperParams& helper_params) {
rendering_helper_.Setup();
base::WaitableEvent done(false, false);
g_env->GetRenderingTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RenderingHelper::Initialize,
base::Unretained(&rendering_helper_), helper_params, &done));
done.Wait();
}
void VideoDecodeAcceleratorTest::CreateAndStartDecoder(
GLRenderingVDAClient* client,
ClientStateNotification<ClientState>* note) {
g_env->GetRenderingTaskRunner()->PostTask(
FROM_HERE, base::Bind(&GLRenderingVDAClient::CreateAndStartDecoder,
base::Unretained(client)));
ASSERT_EQ(note->Wait(), CS_DECODER_SET);
}
void VideoDecodeAcceleratorTest::WaitUntilDecodeFinish(
ClientStateNotification<ClientState>* note) {
for (int i = 0; i < CS_MAX; i++) {
if (note->Wait() == CS_DESTROYED)
break;
}
}
void VideoDecodeAcceleratorTest::WaitUntilIdle() {
base::WaitableEvent done(false, false);
g_env->GetRenderingTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&base::WaitableEvent::Signal, base::Unretained(&done)));
done.Wait();
}
void VideoDecodeAcceleratorTest::OutputLogFile(
const base::FilePath::CharType* log_path,
const std::string& content) {
base::File file(base::FilePath(log_path),
base::File::FLAG_CREATE_ALWAYS | base::File::FLAG_WRITE);
file.WriteAtCurrentPos(content.data(), content.length());
}
// Test parameters:
// - Number of concurrent decoders. The value takes effect when there is only
// one input stream; otherwise, one decoder per input stream will be
// instantiated.
// - Number of concurrent in-flight Decode() calls per decoder.
// - Number of play-throughs.
// - reset_after_frame_num: see GLRenderingVDAClient ctor.
// - delete_decoder_phase: see GLRenderingVDAClient ctor.
// - whether to test slow rendering by delaying ReusePictureBuffer().
// - whether the video frames are rendered as thumbnails.
class VideoDecodeAcceleratorParamTest
: public VideoDecodeAcceleratorTest,
public ::testing::WithParamInterface<
std::tuple<int, int, int, ResetPoint, ClientState, bool, bool>> {};
// Wait for |note| to report a state and if it's not |expected_state| then
// assert |client| has deleted its decoder.
static void AssertWaitForStateOrDeleted(
ClientStateNotification<ClientState>* note,
GLRenderingVDAClient* client,
ClientState expected_state) {
ClientState state = note->Wait();
if (state == expected_state)
return;
ASSERT_TRUE(client->decoder_deleted())
<< "Decoder not deleted but Wait() returned " << state
<< ", instead of " << expected_state;
}
// We assert a minimal number of concurrent decoders we expect to succeed.
// Different platforms can support more concurrent decoders, so we don't assert
// failure above this.
enum { kMinSupportedNumConcurrentDecoders = 3 };
// Test the most straightforward case possible: data is decoded from a single
// chunk and rendered to the screen.
TEST_P(VideoDecodeAcceleratorParamTest, TestSimpleDecode) {
size_t num_concurrent_decoders = std::get<0>(GetParam());
const size_t num_in_flight_decodes = std::get<1>(GetParam());
int num_play_throughs = std::get<2>(GetParam());
const int reset_point = std::get<3>(GetParam());
const int delete_decoder_state = std::get<4>(GetParam());
bool test_reuse_delay = std::get<5>(GetParam());
const bool render_as_thumbnails = std::get<6>(GetParam());
if (test_video_files_.size() > 1)
num_concurrent_decoders = test_video_files_.size();
if (g_num_play_throughs > 0)
num_play_throughs = g_num_play_throughs;
UpdateTestVideoFileParams(num_concurrent_decoders, reset_point,
&test_video_files_);
// Suppress GL rendering for all tests when the "--rendering_fps" is 0.
