blob: 77861ecf06d32990480bb6ab78b05c2adc5057c7 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Tests for GLES2Implementation.
#include "gpu/command_buffer/client/gles2_implementation.h"
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <GLES2/gl2extchromium.h>
#include <GLES3/gl3.h>
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "base/bind.h"
#include "base/compiler_specific.h"
#include "base/stl_util.h"
#include "gpu/command_buffer/client/client_test_helper.h"
#include "gpu/command_buffer/client/gles2_cmd_helper.h"
#include "gpu/command_buffer/client/mock_transfer_buffer.h"
#include "gpu/command_buffer/client/program_info_manager.h"
#include "gpu/command_buffer/client/query_tracker.h"
#include "gpu/command_buffer/client/ring_buffer.h"
#include "gpu/command_buffer/client/shared_memory_limits.h"
#include "gpu/command_buffer/common/command_buffer.h"
#include "gpu/command_buffer/common/sync_token.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#if !defined(GLES2_SUPPORT_CLIENT_SIDE_ARRAYS)
#define GLES2_SUPPORT_CLIENT_SIDE_ARRAYS
#endif
using testing::_;
using testing::AtLeast;
using testing::AnyNumber;
using testing::DoAll;
using testing::InSequence;
using testing::Invoke;
using testing::Mock;
using testing::Pointee;
using testing::SaveArg;
using testing::Sequence;
using testing::StrictMock;
using testing::Truly;
using testing::Return;
using testing::ReturnRef;
namespace gpu {
namespace gles2 {
ACTION_P2(SetMemory, dst, obj) {
memcpy(dst, &obj, sizeof(obj));
}
ACTION_P3(SetMemoryFromArray, dst, array, size) {
memcpy(dst, array, size);
}
// Used to help set the transfer buffer result to SizedResult of a single value.
template <typename T>
class SizedResultHelper {
public:
explicit SizedResultHelper(T result)
: size_(sizeof(result)) {
memcpy(result_, &result, sizeof(T));
}
private:
uint32_t size_;
char result_[sizeof(T)];
};
// Struct to make it easy to pass a vec4 worth of floats.
struct FourFloats {
FourFloats(float _x, float _y, float _z, float _w)
: x(_x),
y(_y),
z(_z),
w(_w) {
}
float x;
float y;
float z;
float w;
};
#pragma pack(push, 1)
// Struct that holds 7 characters.
struct Str7 {
char str[7];
};
#pragma pack(pop)
// API wrapper for Buffers.
class GenBuffersAPI {
public:
static void Gen(GLES2Implementation* gl_impl, GLsizei n, GLuint* ids) {
gl_impl->GenBuffers(n, ids);
}
static void Delete(GLES2Implementation* gl_impl,
GLsizei n,
const GLuint* ids) {
gl_impl->DeleteBuffers(n, ids);
}
};
// API wrapper for Renderbuffers.
class GenRenderbuffersAPI {
public:
static void Gen(GLES2Implementation* gl_impl, GLsizei n, GLuint* ids) {
gl_impl->GenRenderbuffers(n, ids);
}
static void Delete(GLES2Implementation* gl_impl,
GLsizei n,
const GLuint* ids) {
gl_impl->DeleteRenderbuffers(n, ids);
}
};
// API wrapper for Textures.
class GenTexturesAPI {
public:
static void Gen(GLES2Implementation* gl_impl, GLsizei n, GLuint* ids) {
gl_impl->GenTextures(n, ids);
}
static void Delete(GLES2Implementation* gl_impl,
GLsizei n,
const GLuint* ids) {
gl_impl->DeleteTextures(n, ids);
}
};
class GLES2ImplementationTest : public testing::Test {
protected:
static const int kNumTestContexts = 2;
static const uint8_t kInitialValue = 0xBD;
static const int32_t kNumCommandEntries = 500;
static const int32_t kCommandBufferSizeBytes =
kNumCommandEntries * sizeof(CommandBufferEntry);
static const size_t kTransferBufferSize = 512;
static const GLint kMaxCombinedTextureImageUnits = 8;
static const GLint kMaxCubeMapTextureSize = 64;
static const GLint kMaxFragmentUniformVectors = 16;
static const GLint kMaxRenderbufferSize = 64;
static const GLint kMaxTextureImageUnits = 8;
static const GLint kMaxTextureSize = 128;
static const GLint kMaxVaryingVectors = 8;
static const GLint kMaxVertexAttribs = 8;
static const GLint kMaxVertexTextureImageUnits = 0;
static const GLint kMaxVertexUniformVectors = 128;
static const GLint kMaxViewportWidth = 8192;
static const GLint kMaxViewportHeight = 6144;
static const GLint kNumCompressedTextureFormats = 0;
static const GLint kNumShaderBinaryFormats = 0;
static const GLuint kMaxTransformFeedbackSeparateAttribs = 4;
static const GLuint kMaxUniformBufferBindings = 36;
static const GLuint kStartId = 1024;
static const GLuint kBuffersStartId = 1;
static const GLuint kFramebuffersStartId = 1;
static const GLuint kProgramsAndShadersStartId = 1;
static const GLuint kRenderbuffersStartId = 1;
static const GLuint kSamplersStartId = 1;
static const GLuint kTexturesStartId = 1;
static const GLuint kTransformFeedbacksStartId = 1;
static const GLuint kQueriesStartId = 1;
static const GLuint kVertexArraysStartId = 1;
typedef MockTransferBuffer::ExpectedMemoryInfo ExpectedMemoryInfo;
class TestContext {
public:
TestContext() : commands_(nullptr), token_(0) {}
bool Initialize(ShareGroup* share_group,
bool bind_generates_resource_client,
bool bind_generates_resource_service,
bool lose_context_when_out_of_memory,
bool transfer_buffer_initialize_fail,
bool sync_query,
bool occlusion_query_boolean,
bool timer_queries,
int major_version,
int minor_version) {
SharedMemoryLimits limits = SharedMemoryLimitsForTesting();
command_buffer_.reset(new StrictMock<MockClientCommandBuffer>());
transfer_buffer_.reset(
new MockTransferBuffer(command_buffer_.get(),
kTransferBufferSize,
GLES2Implementation::kStartingOffset,
GLES2Implementation::kAlignment,
transfer_buffer_initialize_fail));
helper_.reset(new GLES2CmdHelper(command_buffer()));
helper_->Initialize(limits.command_buffer_size);
gpu_control_.reset(new StrictMock<MockClientGpuControl>());
capabilities_.VisitPrecisions(
[](GLenum shader, GLenum type,
Capabilities::ShaderPrecision* precision) {
precision->min_range = 3;
precision->max_range = 5;
precision->precision = 7;
});
capabilities_.max_combined_texture_image_units =
kMaxCombinedTextureImageUnits;
capabilities_.max_cube_map_texture_size = kMaxCubeMapTextureSize;
capabilities_.max_fragment_uniform_vectors = kMaxFragmentUniformVectors;
capabilities_.max_renderbuffer_size = kMaxRenderbufferSize;
capabilities_.max_texture_image_units = kMaxTextureImageUnits;
capabilities_.max_texture_size = kMaxTextureSize;
capabilities_.max_varying_vectors = kMaxVaryingVectors;
capabilities_.max_vertex_attribs = kMaxVertexAttribs;
capabilities_.max_vertex_texture_image_units =
kMaxVertexTextureImageUnits;
capabilities_.max_vertex_uniform_vectors = kMaxVertexUniformVectors;
capabilities_.max_viewport_width = kMaxViewportWidth;
capabilities_.max_viewport_height = kMaxViewportHeight;
capabilities_.num_compressed_texture_formats =
kNumCompressedTextureFormats;
capabilities_.num_shader_binary_formats = kNumShaderBinaryFormats;
capabilities_.max_transform_feedback_separate_attribs =
kMaxTransformFeedbackSeparateAttribs;
capabilities_.max_uniform_buffer_bindings = kMaxUniformBufferBindings;
capabilities_.bind_generates_resource_chromium =
bind_generates_resource_service ? 1 : 0;
capabilities_.sync_query = sync_query;
capabilities_.occlusion_query_boolean = occlusion_query_boolean;
capabilities_.timer_queries = timer_queries;
capabilities_.major_version = major_version;
capabilities_.minor_version = minor_version;
EXPECT_CALL(*gpu_control_, GetCapabilities())
.WillOnce(ReturnRef(capabilities_));
{
InSequence sequence;
const bool support_client_side_arrays = true;
gl_.reset(new GLES2Implementation(helper_.get(),
share_group,
transfer_buffer_.get(),
bind_generates_resource_client,
lose_context_when_out_of_memory,
support_client_side_arrays,
gpu_control_.get()));
}
// The client should be set to something non-null.
EXPECT_CALL(*gpu_control_, SetGpuControlClient(gl_.get())).Times(1);
if (gl_->Initialize(limits) != gpu::ContextResult::kSuccess)
return false;
helper_->CommandBufferHelper::Finish();
Mock::VerifyAndClearExpectations(gl_.get());
scoped_refptr<Buffer> ring_buffer = helper_->get_ring_buffer();
commands_ = static_cast<CommandBufferEntry*>(ring_buffer->memory()) +
command_buffer()->GetServicePutOffset();
ClearCommands();
EXPECT_TRUE(transfer_buffer_->InSync());
Mock::VerifyAndClearExpectations(command_buffer());
return true;
}
void TearDown() {
Mock::VerifyAndClear(gl_.get());
EXPECT_CALL(*command_buffer(), OnFlush()).Times(AnyNumber());
// For command buffer.
EXPECT_CALL(*command_buffer(), DestroyTransferBuffer(_))
.Times(AtLeast(1));
// The client should be unset.
EXPECT_CALL(*gpu_control_, SetGpuControlClient(nullptr)).Times(1);
gl_.reset();
}
MockClientCommandBuffer* command_buffer() const {
return command_buffer_.get();
}
int GetNextToken() { return ++token_; }
void ClearCommands() {
scoped_refptr<Buffer> ring_buffer = helper_->get_ring_buffer();
memset(ring_buffer->memory(), kInitialValue, ring_buffer->size());
}
std::unique_ptr<MockClientCommandBuffer> command_buffer_;
std::unique_ptr<MockClientGpuControl> gpu_control_;
std::unique_ptr<GLES2CmdHelper> helper_;
std::unique_ptr<MockTransferBuffer> transfer_buffer_;
std::unique_ptr<GLES2Implementation> gl_;
CommandBufferEntry* commands_;
int token_;
Capabilities capabilities_;
};
GLES2ImplementationTest() : commands_(nullptr) {}
void SetUp() override;
void TearDown() override;
bool NoCommandsWritten() {
scoped_refptr<Buffer> ring_buffer = helper_->get_ring_buffer();
const uint8_t* cmds = static_cast<const uint8_t*>(ring_buffer->memory());
const uint8_t* end = cmds + ring_buffer->size();
for (; cmds < end; ++cmds) {
if (*cmds != kInitialValue) {
return false;
}
}
return true;
}
QueryTracker::Query* GetQuery(GLuint id) {
return gl_->query_tracker_->GetQuery(id);
}
QueryTracker* GetQueryTracker() {
return gl_->query_tracker_.get();
}
struct ContextInitOptions {
ContextInitOptions()
: bind_generates_resource_client(true),
bind_generates_resource_service(true),
lose_context_when_out_of_memory(false),
transfer_buffer_initialize_fail(false),
sync_query(true),
occlusion_query_boolean(true),
timer_queries(true),
major_version(2),
minor_version(0) {}
bool bind_generates_resource_client;
bool bind_generates_resource_service;
bool lose_context_when_out_of_memory;
bool transfer_buffer_initialize_fail;
bool sync_query;
bool occlusion_query_boolean;
bool timer_queries;
int major_version;
int minor_version;
};
bool Initialize(const ContextInitOptions& init_options) {
bool success = true;
share_group_ = new ShareGroup(init_options.bind_generates_resource_client,
0 /* tracing_id */);
for (int i = 0; i < kNumTestContexts; i++) {
if (!test_contexts_[i].Initialize(
share_group_.get(),
init_options.bind_generates_resource_client,
init_options.bind_generates_resource_service,
init_options.lose_context_when_out_of_memory,
init_options.transfer_buffer_initialize_fail,
init_options.sync_query,
init_options.occlusion_query_boolean,
init_options.timer_queries,
init_options.major_version,
init_options.minor_version))
success = false;
}
// Default to test context 0.
