blob: 5ba36e0ed78ffc48863158b865cc2c4972996f73 [file] [log] [blame]
// Copyright 2018 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/learning/impl/target_histogram.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
namespace learning {
class TargetHistogramTest : public testing::Test {
public:
TargetHistogramTest() : value_1(123), value_2(456), value_3(789) {}
TargetHistogram histogram_;
TargetValue value_1;
const size_t counts_1 = 100;
TargetValue value_2;
const size_t counts_2 = 10;
TargetValue value_3;
};
TEST_F(TargetHistogramTest, EmptyTargetHistogramHasZeroCounts) {
EXPECT_EQ(histogram_.total_counts(), 0u);
}
TEST_F(TargetHistogramTest, AddingCountsWorks) {
histogram_[value_1] = counts_1;
EXPECT_EQ(histogram_.total_counts(), counts_1);
EXPECT_EQ(histogram_[value_1], counts_1);
histogram_[value_1] += counts_1;
EXPECT_EQ(histogram_.total_counts(), counts_1 * 2u);
EXPECT_EQ(histogram_[value_1], counts_1 * 2u);
}
TEST_F(TargetHistogramTest, MultipleValuesAreSeparate) {
histogram_[value_1] = counts_1;
histogram_[value_2] = counts_2;
EXPECT_EQ(histogram_.total_counts(), counts_1 + counts_2);
EXPECT_EQ(histogram_[value_1], counts_1);
EXPECT_EQ(histogram_[value_2], counts_2);
}
TEST_F(TargetHistogramTest, AddingTargetValues) {
histogram_ += value_1;
EXPECT_EQ(histogram_.total_counts(), 1u);
EXPECT_EQ(histogram_[value_1], 1u);
EXPECT_EQ(histogram_[value_2], 0u);
histogram_ += value_1;
EXPECT_EQ(histogram_.total_counts(), 2u);
EXPECT_EQ(histogram_[value_1], 2u);
EXPECT_EQ(histogram_[value_2], 0u);
histogram_ += value_2;
EXPECT_EQ(histogram_.total_counts(), 3u);
EXPECT_EQ(histogram_[value_1], 2u);
EXPECT_EQ(histogram_[value_2], 1u);
}
TEST_F(TargetHistogramTest, AddingTargetHistograms) {
histogram_[value_1] = counts_1;
TargetHistogram rhs;
rhs[value_2] = counts_2;
histogram_ += rhs;
EXPECT_EQ(histogram_.total_counts(), counts_1 + counts_2);
EXPECT_EQ(histogram_[value_1], counts_1);
EXPECT_EQ(histogram_[value_2], counts_2);
}
TEST_F(TargetHistogramTest, FindSingularMaxFindsTheSingularMax) {
histogram_[value_1] = counts_1;
histogram_[value_2] = counts_2;
ASSERT_TRUE(counts_1 > counts_2);
TargetValue max_value(0);
double max_counts = 0;
EXPECT_TRUE(histogram_.FindSingularMax(&max_value, &max_counts));
EXPECT_EQ(max_value, value_1);
EXPECT_EQ(max_counts, counts_1);
}
TEST_F(TargetHistogramTest, FindSingularMaxFindsTheSingularMaxAlternateOrder) {
// Switch the order, to handle sorting in different directions.
histogram_[value_1] = counts_2;
histogram_[value_2] = counts_1;
ASSERT_TRUE(counts_1 > counts_2);
TargetValue max_value(0);
double max_counts = 0;
EXPECT_TRUE(histogram_.FindSingularMax(&max_value, &max_counts));
EXPECT_EQ(max_value, value_2);
EXPECT_EQ(max_counts, counts_1);
}
TEST_F(TargetHistogramTest, FindSingularMaxReturnsFalsForNonSingularMax) {
histogram_[value_1] = counts_1;
histogram_[value_2] = counts_1;
TargetValue max_value(0);
double max_counts = 0;
EXPECT_FALSE(histogram_.FindSingularMax(&max_value, &max_counts));
}
TEST_F(TargetHistogramTest, FindSingularMaxIgnoresNonSingularNonMax) {
histogram_[value_1] = counts_1;
// |value_2| and |value_3| are tied, but not the max.
histogram_[value_2] = counts_2;
histogram_[value_3] = counts_2;
ASSERT_TRUE(counts_1 > counts_2);
TargetValue max_value(0);
double max_counts = 0;
EXPECT_TRUE(histogram_.FindSingularMax(&max_value, &max_counts));
EXPECT_EQ(max_value, value_1);
EXPECT_EQ(max_counts, counts_1);
}
TEST_F(TargetHistogramTest, FindSingularMaxDoesntRequireCounts) {
histogram_[value_1] = counts_1;
TargetValue max_value(0);
EXPECT_TRUE(histogram_.FindSingularMax(&max_value));
EXPECT_EQ(max_value, value_1);
}
TEST_F(TargetHistogramTest, EqualDistributionsCompareAsEqual) {
histogram_[value_1] = counts_1;
TargetHistogram histogram_2;
histogram_2[value_1] = counts_1;
EXPECT_TRUE(histogram_ == histogram_2);
}
TEST_F(TargetHistogramTest, UnequalDistributionsCompareAsNotEqual) {
histogram_[value_1] = counts_1;
TargetHistogram histogram_2;
histogram_2[value_2] = counts_2;
EXPECT_FALSE(histogram_ == histogram_2);
}
TEST_F(TargetHistogramTest, WeightedLabelledExamplesCountCorrectly) {
LabelledExample example = {{}, value_1};
example.weight = counts_1;
histogram_ += example;
TargetHistogram histogram_2;
for (size_t i = 0; i < counts_1; i++)
histogram_2 += value_1;
EXPECT_EQ(histogram_, histogram_2);
}
TEST_F(TargetHistogramTest, Normalize) {
histogram_[value_1] = counts_1;
histogram_[value_2] = counts_2;
histogram_.Normalize();
EXPECT_EQ(histogram_[value_1],
counts_1 / static_cast<double>(counts_1 + counts_2));
EXPECT_EQ(histogram_[value_2],
counts_2 / static_cast<double>(counts_1 + counts_2));
}
TEST_F(TargetHistogramTest, NormalizeEmptyDistribution) {
// Normalizing an empty distribution should result in an empty distribution.
histogram_.Normalize();
EXPECT_EQ(histogram_.total_counts(), 0);
}
} // namespace learning
} // namespace media