const bool suppress_rendering = g_rendering_fps == 0;
std::vector<ClientStateNotification<ClientState>*> notes(
num_concurrent_decoders, NULL);
std::vector<GLRenderingVDAClient*> clients(num_concurrent_decoders, NULL);
RenderingHelperParams helper_params;
helper_params.rendering_fps = g_rendering_fps;
helper_params.warm_up_iterations = g_rendering_warm_up;
helper_params.render_as_thumbnails = render_as_thumbnails;
if (render_as_thumbnails) {
// Only one decoder is supported with thumbnail rendering
LOG_ASSERT(num_concurrent_decoders == 1U);
helper_params.thumbnails_page_size = kThumbnailsPageSize;
helper_params.thumbnail_size = kThumbnailSize;
}
// First kick off all the decoders.
for (size_t index = 0; index < num_concurrent_decoders; ++index) {
TestVideoFile* video_file =
test_video_files_[index % test_video_files_.size()];
ClientStateNotification<ClientState>* note =
new ClientStateNotification<ClientState>();
notes[index] = note;
int delay_after_frame_num = std::numeric_limits<int>::max();
if (test_reuse_delay &&
kMaxFramesToDelayReuse * 2 < video_file->num_frames) {
delay_after_frame_num = video_file->num_frames - kMaxFramesToDelayReuse;
}
GLRenderingVDAClient* client =
new GLRenderingVDAClient(index,
&rendering_helper_,
note,
video_file->data_str,
num_in_flight_decodes,
num_play_throughs,
video_file->reset_after_frame_num,
delete_decoder_state,
video_file->width,
video_file->height,
video_file->profile,
g_fake_decoder,
suppress_rendering,
delay_after_frame_num,
0,
render_as_thumbnails);
clients[index] = client;
helper_params.window_sizes.push_back(
render_as_thumbnails
? kThumbnailsPageSize
: gfx::Size(video_file->width, video_file->height));
}
InitializeRenderingHelper(helper_params);
for (size_t index = 0; index < num_concurrent_decoders; ++index) {
CreateAndStartDecoder(clients[index], notes[index]);
}
// Then wait for all the decodes to finish.
// Only check performance & correctness later if we play through only once.
bool skip_performance_and_correctness_checks = num_play_throughs > 1;
for (size_t i = 0; i < num_concurrent_decoders; ++i) {
ClientStateNotification<ClientState>* note = notes[i];
ClientState state = note->Wait();
if (state != CS_INITIALIZED) {
skip_performance_and_correctness_checks = true;
// We expect initialization to fail only when more than the supported
// number of decoders is instantiated. Assert here that something else
// didn't trigger failure.
ASSERT_GT(num_concurrent_decoders,
static_cast<size_t>(kMinSupportedNumConcurrentDecoders));
continue;
}
ASSERT_EQ(state, CS_INITIALIZED);
for (int n = 0; n < num_play_throughs; ++n) {
// For play-throughs other than the first, we expect initialization to
// succeed unconditionally.
if (n > 0) {
ASSERT_NO_FATAL_FAILURE(
AssertWaitForStateOrDeleted(note, clients[i], CS_INITIALIZED));
}
// InitializeDone kicks off decoding inside the client, so we just need to
// wait for Flush.
ASSERT_NO_FATAL_FAILURE(
AssertWaitForStateOrDeleted(note, clients[i], CS_FLUSHING));
ASSERT_NO_FATAL_FAILURE(
AssertWaitForStateOrDeleted(note, clients[i], CS_FLUSHED));
// FlushDone requests Reset().
ASSERT_NO_FATAL_FAILURE(
AssertWaitForStateOrDeleted(note, clients[i], CS_RESETTING));
}
ASSERT_NO_FATAL_FAILURE(
AssertWaitForStateOrDeleted(note, clients[i], CS_RESET));
// ResetDone requests Destroy().
ASSERT_NO_FATAL_FAILURE(
AssertWaitForStateOrDeleted(note, clients[i], CS_DESTROYED));
}
// Finally assert that decoding went as expected.
for (size_t i = 0;
i < num_concurrent_decoders && !skip_performance_and_correctness_checks;
++i) {
// We can only make performance/correctness assertions if the decoder was
// allowed to finish.
if (delete_decoder_state < CS_FLUSHED)
continue;
GLRenderingVDAClient* client = clients[i];
TestVideoFile* video_file = test_video_files_[i % test_video_files_.size()];
if (video_file->num_frames > 0) {
// Expect the decoded frames may be more than the video frames as frames
// could still be returned until resetting done.