gpu_control_ = test_contexts_[0].gpu_control_.get();
helper_ = test_contexts_[0].helper_.get();
transfer_buffer_ = test_contexts_[0].transfer_buffer_.get();
gl_ = test_contexts_[0].gl_.get();
commands_ = test_contexts_[0].commands_;
return success;
}
MockClientCommandBuffer* command_buffer() const {
return test_contexts_[0].command_buffer_.get();
}
int GetNextToken() { return test_contexts_[0].GetNextToken(); }
const void* GetPut() {
return helper_->GetSpace(0);
}
void ClearCommands() {
scoped_refptr<Buffer> ring_buffer = helper_->get_ring_buffer();
memset(ring_buffer->memory(), kInitialValue, ring_buffer->size());
}
size_t MaxTransferBufferSize() {
return transfer_buffer_->MaxTransferBufferSize();
}
void SetMappedMemoryLimit(size_t limit) {
gl_->mapped_memory_->set_max_allocated_bytes(limit);
}
ExpectedMemoryInfo GetExpectedMemory(size_t size) {
return transfer_buffer_->GetExpectedMemory(size);
}
ExpectedMemoryInfo GetExpectedResultMemory(size_t size) {
return transfer_buffer_->GetExpectedResultMemory(size);
}
ExpectedMemoryInfo GetExpectedMappedMemory(size_t size) {
ExpectedMemoryInfo mem;
// Temporarily allocate memory and expect that memory block to be reused.
mem.ptr = static_cast<uint8_t*>(
gl_->mapped_memory_->Alloc(size, &mem.id, &mem.offset));
gl_->mapped_memory_->Free(mem.ptr);
return mem;
}
// Sets the ProgramInfoManager. The manager will be owned
// by the ShareGroup.
void SetProgramInfoManager(ProgramInfoManager* manager) {
gl_->share_group()->SetProgramInfoManagerForTesting(manager);
}
int CheckError() {
ExpectedMemoryInfo result =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(result.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
return gl_->GetError();
}
const std::string& GetLastError() {
return gl_->GetLastError();
}
bool GetBucketContents(uint32_t bucket_id, std::vector<int8_t>* data) {
return gl_->GetBucketContents(bucket_id, data);
}
bool AllowExtraTransferBufferSize() {
return gl_->max_extra_transfer_buffer_size_ > 0;
}
static SharedMemoryLimits SharedMemoryLimitsForTesting() {
SharedMemoryLimits limits;
limits.command_buffer_size = kCommandBufferSizeBytes;
limits.start_transfer_buffer_size = kTransferBufferSize;
limits.min_transfer_buffer_size = kTransferBufferSize;
limits.max_transfer_buffer_size = kTransferBufferSize;
limits.mapped_memory_reclaim_limit = SharedMemoryLimits::kNoLimit;
return limits;
}
void ResetErrorMessageCallback() { gl_->error_message_callback_.Reset(); }
TestContext test_contexts_[kNumTestContexts];
scoped_refptr<ShareGroup> share_group_;
MockClientGpuControl* gpu_control_;
GLES2CmdHelper* helper_;
MockTransferBuffer* transfer_buffer_;
GLES2Implementation* gl_;
CommandBufferEntry* commands_;
};
void GLES2ImplementationTest::SetUp() {
ContextInitOptions init_options;
ASSERT_TRUE(Initialize(init_options));
}
void GLES2ImplementationTest::TearDown() {
for (int i = 0; i < kNumTestContexts; i++)
test_contexts_[i].TearDown();
}
class GLES2ImplementationManualInitTest : public GLES2ImplementationTest {
protected:
void SetUp() override {}
};
class GLES2ImplementationStrictSharedTest : public GLES2ImplementationTest {
protected:
void SetUp() override;
template <class ResApi>
void FlushGenerationTest() {
GLuint id1, id2, id3;
// Generate valid id.
ResApi::Gen(gl_, 1, &id1);
EXPECT_NE(id1, 0u);
// Delete id1 and generate id2. id1 should not be reused.
ResApi::Delete(gl_, 1, &id1);
ResApi::Gen(gl_, 1, &id2);
EXPECT_NE(id2, 0u);
EXPECT_NE(id2, id1);
// Expect id1 reuse after Flush.
gl_->Flush();
ResApi::Gen(gl_, 1, &id3);
EXPECT_EQ(id3, id1);
}
// Ids should not be reused unless the |Deleting| context does a Flush()
// AND triggers a lazy release after that.
template <class ResApi>
void CrossContextGenerationTest() {
GLES2Implementation* gl1 = test_contexts_[0].gl_.get();
GLES2Implementation* gl2 = test_contexts_[1].gl_.get();
GLuint id1, id2, id3;
// Delete, no flush on context 1. No reuse.
ResApi::Gen(gl1, 1, &id1);
ResApi::Delete(gl1, 1, &id1);
ResApi::Gen(gl1, 1, &id2);
EXPECT_NE(id1, id2);
// Flush context 2. Still no reuse.
gl2->Flush();
ResApi::Gen(gl2, 1, &id3);
EXPECT_NE(id1, id3);
EXPECT_NE(id2, id3);
// Flush on context 1, but no lazy release. Still no reuse.
gl1->Flush();
ResApi::Gen(gl2, 1, &id3);
EXPECT_NE(id1, id3);
// Lazy release triggered by another Delete. Should reuse id1.
ResApi::Delete(gl1, 1, &id2);
ResApi::Gen(gl2, 1, &id3);
EXPECT_EQ(id1, id3);
}
// Same as CrossContextGenerationTest(), but triggers an Auto Flush on
// the Delete(). Tests an edge case regression.
template <class ResApi>
void CrossContextGenerationAutoFlushTest() {
GLES2Implementation* gl1 = test_contexts_[0].gl_.get();
GLES2Implementation* gl2 = test_contexts_[1].gl_.get();
GLuint id1, id2, id3;
// Delete, no flush on context 1. No reuse.
// By half filling the buffer, an internal flush is forced on the Delete().
ResApi::Gen(gl1, 1, &id1);
gl1->helper()->Noop(kNumCommandEntries / 2);
ResApi::Delete(gl1, 1, &id1);
ResApi::Gen(gl1, 1, &id2);
EXPECT_NE(id1, id2);
// Flush context 2. Still no reuse.
gl2->Flush();
ResApi::Gen(gl2, 1, &id3);
EXPECT_NE(id1, id3);
EXPECT_NE(id2, id3);
// Flush on context 1, but no lazy release. Still no reuse.
gl1->Flush();
ResApi::Gen(gl2, 1, &id3);
EXPECT_NE(id1, id3);
// Lazy release triggered by another Delete. Should reuse id1.
ResApi::Delete(gl1, 1, &id2);
ResApi::Gen(gl2, 1, &id3);
EXPECT_EQ(id1, id3);
}
// Require that deleting definitely-invalid IDs produces an error.
template <class ResApi>
void DeletingInvalidIdGeneratesError() {
GLES2Implementation* gl1 = test_contexts_[0].gl_.get();
GLuint id1;
ResApi::Gen(gl1, 1, &id1);
const GLuint kDefinitelyInvalidId = 0xBEEF;
EXPECT_EQ(GL_NO_ERROR, CheckError());
ResApi::Delete(gl1, 1, &kDefinitelyInvalidId);
EXPECT_EQ(GL_INVALID_VALUE, CheckError());
}
// Require that double-deleting IDs produces an error.
template <class ResApi>
void DoubleDeletingIdGeneratesError() {
GLES2Implementation* gl1 = test_contexts_[0].gl_.get();
GLuint id1;
ResApi::Gen(gl1, 1, &id1);
ResApi::Delete(gl1, 1, &id1);
EXPECT_EQ(GL_NO_ERROR, CheckError());
ResApi::Delete(gl1, 1, &id1);
EXPECT_EQ(GL_INVALID_VALUE, CheckError());
}
};
void GLES2ImplementationStrictSharedTest::SetUp() {
ContextInitOptions init_options;
init_options.bind_generates_resource_client = false;
init_options.bind_generates_resource_service = false;
ASSERT_TRUE(Initialize(init_options));
}
class GLES3ImplementationTest : public GLES2ImplementationTest {
protected:
void SetUp() override;
};
void GLES3ImplementationTest::SetUp() {
ContextInitOptions init_options;
init_options.major_version = 3;
init_options.minor_version = 0;
ASSERT_TRUE(Initialize(init_options));
}
// GCC requires these declarations, but MSVC requires they not be present
#ifndef _MSC_VER
const uint8_t GLES2ImplementationTest::kInitialValue;
const int32_t GLES2ImplementationTest::kNumCommandEntries;
const int32_t GLES2ImplementationTest::kCommandBufferSizeBytes;
const size_t GLES2ImplementationTest::kTransferBufferSize;
const GLint GLES2ImplementationTest::kMaxCombinedTextureImageUnits;
const GLint GLES2ImplementationTest::kMaxCubeMapTextureSize;
const GLint GLES2ImplementationTest::kMaxFragmentUniformVectors;
const GLint GLES2ImplementationTest::kMaxRenderbufferSize;
const GLint GLES2ImplementationTest::kMaxTextureImageUnits;
const GLint GLES2ImplementationTest::kMaxTextureSize;
const GLint GLES2ImplementationTest::kMaxVaryingVectors;
const GLint GLES2ImplementationTest::kMaxVertexAttribs;
const GLint GLES2ImplementationTest::kMaxVertexTextureImageUnits;
const GLint GLES2ImplementationTest::kMaxVertexUniformVectors;
const GLint GLES2ImplementationTest::kNumCompressedTextureFormats;
const GLint GLES2ImplementationTest::kNumShaderBinaryFormats;
const GLuint GLES2ImplementationTest::kStartId;
const GLuint GLES2ImplementationTest::kBuffersStartId;
const GLuint GLES2ImplementationTest::kFramebuffersStartId;
const GLuint GLES2ImplementationTest::kProgramsAndShadersStartId;
const GLuint GLES2ImplementationTest::kRenderbuffersStartId;
const GLuint GLES2ImplementationTest::kSamplersStartId;
const GLuint GLES2ImplementationTest::kTexturesStartId;
const GLuint GLES2ImplementationTest::kTransformFeedbacksStartId;
const GLuint GLES2ImplementationTest::kQueriesStartId;
const GLuint GLES2ImplementationTest::kVertexArraysStartId;
#endif
TEST_F(GLES2ImplementationTest, Basic) {
EXPECT_TRUE(gl_->share_group());
}
TEST_F(GLES2ImplementationTest, GetBucketContents) {
const uint32_t kBucketId = GLES2Implementation::kResultBucketId;
const uint32_t kTestSize = MaxTransferBufferSize() + 32;
std::unique_ptr<uint8_t[]> buf(new uint8_t[kTestSize]);
uint8_t* expected_data = buf.get();
for (uint32_t ii = 0; ii < kTestSize; ++ii) {
expected_data[ii] = ii * 3;
}
struct Cmds {
cmd::GetBucketStart get_bucket_start;
cmd::SetToken set_token1;
cmd::GetBucketData get_bucket_data;
cmd::SetToken set_token2;
cmd::SetBucketSize set_bucket_size2;
};
ExpectedMemoryInfo mem1 = GetExpectedMemory(MaxTransferBufferSize());
ExpectedMemoryInfo result1 = GetExpectedResultMemory(sizeof(uint32_t));
ExpectedMemoryInfo mem2 = GetExpectedMemory(
kTestSize - MaxTransferBufferSize());
Cmds expected;
expected.get_bucket_start.Init(
kBucketId, result1.id, result1.offset,
MaxTransferBufferSize(), mem1.id, mem1.offset);
expected.set_token1.Init(GetNextToken());
expected.get_bucket_data.Init(
kBucketId, MaxTransferBufferSize(),
kTestSize - MaxTransferBufferSize(), mem2.id, mem2.offset);
expected.set_bucket_size2.Init(kBucketId, 0);
expected.set_token2.Init(GetNextToken());
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(DoAll(
SetMemory(result1.ptr, kTestSize),
SetMemoryFromArray(
mem1.ptr, expected_data, MaxTransferBufferSize())))
.WillOnce(SetMemoryFromArray(
mem2.ptr, expected_data + MaxTransferBufferSize(),
kTestSize - MaxTransferBufferSize()))
.RetiresOnSaturation();
std::vector<int8_t> data;
GetBucketContents(kBucketId, &data);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
ASSERT_EQ(kTestSize, data.size());
EXPECT_EQ(0, memcmp(expected_data, &data[0], data.size()));
}
TEST_F(GLES2ImplementationTest, GetShaderPrecisionFormat) {
struct Cmds {
cmds::GetShaderPrecisionFormat cmd;
};
typedef cmds::GetShaderPrecisionFormat::Result Result;
const unsigned kDummyType1 = 3;
const unsigned kDummyType2 = 4;
// The first call for dummy type 1 should trigger a command buffer request.
GLint range1[2] = {0, 0};
GLint precision1 = 0;
Cmds expected1;
ExpectedMemoryInfo client_result1 = GetExpectedResultMemory(4);
expected1.cmd.Init(GL_FRAGMENT_SHADER, kDummyType1, client_result1.id,
client_result1.offset);
Result server_result1 = {true, 14, 14, 10};
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(client_result1.ptr, server_result1))
.RetiresOnSaturation();
gl_->GetShaderPrecisionFormat(GL_FRAGMENT_SHADER, kDummyType1, range1,
&precision1);
const void* commands2 = GetPut();
EXPECT_NE(commands_, commands2);
EXPECT_EQ(0, memcmp(&expected1, commands_, sizeof(expected1)));
EXPECT_EQ(range1[0], 14);
EXPECT_EQ(range1[1], 14);
EXPECT_EQ(precision1, 10);
// The second call for dummy type 1 should use the cached value and avoid
// triggering a command buffer request, so we do not expect a call to
// OnFlush() here. We do expect the results to be correct though.
GLint range2[2] = {0, 0};
GLint precision2 = 0;
gl_->GetShaderPrecisionFormat(GL_FRAGMENT_SHADER, kDummyType1, range2,
&precision2);
const void* commands3 = GetPut();
EXPECT_EQ(commands2, commands3);
EXPECT_EQ(range2[0], 14);
EXPECT_EQ(range2[1], 14);
EXPECT_EQ(precision2, 10);
// If we then make a request for dummy type 2, we should get another command
// buffer request since it hasn't been cached yet.
GLint range3[2] = {0, 0};
GLint precision3 = 0;
Cmds expected3;
ExpectedMemoryInfo result3 = GetExpectedResultMemory(4);
expected3.cmd.Init(GL_FRAGMENT_SHADER, kDummyType2, result3.id,
result3.offset);
Result result3_source = {true, 62, 62, 16};
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(result3.ptr, result3_source))
.RetiresOnSaturation();
gl_->GetShaderPrecisionFormat(GL_FRAGMENT_SHADER, kDummyType2, range3,
&precision3);
const void* commands4 = GetPut();
EXPECT_NE(commands3, commands4);
EXPECT_EQ(0, memcmp(&expected3, commands3, sizeof(expected3)));
EXPECT_EQ(range3[0], 62);
EXPECT_EQ(range3[1], 62);
EXPECT_EQ(precision3, 16);
// Any call for predefined types should use the cached value from the
// Capabilities and avoid triggering a command buffer request, so we do not
// expect a call to OnFlush() here. We do expect the results to be correct
// though.
GLint range4[2] = {0, 0};
GLint precision4 = 0;
gl_->GetShaderPrecisionFormat(GL_FRAGMENT_SHADER, GL_MEDIUM_FLOAT, range4,
&precision4);
const void* commands5 = GetPut();
EXPECT_EQ(commands4, commands5);
EXPECT_EQ(range4[0], 3);
EXPECT_EQ(range4[1], 5);
EXPECT_EQ(precision4, 7);
}
TEST_F(GLES2ImplementationTest, GetShaderSource) {
const uint32_t kBucketId = GLES2Implementation::kResultBucketId;
const GLuint kShaderId = 456;
const Str7 kString = {"foobar"};
const char kBad = 0x12;
struct Cmds {
cmd::SetBucketSize set_bucket_size1;
cmds::GetShaderSource get_shader_source;
cmd::GetBucketStart get_bucket_start;
cmd::SetToken set_token1;
cmd::SetBucketSize set_bucket_size2;
};
ExpectedMemoryInfo mem1 = GetExpectedMemory(MaxTransferBufferSize());
ExpectedMemoryInfo result1 = GetExpectedResultMemory(sizeof(uint32_t));
Cmds expected;
expected.set_bucket_size1.Init(kBucketId, 0);
expected.get_shader_source.Init(kShaderId, kBucketId);
expected.get_bucket_start.Init(
kBucketId, result1.id, result1.offset,
MaxTransferBufferSize(), mem1.id, mem1.offset);
expected.set_token1.Init(GetNextToken());
expected.set_bucket_size2.Init(kBucketId, 0);
char buf[sizeof(kString) + 1];
memset(buf, kBad, sizeof(buf));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(DoAll(SetMemory(result1.ptr, uint32_t(sizeof(kString))),
SetMemory(mem1.ptr, kString)))
.RetiresOnSaturation();
GLsizei length = 0;
gl_->GetShaderSource(kShaderId, sizeof(buf), &length, buf);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_EQ(sizeof(kString) - 1, static_cast<size_t>(length));
EXPECT_STREQ(kString.str, buf);
EXPECT_EQ(buf[sizeof(kString)], kBad);
}
#if defined(GLES2_SUPPORT_CLIENT_SIDE_ARRAYS)
TEST_F(GLES2ImplementationTest, DrawArraysClientSideBuffers) {
static const float verts[][4] = {
{ 12.0f, 23.0f, 34.0f, 45.0f, },
{ 56.0f, 67.0f, 78.0f, 89.0f, },
{ 13.0f, 24.0f, 35.0f, 46.0f, },
};
struct Cmds {
cmds::EnableVertexAttribArray enable1;
cmds::EnableVertexAttribArray enable2;
cmds::BindBuffer bind_to_emu;
cmds::BufferData set_size;
cmds::BufferSubData copy_data1;
cmd::SetToken set_token1;
cmds::VertexAttribPointer set_pointer1;
cmds::BufferSubData copy_data2;
cmd::SetToken set_token2;
cmds::VertexAttribPointer set_pointer2;
cmds::DrawArrays draw;
cmds::BindBuffer restore;
};
const GLuint kEmuBufferId = GLES2Implementation::kClientSideArrayId;
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kClientStride = sizeof(verts[0]);
const GLint kFirst = 1;
const GLsizei kCount = 2;
const GLsizei kSize1 =
base::size(verts) * kNumComponents1 * sizeof(verts[0][0]);
const GLsizei kSize2 =
base::size(verts) * kNumComponents2 * sizeof(verts[0][0]);
const GLsizei kEmuOffset1 = 0;
const GLsizei kEmuOffset2 = kSize1;
const GLsizei kTotalSize = kSize1 + kSize2;
ExpectedMemoryInfo mem1 = GetExpectedMemory(kSize1);
ExpectedMemoryInfo mem2 = GetExpectedMemory(kSize2);
Cmds expected;
expected.enable1.Init(kAttribIndex1);
expected.enable2.Init(kAttribIndex2);
expected.bind_to_emu.Init(GL_ARRAY_BUFFER, kEmuBufferId);
expected.set_size.Init(GL_ARRAY_BUFFER, kTotalSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data1.Init(
GL_ARRAY_BUFFER, kEmuOffset1, kSize1, mem1.id, mem1.offset);
expected.set_token1.Init(GetNextToken());
expected.set_pointer1.Init(
kAttribIndex1, kNumComponents1, GL_FLOAT, GL_FALSE, 0, kEmuOffset1);
expected.copy_data2.Init(
GL_ARRAY_BUFFER, kEmuOffset2, kSize2, mem2.id, mem2.offset);
expected.set_token2.Init(GetNextToken());
expected.set_pointer2.Init(
kAttribIndex2, kNumComponents2, GL_FLOAT, GL_FALSE, 0, kEmuOffset2);
expected.draw.Init(GL_POINTS, kFirst, kCount);
expected.restore.Init(GL_ARRAY_BUFFER, 0);
gl_->EnableVertexAttribArray(kAttribIndex1);
gl_->EnableVertexAttribArray(kAttribIndex2);
gl_->VertexAttribPointer(
kAttribIndex1, kNumComponents1, GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribPointer(
kAttribIndex2, kNumComponents2, GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->DrawArrays(GL_POINTS, kFirst, kCount);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, DrawArraysInstancedANGLEClientSideBuffers) {
static const float verts[][4] = {
{ 12.0f, 23.0f, 34.0f, 45.0f, },
{ 56.0f, 67.0f, 78.0f, 89.0f, },
{ 13.0f, 24.0f, 35.0f, 46.0f, },
};
struct Cmds {
cmds::EnableVertexAttribArray enable1;
cmds::EnableVertexAttribArray enable2;
cmds::VertexAttribDivisorANGLE divisor;
cmds::BindBuffer bind_to_emu;
cmds::BufferData set_size;
cmds::BufferSubData copy_data1;
cmd::SetToken set_token1;
cmds::VertexAttribPointer set_pointer1;
cmds::BufferSubData copy_data2;
cmd::SetToken set_token2;
cmds::VertexAttribPointer set_pointer2;
cmds::DrawArraysInstancedANGLE draw;
cmds::BindBuffer restore;
};
const GLuint kEmuBufferId = GLES2Implementation::kClientSideArrayId;
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kClientStride = sizeof(verts[0]);
const GLint kFirst = 1;
const GLsizei kCount = 2;
const GLuint kDivisor = 1;
const GLsizei kSize1 =
base::size(verts) * kNumComponents1 * sizeof(verts[0][0]);
const GLsizei kSize2 =
1 * kNumComponents2 * sizeof(verts[0][0]);
const GLsizei kEmuOffset1 = 0;
const GLsizei kEmuOffset2 = kSize1;
const GLsizei kTotalSize = kSize1 + kSize2;
ExpectedMemoryInfo mem1 = GetExpectedMemory(kSize1);
ExpectedMemoryInfo mem2 = GetExpectedMemory(kSize2);
Cmds expected;
expected.enable1.Init(kAttribIndex1);
expected.enable2.Init(kAttribIndex2);
expected.divisor.Init(kAttribIndex2, kDivisor);
expected.bind_to_emu.Init(GL_ARRAY_BUFFER, kEmuBufferId);
expected.set_size.Init(GL_ARRAY_BUFFER, kTotalSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data1.Init(
GL_ARRAY_BUFFER, kEmuOffset1, kSize1, mem1.id, mem1.offset);
expected.set_token1.Init(GetNextToken());
expected.set_pointer1.Init(
kAttribIndex1, kNumComponents1, GL_FLOAT, GL_FALSE, 0, kEmuOffset1);
expected.copy_data2.Init(
GL_ARRAY_BUFFER, kEmuOffset2, kSize2, mem2.id, mem2.offset);
expected.set_token2.Init(GetNextToken());
expected.set_pointer2.Init(
kAttribIndex2, kNumComponents2, GL_FLOAT, GL_FALSE, 0, kEmuOffset2);
expected.draw.Init(GL_POINTS, kFirst, kCount, 1);
expected.restore.Init(GL_ARRAY_BUFFER, 0);
gl_->EnableVertexAttribArray(kAttribIndex1);
gl_->EnableVertexAttribArray(kAttribIndex2);
gl_->VertexAttribPointer(
kAttribIndex1, kNumComponents1, GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribPointer(
kAttribIndex2, kNumComponents2, GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribDivisorANGLE(kAttribIndex2, kDivisor);
gl_->DrawArraysInstancedANGLE(GL_POINTS, kFirst, kCount, 1);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, DrawElementsClientSideBuffers) {