if (video_file->reset_after_frame_num > 0)
EXPECT_GE(client->num_decoded_frames(), video_file->num_frames);
else
EXPECT_EQ(client->num_decoded_frames(), video_file->num_frames);
}
if (reset_point == END_OF_STREAM_RESET) {
EXPECT_EQ(video_file->num_fragments, client->num_skipped_fragments() +
client->num_queued_fragments());
EXPECT_EQ(client->num_done_bitstream_buffers(),
client->num_queued_fragments());
}
LOG(INFO) << "Decoder " << i << " fps: " << client->frames_per_second();
if (!render_as_thumbnails) {
int min_fps = suppress_rendering ? video_file->min_fps_no_render
: video_file->min_fps_render;
if (min_fps > 0 && !test_reuse_delay)
EXPECT_GT(client->frames_per_second(), min_fps);
}
}
if (render_as_thumbnails) {
std::vector<unsigned char> rgb;
bool alpha_solid;
base::WaitableEvent done(false, false);
g_env->GetRenderingTaskRunner()->PostTask(
FROM_HERE, base::Bind(&RenderingHelper::GetThumbnailsAsRGB,
base::Unretained(&rendering_helper_), &rgb,
&alpha_solid, &done));
done.Wait();
std::vector<std::string> golden_md5s;
std::string md5_string = base::MD5String(
base::StringPiece(reinterpret_cast<char*>(&rgb[0]), rgb.size()));
ReadGoldenThumbnailMD5s(test_video_files_[0], &golden_md5s);
std::vector<std::string>::iterator match =
find(golden_md5s.begin(), golden_md5s.end(), md5_string);
if (match == golden_md5s.end()) {
// Convert raw RGB into PNG for export.
std::vector<unsigned char> png;
gfx::PNGCodec::Encode(&rgb[0],
gfx::PNGCodec::FORMAT_RGB,
kThumbnailsPageSize,
kThumbnailsPageSize.width() * 3,
true,
std::vector<gfx::PNGCodec::Comment>(),
&png);
LOG(ERROR) << "Unknown thumbnails MD5: " << md5_string;
base::FilePath filepath(test_video_files_[0]->file_name);
filepath = filepath.AddExtension(FILE_PATH_LITERAL(".bad_thumbnails"));
filepath = filepath.AddExtension(FILE_PATH_LITERAL(".png"));
int num_bytes = base::WriteFile(
filepath, reinterpret_cast<char*>(&png[0]), png.size());
ASSERT_EQ(num_bytes, static_cast<int>(png.size()));
}
ASSERT_NE(match, golden_md5s.end());
EXPECT_EQ(alpha_solid, true) << "RGBA frame had incorrect alpha";
}
// Output the frame delivery time to file
// We can only make performance/correctness assertions if the decoder was
// allowed to finish.
if (g_output_log != NULL && delete_decoder_state >= CS_FLUSHED) {
base::File output_file(
base::FilePath(g_output_log),
base::File::FLAG_CREATE_ALWAYS | base::File::FLAG_WRITE);
for (size_t i = 0; i < num_concurrent_decoders; ++i) {
clients[i]->OutputFrameDeliveryTimes(&output_file);
}
}
g_env->GetRenderingTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&STLDeleteElements<std::vector<GLRenderingVDAClient*>>,
&clients));
g_env->GetRenderingTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&STLDeleteElements<
std::vector<ClientStateNotification<ClientState>*>>,
&notes));
WaitUntilIdle();
};
// Test that replay after EOS works fine.
INSTANTIATE_TEST_CASE_P(
ReplayAfterEOS,
VideoDecodeAcceleratorParamTest,
::testing::Values(
std::make_tuple(1, 1, 4, END_OF_STREAM_RESET, CS_RESET, false, false)));
// Test that Reset() before the first Decode() works fine.
INSTANTIATE_TEST_CASE_P(ResetBeforeDecode,
VideoDecodeAcceleratorParamTest,
::testing::Values(std::make_tuple(1,
1,
1,
START_OF_STREAM_RESET,
CS_RESET,
false,
false)));
// Test Reset() immediately after Decode() containing config info.