static const float verts[][4] = {
{ 12.0f, 23.0f, 34.0f, 45.0f, },
{ 56.0f, 67.0f, 78.0f, 89.0f, },
{ 13.0f, 24.0f, 35.0f, 46.0f, },
};
static const uint16_t indices[] = {
1, 2,
};
struct Cmds {
cmds::EnableVertexAttribArray enable1;
cmds::EnableVertexAttribArray enable2;
cmds::BindBuffer bind_to_index_emu;
cmds::BufferData set_index_size;
cmds::BufferSubData copy_data0;
cmd::SetToken set_token0;
cmds::BindBuffer bind_to_emu;
cmds::BufferData set_size;
cmds::BufferSubData copy_data1;
cmd::SetToken set_token1;
cmds::VertexAttribPointer set_pointer1;
cmds::BufferSubData copy_data2;
cmd::SetToken set_token2;
cmds::VertexAttribPointer set_pointer2;
cmds::DrawElements draw;
cmds::BindBuffer restore;
cmds::BindBuffer restore_element;
};
const GLsizei kIndexSize = sizeof(indices);
const GLuint kEmuBufferId = GLES2Implementation::kClientSideArrayId;
const GLuint kEmuIndexBufferId =
GLES2Implementation::kClientSideElementArrayId;
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kClientStride = sizeof(verts[0]);
const GLsizei kCount = 2;
const GLsizei kSize1 =
base::size(verts) * kNumComponents1 * sizeof(verts[0][0]);
const GLsizei kSize2 =
base::size(verts) * kNumComponents2 * sizeof(verts[0][0]);
const GLsizei kEmuOffset1 = 0;
const GLsizei kEmuOffset2 = kSize1;
const GLsizei kTotalSize = kSize1 + kSize2;
ExpectedMemoryInfo mem1 = GetExpectedMemory(kIndexSize);
ExpectedMemoryInfo mem2 = GetExpectedMemory(kSize1);
ExpectedMemoryInfo mem3 = GetExpectedMemory(kSize2);
Cmds expected;
expected.enable1.Init(kAttribIndex1);
expected.enable2.Init(kAttribIndex2);
expected.bind_to_index_emu.Init(GL_ELEMENT_ARRAY_BUFFER, kEmuIndexBufferId);
expected.set_index_size.Init(
GL_ELEMENT_ARRAY_BUFFER, kIndexSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data0.Init(
GL_ELEMENT_ARRAY_BUFFER, 0, kIndexSize, mem1.id, mem1.offset);
expected.set_token0.Init(GetNextToken());
expected.bind_to_emu.Init(GL_ARRAY_BUFFER, kEmuBufferId);
expected.set_size.Init(GL_ARRAY_BUFFER, kTotalSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data1.Init(
GL_ARRAY_BUFFER, kEmuOffset1, kSize1, mem2.id, mem2.offset);
expected.set_token1.Init(GetNextToken());
expected.set_pointer1.Init(
kAttribIndex1, kNumComponents1, GL_FLOAT, GL_FALSE, 0, kEmuOffset1);
expected.copy_data2.Init(
GL_ARRAY_BUFFER, kEmuOffset2, kSize2, mem3.id, mem3.offset);
expected.set_token2.Init(GetNextToken());
expected.set_pointer2.Init(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, 0, kEmuOffset2);
expected.draw.Init(GL_POINTS, kCount, GL_UNSIGNED_SHORT, 0);
expected.restore.Init(GL_ARRAY_BUFFER, 0);
expected.restore_element.Init(GL_ELEMENT_ARRAY_BUFFER, 0);
gl_->EnableVertexAttribArray(kAttribIndex1);
gl_->EnableVertexAttribArray(kAttribIndex2);
gl_->VertexAttribPointer(kAttribIndex1, kNumComponents1,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribPointer(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->DrawElements(GL_POINTS, kCount, GL_UNSIGNED_SHORT, indices);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, DrawElementsClientSideBuffersIndexUint) {
static const float verts[][4] = {
{ 12.0f, 23.0f, 34.0f, 45.0f, },
{ 56.0f, 67.0f, 78.0f, 89.0f, },
{ 13.0f, 24.0f, 35.0f, 46.0f, },
};
static const uint32_t indices[] = {
1, 2,
};
struct Cmds {
cmds::EnableVertexAttribArray enable1;
cmds::EnableVertexAttribArray enable2;
cmds::BindBuffer bind_to_index_emu;
cmds::BufferData set_index_size;
cmds::BufferSubData copy_data0;
cmd::SetToken set_token0;
cmds::BindBuffer bind_to_emu;
cmds::BufferData set_size;
cmds::BufferSubData copy_data1;
cmd::SetToken set_token1;
cmds::VertexAttribPointer set_pointer1;
cmds::BufferSubData copy_data2;
cmd::SetToken set_token2;
cmds::VertexAttribPointer set_pointer2;
cmds::DrawElements draw;
cmds::BindBuffer restore;
cmds::BindBuffer restore_element;
};
const GLsizei kIndexSize = sizeof(indices);
const GLuint kEmuBufferId = GLES2Implementation::kClientSideArrayId;
const GLuint kEmuIndexBufferId =
GLES2Implementation::kClientSideElementArrayId;
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kClientStride = sizeof(verts[0]);
const GLsizei kCount = 2;
const GLsizei kSize1 =
base::size(verts) * kNumComponents1 * sizeof(verts[0][0]);
const GLsizei kSize2 =
base::size(verts) * kNumComponents2 * sizeof(verts[0][0]);
const GLsizei kEmuOffset1 = 0;
const GLsizei kEmuOffset2 = kSize1;
const GLsizei kTotalSize = kSize1 + kSize2;
ExpectedMemoryInfo mem1 = GetExpectedMemory(kIndexSize);
ExpectedMemoryInfo mem2 = GetExpectedMemory(kSize1);
ExpectedMemoryInfo mem3 = GetExpectedMemory(kSize2);
Cmds expected;
expected.enable1.Init(kAttribIndex1);
expected.enable2.Init(kAttribIndex2);
expected.bind_to_index_emu.Init(GL_ELEMENT_ARRAY_BUFFER, kEmuIndexBufferId);
expected.set_index_size.Init(
GL_ELEMENT_ARRAY_BUFFER, kIndexSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data0.Init(
GL_ELEMENT_ARRAY_BUFFER, 0, kIndexSize, mem1.id, mem1.offset);
expected.set_token0.Init(GetNextToken());
expected.bind_to_emu.Init(GL_ARRAY_BUFFER, kEmuBufferId);
expected.set_size.Init(GL_ARRAY_BUFFER, kTotalSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data1.Init(
GL_ARRAY_BUFFER, kEmuOffset1, kSize1, mem2.id, mem2.offset);
expected.set_token1.Init(GetNextToken());
expected.set_pointer1.Init(
kAttribIndex1, kNumComponents1, GL_FLOAT, GL_FALSE, 0, kEmuOffset1);
expected.copy_data2.Init(
GL_ARRAY_BUFFER, kEmuOffset2, kSize2, mem3.id, mem3.offset);
expected.set_token2.Init(GetNextToken());
expected.set_pointer2.Init(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, 0, kEmuOffset2);
expected.draw.Init(GL_POINTS, kCount, GL_UNSIGNED_INT, 0);
expected.restore.Init(GL_ARRAY_BUFFER, 0);
expected.restore_element.Init(GL_ELEMENT_ARRAY_BUFFER, 0);
gl_->EnableVertexAttribArray(kAttribIndex1);
gl_->EnableVertexAttribArray(kAttribIndex2);
gl_->VertexAttribPointer(kAttribIndex1, kNumComponents1,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribPointer(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->DrawElements(GL_POINTS, kCount, GL_UNSIGNED_INT, indices);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, DrawElementsClientSideBuffersInvalidIndexUint) {
static const float verts[][4] = {
{ 12.0f, 23.0f, 34.0f, 45.0f, },
{ 56.0f, 67.0f, 78.0f, 89.0f, },
{ 13.0f, 24.0f, 35.0f, 46.0f, },
};
static const uint32_t indices[] = {1, 0x90000000};
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kClientStride = sizeof(verts[0]);
const GLsizei kCount = 2;
EXPECT_CALL(*command_buffer(), OnFlush())
.Times(1)
.RetiresOnSaturation();
gl_->EnableVertexAttribArray(kAttribIndex1);
gl_->EnableVertexAttribArray(kAttribIndex2);
gl_->VertexAttribPointer(kAttribIndex1, kNumComponents1,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribPointer(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->DrawElements(GL_POINTS, kCount, GL_UNSIGNED_INT, indices);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_OPERATION), gl_->GetError());
}
TEST_F(GLES2ImplementationTest,
DrawElementsClientSideBuffersServiceSideIndices) {
static const float verts[][4] = {
{ 12.0f, 23.0f, 34.0f, 45.0f, },
{ 56.0f, 67.0f, 78.0f, 89.0f, },
{ 13.0f, 24.0f, 35.0f, 46.0f, },
};
struct Cmds {
cmds::EnableVertexAttribArray enable1;
cmds::EnableVertexAttribArray enable2;
cmds::BindBuffer bind_to_index;
cmds::GetMaxValueInBufferCHROMIUM get_max;
cmds::BindBuffer bind_to_emu;
cmds::BufferData set_size;
cmds::BufferSubData copy_data1;
cmd::SetToken set_token1;
cmds::VertexAttribPointer set_pointer1;
cmds::BufferSubData copy_data2;
cmd::SetToken set_token2;
cmds::VertexAttribPointer set_pointer2;
cmds::DrawElements draw;
cmds::BindBuffer restore;
};
const GLuint kEmuBufferId = GLES2Implementation::kClientSideArrayId;
const GLuint kClientIndexBufferId = 0x789;
const GLuint kIndexOffset = 0x40;
const GLuint kMaxIndex = 2;
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kClientStride = sizeof(verts[0]);
const GLsizei kCount = 2;
const GLsizei kSize1 =
base::size(verts) * kNumComponents1 * sizeof(verts[0][0]);
const GLsizei kSize2 =
base::size(verts) * kNumComponents2 * sizeof(verts[0][0]);
const GLsizei kEmuOffset1 = 0;
const GLsizei kEmuOffset2 = kSize1;
const GLsizei kTotalSize = kSize1 + kSize2;
ExpectedMemoryInfo mem1 = GetExpectedResultMemory(sizeof(uint32_t));
ExpectedMemoryInfo mem2 = GetExpectedMemory(kSize1);
ExpectedMemoryInfo mem3 = GetExpectedMemory(kSize2);
Cmds expected;
expected.enable1.Init(kAttribIndex1);
expected.enable2.Init(kAttribIndex2);
expected.bind_to_index.Init(GL_ELEMENT_ARRAY_BUFFER, kClientIndexBufferId);
expected.get_max.Init(kClientIndexBufferId, kCount, GL_UNSIGNED_SHORT,
kIndexOffset, mem1.id, mem1.offset);
expected.bind_to_emu.Init(GL_ARRAY_BUFFER, kEmuBufferId);
expected.set_size.Init(GL_ARRAY_BUFFER, kTotalSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data1.Init(
GL_ARRAY_BUFFER, kEmuOffset1, kSize1, mem2.id, mem2.offset);
expected.set_token1.Init(GetNextToken());
expected.set_pointer1.Init(kAttribIndex1, kNumComponents1,
GL_FLOAT, GL_FALSE, 0, kEmuOffset1);
expected.copy_data2.Init(
GL_ARRAY_BUFFER, kEmuOffset2, kSize2, mem3.id, mem3.offset);
expected.set_token2.Init(GetNextToken());
expected.set_pointer2.Init(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, 0, kEmuOffset2);
expected.draw.Init(GL_POINTS, kCount, GL_UNSIGNED_SHORT, kIndexOffset);
expected.restore.Init(GL_ARRAY_BUFFER, 0);
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(mem1.ptr,kMaxIndex))
.RetiresOnSaturation();
gl_->EnableVertexAttribArray(kAttribIndex1);
gl_->EnableVertexAttribArray(kAttribIndex2);
gl_->BindBuffer(GL_ELEMENT_ARRAY_BUFFER, kClientIndexBufferId);
gl_->VertexAttribPointer(kAttribIndex1, kNumComponents1,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribPointer(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->DrawElements(GL_POINTS, kCount, GL_UNSIGNED_SHORT,
reinterpret_cast<const void*>(kIndexOffset));
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, DrawElementsInstancedANGLEClientSideBuffers) {
static const float verts[][4] = {
{ 12.0f, 23.0f, 34.0f, 45.0f, },
{ 56.0f, 67.0f, 78.0f, 89.0f, },
{ 13.0f, 24.0f, 35.0f, 46.0f, },
};
static const uint16_t indices[] = {
1, 2,
};
struct Cmds {
cmds::EnableVertexAttribArray enable1;
cmds::EnableVertexAttribArray enable2;
cmds::VertexAttribDivisorANGLE divisor;
cmds::BindBuffer bind_to_index_emu;
cmds::BufferData set_index_size;
cmds::BufferSubData copy_data0;
cmd::SetToken set_token0;
cmds::BindBuffer bind_to_emu;
cmds::BufferData set_size;
cmds::BufferSubData copy_data1;
cmd::SetToken set_token1;
cmds::VertexAttribPointer set_pointer1;
cmds::BufferSubData copy_data2;
cmd::SetToken set_token2;
cmds::VertexAttribPointer set_pointer2;
cmds::DrawElementsInstancedANGLE draw;
cmds::BindBuffer restore;
cmds::BindBuffer restore_element;
};
const GLsizei kIndexSize = sizeof(indices);
const GLuint kEmuBufferId = GLES2Implementation::kClientSideArrayId;
const GLuint kEmuIndexBufferId =
GLES2Implementation::kClientSideElementArrayId;
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kClientStride = sizeof(verts[0]);
const GLsizei kCount = 2;
const GLsizei kSize1 =
base::size(verts) * kNumComponents1 * sizeof(verts[0][0]);
const GLsizei kSize2 =
1 * kNumComponents2 * sizeof(verts[0][0]);
const GLuint kDivisor = 1;
const GLsizei kEmuOffset1 = 0;
const GLsizei kEmuOffset2 = kSize1;
const GLsizei kTotalSize = kSize1 + kSize2;
ExpectedMemoryInfo mem1 = GetExpectedMemory(kIndexSize);
ExpectedMemoryInfo mem2 = GetExpectedMemory(kSize1);
ExpectedMemoryInfo mem3 = GetExpectedMemory(kSize2);
Cmds expected;
expected.enable1.Init(kAttribIndex1);
expected.enable2.Init(kAttribIndex2);
expected.divisor.Init(kAttribIndex2, kDivisor);
expected.bind_to_index_emu.Init(GL_ELEMENT_ARRAY_BUFFER, kEmuIndexBufferId);
expected.set_index_size.Init(
GL_ELEMENT_ARRAY_BUFFER, kIndexSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data0.Init(
GL_ELEMENT_ARRAY_BUFFER, 0, kIndexSize, mem1.id, mem1.offset);
expected.set_token0.Init(GetNextToken());
expected.bind_to_emu.Init(GL_ARRAY_BUFFER, kEmuBufferId);
expected.set_size.Init(GL_ARRAY_BUFFER, kTotalSize, 0, 0, GL_DYNAMIC_DRAW);
expected.copy_data1.Init(
GL_ARRAY_BUFFER, kEmuOffset1, kSize1, mem2.id, mem2.offset);
expected.set_token1.Init(GetNextToken());
expected.set_pointer1.Init(
kAttribIndex1, kNumComponents1, GL_FLOAT, GL_FALSE, 0, kEmuOffset1);
expected.copy_data2.Init(
GL_ARRAY_BUFFER, kEmuOffset2, kSize2, mem3.id, mem3.offset);
expected.set_token2.Init(GetNextToken());
expected.set_pointer2.Init(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, 0, kEmuOffset2);
expected.draw.Init(GL_POINTS, kCount, GL_UNSIGNED_SHORT, 0, 1);
expected.restore.Init(GL_ARRAY_BUFFER, 0);
expected.restore_element.Init(GL_ELEMENT_ARRAY_BUFFER, 0);
gl_->EnableVertexAttribArray(kAttribIndex1);
gl_->EnableVertexAttribArray(kAttribIndex2);
gl_->VertexAttribPointer(kAttribIndex1, kNumComponents1,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribPointer(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, kClientStride, verts);
gl_->VertexAttribDivisorANGLE(kAttribIndex2, kDivisor);
gl_->DrawElementsInstancedANGLE(
GL_POINTS, kCount, GL_UNSIGNED_SHORT, indices, 1);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, GetVertexBufferPointerv) {
static const float verts[1] = { 0.0f, };
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kStride1 = 12;
const GLsizei kStride2 = 0;
const GLuint kBufferId = 0x123;
const GLint kOffset2 = 0x456;
// It's all cached on the client side so no get commands are issued.
struct Cmds {
cmds::BindBuffer bind;
cmds::VertexAttribPointer set_pointer;
};
Cmds expected;
expected.bind.Init(GL_ARRAY_BUFFER, kBufferId);
expected.set_pointer.Init(kAttribIndex2, kNumComponents2, GL_FLOAT, GL_FALSE,
kStride2, kOffset2);
// Set one client side buffer.
gl_->VertexAttribPointer(kAttribIndex1, kNumComponents1,
GL_FLOAT, GL_FALSE, kStride1, verts);
// Set one VBO
gl_->BindBuffer(GL_ARRAY_BUFFER, kBufferId);
gl_->VertexAttribPointer(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, kStride2,
reinterpret_cast<const void*>(kOffset2));
// now get them both.
void* ptr1 = nullptr;
void* ptr2 = nullptr;
gl_->GetVertexAttribPointerv(
kAttribIndex1, GL_VERTEX_ATTRIB_ARRAY_POINTER, &ptr1);
gl_->GetVertexAttribPointerv(
kAttribIndex2, GL_VERTEX_ATTRIB_ARRAY_POINTER, &ptr2);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_TRUE(static_cast<const void*>(&verts) == ptr1);
EXPECT_TRUE(ptr2 == reinterpret_cast<void*>(kOffset2));
}
TEST_F(GLES2ImplementationTest, GetVertexAttrib) {
static const float verts[1] = { 0.0f, };
const GLuint kAttribIndex1 = 1;
const GLuint kAttribIndex2 = 3;
const GLint kNumComponents1 = 3;
const GLint kNumComponents2 = 2;
const GLsizei kStride1 = 12;
const GLsizei kStride2 = 0;
const GLuint kBufferId = 0x123;
const GLint kOffset2 = 0x456;
// Only one set and one get because the client side buffer's info is stored
// on the client side.
struct Cmds {
cmds::EnableVertexAttribArray enable;
cmds::BindBuffer bind;
cmds::VertexAttribPointer set_pointer;
cmds::GetVertexAttribfv get2; // for getting the value from attrib1
};
ExpectedMemoryInfo mem2 = GetExpectedResultMemory(16);
Cmds expected;
expected.enable.Init(kAttribIndex1);
expected.bind.Init(GL_ARRAY_BUFFER, kBufferId);
expected.set_pointer.Init(kAttribIndex2, kNumComponents2, GL_FLOAT, GL_FALSE,
kStride2, kOffset2);
expected.get2.Init(kAttribIndex1,
GL_CURRENT_VERTEX_ATTRIB,
mem2.id, mem2.offset);
FourFloats current_attrib(1.2f, 3.4f, 5.6f, 7.8f);
// One call to flush to wait for last call to GetVertexAttribiv
// as others are all cached.
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(
mem2.ptr, SizedResultHelper<FourFloats>(current_attrib)))
.RetiresOnSaturation();
gl_->EnableVertexAttribArray(kAttribIndex1);
// Set one client side buffer.
gl_->VertexAttribPointer(kAttribIndex1, kNumComponents1,
GL_FLOAT, GL_FALSE, kStride1, verts);
// Set one VBO
gl_->BindBuffer(GL_ARRAY_BUFFER, kBufferId);
gl_->VertexAttribPointer(kAttribIndex2, kNumComponents2,
GL_FLOAT, GL_FALSE, kStride2,
reinterpret_cast<const void*>(kOffset2));
// first get the service side once to see that we make a command
GLint buffer_id = 0;
GLint enabled = 0;
GLint size = 0;
GLint stride = 0;
GLint type = 0;
GLint normalized = 1;
float current[4] = { 0.0f, };
gl_->GetVertexAttribiv(
kAttribIndex2, GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING, &buffer_id);
EXPECT_EQ(kBufferId, static_cast<GLuint>(buffer_id));
gl_->GetVertexAttribiv(
kAttribIndex1, GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING, &buffer_id);
gl_->GetVertexAttribiv(
kAttribIndex1, GL_VERTEX_ATTRIB_ARRAY_ENABLED, &enabled);
gl_->GetVertexAttribiv(
kAttribIndex1, GL_VERTEX_ATTRIB_ARRAY_SIZE, &size);
gl_->GetVertexAttribiv(
kAttribIndex1, GL_VERTEX_ATTRIB_ARRAY_STRIDE, &stride);
gl_->GetVertexAttribiv(
kAttribIndex1, GL_VERTEX_ATTRIB_ARRAY_TYPE, &type);
gl_->GetVertexAttribiv(
kAttribIndex1, GL_VERTEX_ATTRIB_ARRAY_NORMALIZED, &normalized);
gl_->GetVertexAttribfv(
kAttribIndex1, GL_CURRENT_VERTEX_ATTRIB, &current[0]);
EXPECT_EQ(0, buffer_id);
EXPECT_EQ(GL_TRUE, enabled);
EXPECT_EQ(kNumComponents1, size);
EXPECT_EQ(kStride1, stride);
EXPECT_EQ(GL_FLOAT, type);
EXPECT_EQ(GL_FALSE, normalized);
EXPECT_EQ(0, memcmp(&current_attrib, &current, sizeof(current_attrib)));
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, ReservedIds) {
// Only the get error command should be issued.