INSTANTIATE_TEST_CASE_P(
ResetAfterFirstConfigInfo,
VideoDecodeAcceleratorParamTest,
::testing::Values(std::make_tuple(1,
1,
1,
RESET_AFTER_FIRST_CONFIG_INFO,
CS_RESET,
false,
false)));
// Test that Reset() mid-stream works fine and doesn't affect decoding even when
// Decode() calls are made during the reset.
INSTANTIATE_TEST_CASE_P(
MidStreamReset,
VideoDecodeAcceleratorParamTest,
::testing::Values(
std::make_tuple(1, 1, 1, MID_STREAM_RESET, CS_RESET, false, false)));
INSTANTIATE_TEST_CASE_P(
SlowRendering,
VideoDecodeAcceleratorParamTest,
::testing::Values(
std::make_tuple(1, 1, 1, END_OF_STREAM_RESET, CS_RESET, true, false)));
// Test that Destroy() mid-stream works fine (primarily this is testing that no
// crashes occur).
INSTANTIATE_TEST_CASE_P(
TearDownTiming,
VideoDecodeAcceleratorParamTest,
::testing::Values(
std::make_tuple(1,
1,
1,
END_OF_STREAM_RESET,
CS_DECODER_SET,
false,
false),
std::make_tuple(1,
1,
1,
END_OF_STREAM_RESET,
CS_INITIALIZED,
false,
false),
std::make_tuple(1,
1,
1,
END_OF_STREAM_RESET,
CS_FLUSHING,
false,
false),
std::make_tuple(1, 1, 1, END_OF_STREAM_RESET, CS_FLUSHED, false, false),
std::make_tuple(1,
1,
1,
END_OF_STREAM_RESET,
CS_RESETTING,
false,
false),
std::make_tuple(1, 1, 1, END_OF_STREAM_RESET, CS_RESET, false, false),
std::make_tuple(1,
1,
1,
END_OF_STREAM_RESET,
static_cast<ClientState>(-1),
false,
false),
std::make_tuple(1,
1,
1,
END_OF_STREAM_RESET,
static_cast<ClientState>(-10),
false,
false),
std::make_tuple(1,
1,
1,
END_OF_STREAM_RESET,
static_cast<ClientState>(-100),
false,
false)));
// Test that decoding various variation works with multiple in-flight decodes.
INSTANTIATE_TEST_CASE_P(
DecodeVariations,
VideoDecodeAcceleratorParamTest,
::testing::Values(
std::make_tuple(1, 1, 1, END_OF_STREAM_RESET, CS_RESET, false, false),
std::make_tuple(1, 10, 1, END_OF_STREAM_RESET, CS_RESET, false, false),
// Tests queuing.
std::make_tuple(1,
15,
1,
END_OF_STREAM_RESET,
CS_RESET,
false,
false)));
// Find out how many concurrent decoders can go before we exhaust system
// resources.
INSTANTIATE_TEST_CASE_P(
ResourceExhaustion,
VideoDecodeAcceleratorParamTest,
::testing::Values(
// +0 hack below to promote enum to int.
std::make_tuple(kMinSupportedNumConcurrentDecoders + 0,
1,
1,
END_OF_STREAM_RESET,
CS_RESET,
false,
false),
std::make_tuple(kMinSupportedNumConcurrentDecoders + 1,
1,
1,
END_OF_STREAM_RESET,
CS_RESET,
false,
false)));
// Thumbnailing test
INSTANTIATE_TEST_CASE_P(
Thumbnail,
VideoDecodeAcceleratorParamTest,
::testing::Values(
std::make_tuple(1, 1, 1, END_OF_STREAM_RESET, CS_RESET, false, true)));
// Measure the median of the decode time when VDA::Decode is called 30 times per
// second.
TEST_F(VideoDecodeAcceleratorTest, TestDecodeTimeMedian) {
RenderingHelperParams helper_params;
// Disable rendering by setting the rendering_fps = 0.