struct Cmds {
cmds::GetError get;
};
Cmds expected;
ExpectedMemoryInfo mem1 = GetExpectedResultMemory(
sizeof(cmds::GetError::Result));
expected.get.Init(mem1.id, mem1.offset);
// One call to flush to wait for GetError
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(mem1.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
gl_->BindBuffer(
GL_ARRAY_BUFFER,
GLES2Implementation::kClientSideArrayId);
gl_->BindBuffer(
GL_ARRAY_BUFFER,
GLES2Implementation::kClientSideElementArrayId);
GLenum err = gl_->GetError();
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_OPERATION), err);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
#endif // defined(GLES2_SUPPORT_CLIENT_SIDE_ARRAYS)
TEST_F(GLES2ImplementationTest, ReadPixels2Reads) {
struct Cmds {
cmds::ReadPixels read1;
cmd::SetToken set_token1;
cmds::ReadPixels read2;
cmd::SetToken set_token2;
};
const GLint kBytesPerPixel = 4;
const GLint kWidth =
(kTransferBufferSize - GLES2Implementation::kStartingOffset) /
kBytesPerPixel;
const GLint kHeight = 2;
const GLenum kFormat = GL_RGBA;
const GLenum kType = GL_UNSIGNED_BYTE;
ExpectedMemoryInfo mem1 =
GetExpectedMemory(kWidth * kHeight / 2 * kBytesPerPixel);
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmds::ReadPixels::Result));
ExpectedMemoryInfo mem2 =
GetExpectedMemory(kWidth * kHeight / 2 * kBytesPerPixel);
ExpectedMemoryInfo result2 =
GetExpectedResultMemory(sizeof(cmds::ReadPixels::Result));
Cmds expected;
expected.read1.Init(
0, 0, kWidth, kHeight / 2, kFormat, kType,
mem1.id, mem1.offset, result1.id, result1.offset,
false);
expected.set_token1.Init(GetNextToken());
expected.read2.Init(
0, kHeight / 2, kWidth, kHeight / 2, kFormat, kType,
mem2.id, mem2.offset, result2.id, result2.offset, false);
expected.set_token2.Init(GetNextToken());
std::unique_ptr<int8_t[]> buffer(
new int8_t[kWidth * kHeight * kBytesPerPixel]);
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(result1.ptr, static_cast<uint32_t>(1)))
.WillOnce(SetMemory(result2.ptr, static_cast<uint32_t>(1)))
.RetiresOnSaturation();
gl_->ReadPixels(0, 0, kWidth, kHeight, kFormat, kType, buffer.get());
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, ReadPixelsBadFormatType) {
struct Cmds {
cmds::ReadPixels read;
cmd::SetToken set_token;
};
const GLint kBytesPerPixel = 4;
const GLint kWidth = 2;
const GLint kHeight = 2;
const GLenum kFormat = 0;
const GLenum kType = 0;
ExpectedMemoryInfo mem1 =
GetExpectedMemory(kWidth * kHeight * kBytesPerPixel);
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmds::ReadPixels::Result));
Cmds expected;
expected.read.Init(
0, 0, kWidth, kHeight, kFormat, kType,
mem1.id, mem1.offset, result1.id, result1.offset, false);
expected.set_token.Init(GetNextToken());
std::unique_ptr<int8_t[]> buffer(
new int8_t[kWidth * kHeight * kBytesPerPixel]);
EXPECT_CALL(*command_buffer(), OnFlush())
.Times(1)
.RetiresOnSaturation();
gl_->ReadPixels(0, 0, kWidth, kHeight, kFormat, kType, buffer.get());
}
TEST_F(GLES2ImplementationTest, FreeUnusedSharedMemory) {
struct Cmds {
cmds::BufferSubData buf;
cmd::SetToken set_token;
};
const GLenum kTarget = GL_ELEMENT_ARRAY_BUFFER;
const GLintptr kOffset = 15;
const GLsizeiptr kSize = 16;
ExpectedMemoryInfo mem1 = GetExpectedMemory(kSize);
Cmds expected;
expected.buf.Init(
kTarget, kOffset, kSize, mem1.id, mem1.offset);
expected.set_token.Init(GetNextToken());
void* mem = gl_->MapBufferSubDataCHROMIUM(
kTarget, kOffset, kSize, GL_WRITE_ONLY);
ASSERT_TRUE(mem != nullptr);
gl_->UnmapBufferSubDataCHROMIUM(mem);
EXPECT_CALL(*command_buffer(), DestroyTransferBuffer(_))
.Times(1)
.RetiresOnSaturation();
gl_->FreeUnusedSharedMemory();
}
TEST_F(GLES2ImplementationTest, MapUnmapBufferSubDataCHROMIUM) {
struct Cmds {
cmds::BufferSubData buf;
cmd::SetToken set_token;
};
const GLenum kTarget = GL_ELEMENT_ARRAY_BUFFER;
const GLintptr kOffset = 15;
const GLsizeiptr kSize = 16;
uint32_t offset = 0;
Cmds expected;
expected.buf.Init(
kTarget, kOffset, kSize,
command_buffer()->GetNextFreeTransferBufferId(), offset);
expected.set_token.Init(GetNextToken());
void* mem = gl_->MapBufferSubDataCHROMIUM(
kTarget, kOffset, kSize, GL_WRITE_ONLY);
ASSERT_TRUE(mem != nullptr);
gl_->UnmapBufferSubDataCHROMIUM(mem);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, MapUnmapBufferSubDataCHROMIUMBadArgs) {
const GLenum kTarget = GL_ELEMENT_ARRAY_BUFFER;
const GLintptr kOffset = 15;
const GLsizeiptr kSize = 16;
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result2 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result3 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result4 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
// Calls to flush to wait for GetError
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(result1.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result2.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result3.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result4.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
void* mem;
mem = gl_->MapBufferSubDataCHROMIUM(kTarget, -1, kSize, GL_WRITE_ONLY);
ASSERT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
mem = gl_->MapBufferSubDataCHROMIUM(kTarget, kOffset, -1, GL_WRITE_ONLY);
ASSERT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
mem = gl_->MapBufferSubDataCHROMIUM(kTarget, kOffset, kSize, GL_READ_ONLY);
ASSERT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_ENUM), gl_->GetError());
const char* kPtr = "something";
gl_->UnmapBufferSubDataCHROMIUM(kPtr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
}
TEST_F(GLES2ImplementationTest, MapUnmapTexSubImage2DCHROMIUM) {
struct Cmds {
cmds::TexSubImage2D tex;
cmd::SetToken set_token;
};
const GLint kLevel = 1;
const GLint kXOffset = 2;
const GLint kYOffset = 3;
const GLint kWidth = 4;
const GLint kHeight = 5;
const GLenum kFormat = GL_RGBA;
const GLenum kType = GL_UNSIGNED_BYTE;
uint32_t offset = 0;
Cmds expected;
expected.tex.Init(
GL_TEXTURE_2D, kLevel, kXOffset, kYOffset, kWidth, kHeight, kFormat,
kType,
command_buffer()->GetNextFreeTransferBufferId(), offset, GL_FALSE);
expected.set_token.Init(GetNextToken());
void* mem = gl_->MapTexSubImage2DCHROMIUM(
GL_TEXTURE_2D,
kLevel,
kXOffset,
kYOffset,
kWidth,
kHeight,
kFormat,
kType,
GL_WRITE_ONLY);
ASSERT_TRUE(mem != nullptr);
gl_->UnmapTexSubImage2DCHROMIUM(mem);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
}
TEST_F(GLES2ImplementationTest, MapUnmapTexSubImage2DCHROMIUMBadArgs) {
const GLint kLevel = 1;
const GLint kXOffset = 2;
const GLint kYOffset = 3;
const GLint kWidth = 4;
const GLint kHeight = 5;
const GLenum kFormat = GL_RGBA;
const GLenum kType = GL_UNSIGNED_BYTE;
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result2 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result3 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result4 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result5 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result6 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result7 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
// Calls to flush to wait for GetError
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(result1.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result2.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result3.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result4.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result5.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result6.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result7.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
void* mem;
mem = gl_->MapTexSubImage2DCHROMIUM(
GL_TEXTURE_2D,
-1,
kXOffset,
kYOffset,
kWidth,
kHeight,
kFormat,
kType,
GL_WRITE_ONLY);
EXPECT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
mem = gl_->MapTexSubImage2DCHROMIUM(
GL_TEXTURE_2D,
kLevel,
-1,
kYOffset,
kWidth,
kHeight,
kFormat,
kType,
GL_WRITE_ONLY);
EXPECT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
mem = gl_->MapTexSubImage2DCHROMIUM(
GL_TEXTURE_2D,
kLevel,
kXOffset,
-1,
kWidth,
kHeight,
kFormat,
kType,
GL_WRITE_ONLY);
EXPECT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
mem = gl_->MapTexSubImage2DCHROMIUM(
GL_TEXTURE_2D,
kLevel,
kXOffset,
kYOffset,
-1,
kHeight,
kFormat,
kType,
GL_WRITE_ONLY);
EXPECT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
mem = gl_->MapTexSubImage2DCHROMIUM(
GL_TEXTURE_2D,
kLevel,
kXOffset,
kYOffset,
kWidth,
-1,
kFormat,
kType,
GL_WRITE_ONLY);
EXPECT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
mem = gl_->MapTexSubImage2DCHROMIUM(
GL_TEXTURE_2D,
kLevel,
kXOffset,
kYOffset,
kWidth,
kHeight,
kFormat,
kType,
GL_READ_ONLY);
EXPECT_TRUE(mem == nullptr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_ENUM), gl_->GetError());
const char* kPtr = "something";
gl_->UnmapTexSubImage2DCHROMIUM(kPtr);
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
}
TEST_F(GLES2ImplementationTest, GetProgramInfoCHROMIUMGoodArgs) {
const uint32_t kBucketId = GLES2Implementation::kResultBucketId;
const GLuint kProgramId = 123;
const char kBad = 0x12;
GLsizei size = 0;
const Str7 kString = {"foobar"};
char buf[20];
ExpectedMemoryInfo mem1 =
GetExpectedMemory(MaxTransferBufferSize());
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmd::GetBucketStart::Result));
ExpectedMemoryInfo result2 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
memset(buf, kBad, sizeof(buf));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(DoAll(SetMemory(result1.ptr, uint32_t(sizeof(kString))),
SetMemory(mem1.ptr, kString)))
.WillOnce(SetMemory(result2.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
struct Cmds {
cmd::SetBucketSize set_bucket_size1;
cmds::GetProgramInfoCHROMIUM get_program_info;
cmd::GetBucketStart get_bucket_start;
cmd::SetToken set_token1;
cmd::SetBucketSize set_bucket_size2;
};
Cmds expected;
expected.set_bucket_size1.Init(kBucketId, 0);
expected.get_program_info.Init(kProgramId, kBucketId);
expected.get_bucket_start.Init(
kBucketId, result1.id, result1.offset,
MaxTransferBufferSize(), mem1.id, mem1.offset);
expected.set_token1.Init(GetNextToken());
expected.set_bucket_size2.Init(kBucketId, 0);
gl_->GetProgramInfoCHROMIUM(kProgramId, sizeof(buf), &size, &buf);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_EQ(static_cast<GLenum>(GL_NO_ERROR), gl_->GetError());
EXPECT_EQ(sizeof(kString), static_cast<size_t>(size));
EXPECT_STREQ(kString.str, buf);
EXPECT_EQ(buf[sizeof(kString)], kBad);
}
TEST_F(GLES2ImplementationTest, GetProgramInfoCHROMIUMBadArgs) {
const uint32_t kBucketId = GLES2Implementation::kResultBucketId;
const GLuint kProgramId = 123;
GLsizei size = 0;
const Str7 kString = {"foobar"};
char buf[20];
ExpectedMemoryInfo mem1 = GetExpectedMemory(MaxTransferBufferSize());
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmd::GetBucketStart::Result));
ExpectedMemoryInfo result2 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result3 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result4 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(DoAll(SetMemory(result1.ptr, uint32_t(sizeof(kString))),
SetMemory(mem1.ptr, kString)))
.WillOnce(SetMemory(result2.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result3.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result4.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
// try bufsize not big enough.
struct Cmds {
cmd::SetBucketSize set_bucket_size1;
cmds::GetProgramInfoCHROMIUM get_program_info;
cmd::GetBucketStart get_bucket_start;
cmd::SetToken set_token1;
cmd::SetBucketSize set_bucket_size2;
};
Cmds expected;
expected.set_bucket_size1.Init(kBucketId, 0);
expected.get_program_info.Init(kProgramId, kBucketId);
expected.get_bucket_start.Init(
kBucketId, result1.id, result1.offset,
MaxTransferBufferSize(), mem1.id, mem1.offset);
expected.set_token1.Init(GetNextToken());
expected.set_bucket_size2.Init(kBucketId, 0);
gl_->GetProgramInfoCHROMIUM(kProgramId, 6, &size, &buf);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_OPERATION), gl_->GetError());
ClearCommands();
// try bad bufsize
gl_->GetProgramInfoCHROMIUM(kProgramId, -1, &size, &buf);
EXPECT_TRUE(NoCommandsWritten());
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
ClearCommands();
// try no size ptr.
gl_->GetProgramInfoCHROMIUM(kProgramId, sizeof(buf), nullptr, &buf);
EXPECT_TRUE(NoCommandsWritten());
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
}
TEST_F(GLES2ImplementationTest, GetUniformBlocksCHROMIUMGoodArgs) {
const uint32_t kBucketId = GLES2Implementation::kResultBucketId;
const GLuint kProgramId = 123;
const char kBad = 0x12;
GLsizei size = 0;
const Str7 kString = {"foobar"};
char buf[20];
ExpectedMemoryInfo mem1 =
GetExpectedMemory(MaxTransferBufferSize());
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmd::GetBucketStart::Result));
ExpectedMemoryInfo result2 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
memset(buf, kBad, sizeof(buf));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(DoAll(SetMemory(result1.ptr, uint32_t(sizeof(kString))),
SetMemory(mem1.ptr, kString)))
.WillOnce(SetMemory(result2.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
struct Cmds {
cmd::SetBucketSize set_bucket_size1;
cmds::GetUniformBlocksCHROMIUM get_uniform_blocks;
cmd::GetBucketStart get_bucket_start;
cmd::SetToken set_token1;
cmd::SetBucketSize set_bucket_size2;
};
Cmds expected;
expected.set_bucket_size1.Init(kBucketId, 0);
expected.get_uniform_blocks.Init(kProgramId, kBucketId);
expected.get_bucket_start.Init(
kBucketId, result1.id, result1.offset,
MaxTransferBufferSize(), mem1.id, mem1.offset);
expected.set_token1.Init(GetNextToken());
expected.set_bucket_size2.Init(kBucketId, 0);
gl_->GetUniformBlocksCHROMIUM(kProgramId, sizeof(buf), &size, &buf);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_EQ(static_cast<GLenum>(GL_NO_ERROR), gl_->GetError());
EXPECT_EQ(sizeof(kString), static_cast<size_t>(size));
EXPECT_STREQ(kString.str, buf);
EXPECT_EQ(buf[sizeof(kString)], kBad);
}
TEST_F(GLES2ImplementationTest, GetUniformBlocksCHROMIUMBadArgs) {
const uint32_t kBucketId = GLES2Implementation::kResultBucketId;
const GLuint kProgramId = 123;
GLsizei size = 0;
const Str7 kString = {"foobar"};
char buf[20];
ExpectedMemoryInfo mem1 = GetExpectedMemory(MaxTransferBufferSize());
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmd::GetBucketStart::Result));
ExpectedMemoryInfo result2 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result3 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
ExpectedMemoryInfo result4 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(DoAll(SetMemory(result1.ptr, uint32_t(sizeof(kString))),
SetMemory(mem1.ptr, kString)))
.WillOnce(SetMemory(result2.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result3.ptr, GLuint(GL_NO_ERROR)))
.WillOnce(SetMemory(result4.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
// try bufsize not big enough.
struct Cmds {
cmd::SetBucketSize set_bucket_size1;
cmds::GetUniformBlocksCHROMIUM get_uniform_blocks;
cmd::GetBucketStart get_bucket_start;
cmd::SetToken set_token1;
cmd::SetBucketSize set_bucket_size2;
};
Cmds expected;
expected.set_bucket_size1.Init(kBucketId, 0);
expected.get_uniform_blocks.Init(kProgramId, kBucketId);
expected.get_bucket_start.Init(
kBucketId, result1.id, result1.offset,
MaxTransferBufferSize(), mem1.id, mem1.offset);
expected.set_token1.Init(GetNextToken());
expected.set_bucket_size2.Init(kBucketId, 0);
gl_->GetUniformBlocksCHROMIUM(kProgramId, 6, &size, &buf);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_OPERATION), gl_->GetError());
ClearCommands();
// try bad bufsize
gl_->GetUniformBlocksCHROMIUM(kProgramId, -1, &size, &buf);
EXPECT_TRUE(NoCommandsWritten());
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
ClearCommands();
// try no size ptr.
gl_->GetUniformBlocksCHROMIUM(kProgramId, sizeof(buf), nullptr, &buf);
EXPECT_TRUE(NoCommandsWritten());
EXPECT_EQ(static_cast<GLenum>(GL_INVALID_VALUE), gl_->GetError());
}
// Test that things are cached
TEST_F(GLES2ImplementationTest, GetIntegerCacheRead) {
struct PNameValue {
GLenum pname;
GLint expected;
};
const PNameValue pairs[] = {
{GL_ACTIVE_TEXTURE, GL_TEXTURE0, },
{GL_TEXTURE_BINDING_2D, 0, },
{GL_TEXTURE_BINDING_CUBE_MAP, 0, },
{GL_TEXTURE_BINDING_EXTERNAL_OES, 0, },
{GL_FRAMEBUFFER_BINDING, 0, },
{GL_RENDERBUFFER_BINDING, 0, },
{GL_ARRAY_BUFFER_BINDING, 0, },
{GL_ELEMENT_ARRAY_BUFFER_BINDING, 0, },
{GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, kMaxCombinedTextureImageUnits, },
{GL_MAX_CUBE_MAP_TEXTURE_SIZE, kMaxCubeMapTextureSize, },
{GL_MAX_FRAGMENT_UNIFORM_VECTORS, kMaxFragmentUniformVectors, },
{GL_MAX_RENDERBUFFER_SIZE, kMaxRenderbufferSize, },
{GL_MAX_TEXTURE_IMAGE_UNITS, kMaxTextureImageUnits, },
{GL_MAX_TEXTURE_SIZE, kMaxTextureSize, },
{GL_MAX_VARYING_VECTORS, kMaxVaryingVectors, },
{GL_MAX_VERTEX_ATTRIBS, kMaxVertexAttribs, },
{GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, kMaxVertexTextureImageUnits, },
{GL_MAX_VERTEX_UNIFORM_VECTORS, kMaxVertexUniformVectors, },
{GL_NUM_COMPRESSED_TEXTURE_FORMATS, kNumCompressedTextureFormats, },
{GL_NUM_SHADER_BINARY_FORMATS, kNumShaderBinaryFormats, }, };
size_t num_pairs = sizeof(pairs) / sizeof(pairs[0]);
for (size_t ii = 0; ii < num_pairs; ++ii) {
const PNameValue& pv = pairs[ii];
GLint v = -1;
gl_->GetIntegerv(pv.pname, &v);
EXPECT_TRUE(NoCommandsWritten());
EXPECT_EQ(pv.expected, v);
}
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(result1.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
EXPECT_EQ(static_cast<GLenum>(GL_NO_ERROR), gl_->GetError());
}
TEST_F(GLES2ImplementationTest, GetIntegerDisjointValue) {
ExpectedMemoryInfo mem = GetExpectedMappedMemory(sizeof(DisjointValueSync));
gl_->SetDisjointValueSyncCHROMIUM();
ASSERT_EQ(mem.id, GetQueryTracker()->DisjointCountSyncShmID());
ASSERT_EQ(mem.offset, GetQueryTracker()->DisjointCountSyncShmOffset());
DisjointValueSync* disjoint_sync =
reinterpret_cast<DisjointValueSync*>(mem.ptr);
ClearCommands();
GLint disjoint_value = -1;
gl_->GetIntegerv(GL_GPU_DISJOINT_EXT, &disjoint_value);
EXPECT_TRUE(NoCommandsWritten());
EXPECT_EQ(0, disjoint_value);
// After setting disjoint, it should be true.
disjoint_value = -1;
disjoint_sync->SetDisjointCount(1);
gl_->GetIntegerv(GL_GPU_DISJOINT_EXT, &disjoint_value);
EXPECT_TRUE(NoCommandsWritten());
EXPECT_EQ(1, disjoint_value);
// After checking disjoint, it should be false again.
disjoint_value = -1;
gl_->GetIntegerv(GL_GPU_DISJOINT_EXT, &disjoint_value);
EXPECT_TRUE(NoCommandsWritten());
EXPECT_EQ(0, disjoint_value);
// Check for errors.