helper_params.rendering_fps = 0;
helper_params.warm_up_iterations = 0;
helper_params.render_as_thumbnails = false;
ClientStateNotification<ClientState>* note =
new ClientStateNotification<ClientState>();
GLRenderingVDAClient* client =
new GLRenderingVDAClient(0,
&rendering_helper_,
note,
test_video_files_[0]->data_str,
1,
1,
test_video_files_[0]->reset_after_frame_num,
CS_RESET,
test_video_files_[0]->width,
test_video_files_[0]->height,
test_video_files_[0]->profile,
g_fake_decoder,
true,
std::numeric_limits<int>::max(),
kWebRtcDecodeCallsPerSecond,
false /* render_as_thumbnail */);
helper_params.window_sizes.push_back(
gfx::Size(test_video_files_[0]->width, test_video_files_[0]->height));
InitializeRenderingHelper(helper_params);
CreateAndStartDecoder(client, note);
WaitUntilDecodeFinish(note);
base::TimeDelta decode_time_median = client->decode_time_median();
std::string output_string =
base::StringPrintf("Decode time median: %" PRId64 " us",
decode_time_median.InMicroseconds());
LOG(INFO) << output_string;
if (g_output_log != NULL)
OutputLogFile(g_output_log, output_string);
g_env->GetRenderingTaskRunner()->DeleteSoon(FROM_HERE, client);
g_env->GetRenderingTaskRunner()->DeleteSoon(FROM_HERE, note);
WaitUntilIdle();
};
// TODO(fischman, vrk): add more tests! In particular:
// - Test life-cycle: Seek/Stop/Pause/Play for a single decoder.
// - Test alternate configurations
// - Test failure conditions.
// - Test frame size changes mid-stream
} // namespace
} // namespace media
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv); // Removes gtest-specific args.
base::CommandLine::Init(argc, argv);
// Needed to enable DVLOG through --vmodule.
logging::LoggingSettings settings;
settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG;
LOG_ASSERT(logging::InitLogging(settings));
const base::CommandLine* cmd_line = base::CommandLine::ForCurrentProcess();
DCHECK(cmd_line);
base::CommandLine::SwitchMap switches = cmd_line->GetSwitches();
for (base::CommandLine::SwitchMap::const_iterator it = switches.begin();
it != switches.end(); ++it) {
if (it->first == "test_video_data") {
media::g_test_video_data = it->second.c_str();
continue;
}
// The output log for VDA performance test.
if (it->first == "output_log") {
media::g_output_log = it->second.c_str();
continue;
}
if (it->first == "rendering_fps") {
// On Windows, CommandLine::StringType is wstring. We need to convert
// it to std::string first
std::string input(it->second.begin(), it->second.end());
LOG_ASSERT(base::StringToDouble(input, &media::g_rendering_fps));
continue;
}
if (it->first == "rendering_warm_up") {
std::string input(it->second.begin(), it->second.end());
LOG_ASSERT(base::StringToInt(input, &media::g_rendering_warm_up));
continue;
}
// TODO(owenlin): Remove this flag once it is not used in autotest.
if (it->first == "disable_rendering") {
media::g_rendering_fps = 0;
continue;
}
if (it->first == "num_play_throughs") {
std::string input(it->second.begin(), it->second.end());
LOG_ASSERT(base::StringToInt(input, &media::g_num_play_throughs));
continue;
}
if (it->first == "fake_decoder") {
media::g_fake_decoder = 1;
continue;
}
if (it->first == "v" || it->first == "vmodule")
continue;
if (it->first == "ozone-platform" || it->first == "ozone-use-surfaceless")
continue;
if (it->first == "test_import") {
media::g_test_import = true;
continue;
}
LOG(FATAL) << "Unexpected switch: " << it->first << ":" << it->second;
}
base::ShadowingAtExitManager at_exit_manager;
#if defined(OS_WIN) || defined(USE_OZONE)
// For windows the decoding thread initializes the media foundation decoder
// which uses COM. We need the thread to be a UI thread.
// On Ozone, the backend initializes the event system using a UI
// thread.
base::MessageLoopForUI main_loop;
#else
base::MessageLoop main_loop;
#endif // OS_WIN || USE_OZONE
#if defined(USE_OZONE)
ui::OzonePlatform::InitializeForUI();
#endif
#if defined(OS_CHROMEOS) && defined(ARCH_CPU_X86_FAMILY)
media::VaapiWrapper::PreSandboxInitialization();
#endif
media::g_env =
reinterpret_cast<media::VideoDecodeAcceleratorTestEnvironment*>(
testing::AddGlobalTestEnvironment(
new media::VideoDecodeAcceleratorTestEnvironment()));
return RUN_ALL_TESTS();
}