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(result1.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
EXPECT_EQ(static_cast<GLenum>(GL_NO_ERROR), gl_->GetError());
}
TEST_F(GLES2ImplementationTest, GetIntegerCacheWrite) {
struct PNameValue {
GLenum pname;
GLint expected;
};
gl_->ActiveTexture(GL_TEXTURE4);
gl_->BindBuffer(GL_ARRAY_BUFFER, 2);
gl_->BindBuffer(GL_ELEMENT_ARRAY_BUFFER, 3);
gl_->BindFramebuffer(GL_FRAMEBUFFER, 4);
gl_->BindRenderbuffer(GL_RENDERBUFFER, 5);
gl_->BindTexture(GL_TEXTURE_2D, 6);
gl_->BindTexture(GL_TEXTURE_CUBE_MAP, 7);
gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, 8);
const PNameValue pairs[] = {{GL_ACTIVE_TEXTURE, GL_TEXTURE4, },
{GL_ARRAY_BUFFER_BINDING, 2, },
{GL_ELEMENT_ARRAY_BUFFER_BINDING, 3, },
{GL_FRAMEBUFFER_BINDING, 4, },
{GL_RENDERBUFFER_BINDING, 5, },
{GL_TEXTURE_BINDING_2D, 6, },
{GL_TEXTURE_BINDING_CUBE_MAP, 7, },
{GL_TEXTURE_BINDING_EXTERNAL_OES, 8, }, };
size_t num_pairs = sizeof(pairs) / sizeof(pairs[0]);
for (size_t ii = 0; ii < num_pairs; ++ii) {
const PNameValue& pv = pairs[ii];
GLint v = -1;
gl_->GetIntegerv(pv.pname, &v);
EXPECT_EQ(pv.expected, v);
}
ExpectedMemoryInfo result1 =
GetExpectedResultMemory(sizeof(cmds::GetError::Result));
EXPECT_CALL(*command_buffer(), OnFlush())
.WillOnce(SetMemory(result1.ptr, GLuint(GL_NO_ERROR)))
.RetiresOnSaturation();
EXPECT_EQ(static_cast<GLenum>(GL_NO_ERROR), gl_->GetError());
}
static bool CheckRect(int width,
int height,
GLenum format,
GLenum type,
int alignment,
const uint8_t* r1,
const uint8_t* r2) {
uint32_t size = 0;
uint32_t unpadded_row_size = 0;
uint32_t padded_row_size = 0;
if (!GLES2Util::ComputeImageDataSizes(
width, height, 1, format, type, alignment, &size, &unpadded_row_size,
&padded_row_size)) {
return false;
}
int r2_stride = static_cast<int>(padded_row_size);
for (int y = 0; y < height; ++y) {
if (memcmp(r1, r2, unpadded_row_size) != 0) {
return false;
}
r1 += padded_row_size;
r2 += r2_stride;
}
return true;
}
ACTION_P7(CheckRectAction, width, height, format, type, alignment, r1, r2) {
EXPECT_TRUE(CheckRect(
width, height, format, type, alignment, r1, r2));
}
TEST_F(GLES2ImplementationTest, TexImage2D) {
struct Cmds {
cmds::TexImage2D tex_image_2d;
cmd::SetToken set_token;
};
struct Cmds2 {
cmds::TexImage2D tex_image_2d;
cmd::SetToken set_token;
};
const GLenum kTarget = GL_TEXTURE_2D;
const GLint kLevel = 0;
const GLenum kFormat = GL_RGB;
const GLsizei kWidth = 3;
const GLsizei kHeight = 4;
const GLint kBorder = 0;
const GLenum kType = GL_UNSIGNED_BYTE;
const GLint kPixelStoreUnpackAlignment = 4;
static uint8_t pixels[] = {
11, 12, 13, 13, 14, 15, 15, 16, 17, 101, 102, 103, 21, 22, 23,
23, 24, 25, 25, 26, 27, 201, 202, 203, 31, 32, 33, 33, 34, 35,
35, 36, 37, 123, 124, 125, 41, 42, 43, 43, 44, 45, 45, 46, 47,
};
ExpectedMemoryInfo mem1 = GetExpectedMemory(sizeof(pixels));
Cmds expected;
expected.tex_image_2d.Init(
kTarget, kLevel, kFormat, kWidth, kHeight, kFormat, kType,
mem1.id, mem1.offset);
expected.set_token.Init(GetNextToken());
gl_->TexImage2D(
kTarget, kLevel, kFormat, kWidth, kHeight, kBorder, kFormat, kType,
pixels);
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_TRUE(CheckRect(
kWidth, kHeight, kFormat, kType, kPixelStoreUnpackAlignment,
pixels, mem1.ptr));
}
TEST_F(GLES2ImplementationTest, TexImage2DViaMappedMem) {
if (!AllowExtraTransferBufferSize()) {
LOG(WARNING) << "Low memory device do not support MappedMem. Skipping test";
return;
}
struct Cmds {
cmds::TexImage2D tex_image_2d;
cmd::SetToken set_token;
};
const GLenum kTarget = GL_TEXTURE_2D;
const GLint kLevel = 0;
const GLenum kFormat = GL_RGB;
const GLsizei kWidth = 3;
const GLint kBorder = 0;
const GLenum kType = GL_UNSIGNED_BYTE;
const GLint kPixelStoreUnpackAlignment = 4;
uint32_t size = 0;
uint32_t unpadded_row_size = 0;
uint32_t padded_row_size = 0;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizes(
kWidth, 2, 1, kFormat, kType, kPixelStoreUnpackAlignment,
&size, &unpadded_row_size, &padded_row_size));
const GLsizei kMaxHeight = (MaxTransferBufferSize() / padded_row_size) * 2;
const GLsizei kHeight = kMaxHeight * 2;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizes(
kWidth, kHeight, 1, kFormat, kType, kPixelStoreUnpackAlignment,
&size, &unpadded_row_size, &padded_row_size));
std::unique_ptr<uint8_t[]> pixels(new uint8_t[size]);
for (uint32_t ii = 0; ii < size; ++ii) {
pixels[ii] = static_cast<uint8_t>(ii);
}
ExpectedMemoryInfo mem1 = GetExpectedMappedMemory(size);
Cmds expected;
expected.tex_image_2d.Init(
kTarget, kLevel, kFormat, kWidth, kHeight, kFormat, kType,
mem1.id, mem1.offset);
expected.set_token.Init(GetNextToken());
gl_->TexImage2D(
kTarget, kLevel, kFormat, kWidth, kHeight, kBorder, kFormat, kType,
pixels.get());
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_TRUE(CheckRect(
kWidth, kHeight, kFormat, kType, kPixelStoreUnpackAlignment,
pixels.get(), mem1.ptr));
}
// Test TexImage2D with 2 writes
TEST_F(GLES2ImplementationTest, TexImage2DViaTexSubImage2D) {
// Set limit to 1 to effectively disable mapped memory.
SetMappedMemoryLimit(1);
struct Cmds {
cmds::TexImage2D tex_image_2d;
cmds::TexSubImage2D tex_sub_image_2d1;
cmd::SetToken set_token1;
cmds::TexSubImage2D tex_sub_image_2d2;
cmd::SetToken set_token2;
};
const GLenum kTarget = GL_TEXTURE_2D;
const GLint kLevel = 0;
const GLenum kFormat = GL_RGB;
const GLint kBorder = 0;
const GLenum kType = GL_UNSIGNED_BYTE;
const GLint kPixelStoreUnpackAlignment = 4;
const GLsizei kWidth = 3;
uint32_t size = 0;
uint32_t unpadded_row_size = 0;
uint32_t padded_row_size = 0;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizes(
kWidth, 2, 1, kFormat, kType, kPixelStoreUnpackAlignment,
&size, &unpadded_row_size, &padded_row_size));
const GLsizei kHeight = (MaxTransferBufferSize() / padded_row_size) * 2;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizes(
kWidth, kHeight, 1, kFormat, kType, kPixelStoreUnpackAlignment, &size,
nullptr, nullptr));
uint32_t half_size = 0;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizes(
kWidth, kHeight / 2, 1, kFormat, kType, kPixelStoreUnpackAlignment,
&half_size, nullptr, nullptr));
std::unique_ptr<uint8_t[]> pixels(new uint8_t[size]);
for (uint32_t ii = 0; ii < size; ++ii) {
pixels[ii] = static_cast<uint8_t>(ii);
}
ExpectedMemoryInfo mem1 = GetExpectedMemory(half_size);
ExpectedMemoryInfo mem2 = GetExpectedMemory(half_size);
Cmds expected;
expected.tex_image_2d.Init(
kTarget, kLevel, kFormat, kWidth, kHeight, kFormat, kType,
0, 0);
expected.tex_sub_image_2d1.Init(
kTarget, kLevel, 0, 0, kWidth, kHeight / 2, kFormat, kType,
mem1.id, mem1.offset, true);
expected.set_token1.Init(GetNextToken());
expected.tex_sub_image_2d2.Init(
kTarget, kLevel, 0, kHeight / 2, kWidth, kHeight / 2, kFormat, kType,
mem2.id, mem2.offset, true);
expected.set_token2.Init(GetNextToken());
// TODO(gman): Make it possible to run this test
// EXPECT_CALL(*command_buffer(), OnFlush())
// .WillOnce(CheckRectAction(
// kWidth, kHeight / 2, kFormat, kType, kPixelStoreUnpackAlignment,
// false, pixels.get(),
// GetExpectedTransferAddressFromOffsetAs<uint8_t>(offset1,
// half_size)))
// .RetiresOnSaturation();
gl_->TexImage2D(
kTarget, kLevel, kFormat, kWidth, kHeight, kBorder, kFormat, kType,
pixels.get());
EXPECT_EQ(0, memcmp(&expected, commands_, sizeof(expected)));
EXPECT_TRUE(CheckRect(
kWidth, kHeight / 2, kFormat, kType, kPixelStoreUnpackAlignment,
pixels.get() + kHeight / 2 * padded_row_size, mem2.ptr));
}
TEST_F(GLES2ImplementationTest, SubImage2DUnpack) {
static const GLint unpack_alignments[] = { 1, 2, 4, 8 };
static const GLenum kFormat = GL_RGB;
static const GLenum kType = GL_UNSIGNED_BYTE;
static const GLint kLevel = 0;
static const GLint kBorder = 0;
// We're testing using the unpack params to pull a subimage out of a larger
// source of pixels. Here we specify the subimage by its border rows /
// columns.
static const GLint kSrcWidth = 33;
static const GLint kSrcSubImageX0 = 11;
static const GLint kSrcSubImageX1 = 20;
static const GLint kSrcSubImageY0 = 18;
static const GLint kSrcSubImageY1 = 23;
static const GLint kSrcSubImageWidth = kSrcSubImageX1 - kSrcSubImageX0;
static const GLint kSrcSubImageHeight = kSrcSubImageY1 - kSrcSubImageY0;
// these are only used in the texsubimage tests
static const GLint kTexWidth = 1023;
static const GLint kTexHeight = 511;
static const GLint kTexSubXOffset = 419;
static const GLint kTexSubYOffset = 103;
struct {
cmds::PixelStorei pixel_store_i;
cmds::TexImage2D tex_image_2d;
} texImageExpected;
struct {
cmds::PixelStorei pixel_store_i;
cmds::TexImage2D tex_image_2d;
cmds::TexSubImage2D tex_sub_image_2d;
} texSubImageExpected;
uint32_t pixel_size;
PixelStoreParams pixel_params;
// Makes sure the pixels size is large enough for all tests.
pixel_params.alignment = 8;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizesES3(
kSrcWidth, kSrcSubImageY1, 1, kFormat, kType,
pixel_params, &pixel_size, nullptr, nullptr, nullptr, nullptr));
std::unique_ptr<uint8_t[]> src_pixels;
src_pixels.reset(new uint8_t[pixel_size]);
for (size_t i = 0; i < pixel_size; ++i) {
src_pixels[i] = static_cast<uint8_t>(i % 255);
}
for (int sub = 0; sub < 2; ++sub) {
for (size_t a = 0; a < base::size(unpack_alignments); ++a) {
const void* commands = GetPut();
GLint alignment = unpack_alignments[a];
gl_->PixelStorei(GL_UNPACK_ALIGNMENT, alignment);
gl_->PixelStorei(GL_UNPACK_ROW_LENGTH, kSrcWidth);
gl_->PixelStorei(GL_UNPACK_SKIP_PIXELS, kSrcSubImageX0);
gl_->PixelStorei(GL_UNPACK_SKIP_ROWS, kSrcSubImageY0);
uint32_t client_size;
uint32_t client_unpadded_row_size;
uint32_t client_padded_row_size;
uint32_t client_skip_size;
{
PixelStoreParams params;
params.alignment = alignment;
params.row_length = kSrcWidth;
params.skip_pixels = kSrcSubImageX0;
params.skip_rows = kSrcSubImageY0;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizesES3(
kSrcSubImageWidth, kSrcSubImageHeight, 1, kFormat, kType, params,
&client_size, &client_unpadded_row_size, &client_padded_row_size,
&client_skip_size, nullptr));
ASSERT_TRUE(client_size + client_skip_size <= pixel_size);
}
uint32_t service_size;
uint32_t service_unpadded_row_size;
uint32_t service_padded_row_size;
uint32_t service_skip_size;
{
PixelStoreParams params;
// For pixels we send to service side, we already applied all unpack
// parameters except for UNPACK_ALIGNMENT.
params.alignment = alignment;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizesES3(
kSrcSubImageWidth, kSrcSubImageHeight, 1, kFormat, kType, params,
&service_size, &service_unpadded_row_size, &service_padded_row_size,
&service_skip_size, nullptr));
ASSERT_TRUE(service_size <= MaxTransferBufferSize());
ASSERT_TRUE(service_skip_size == 0);
ASSERT_TRUE(client_unpadded_row_size == service_unpadded_row_size);
}
ExpectedMemoryInfo mem = GetExpectedMemory(service_size);
if (sub) {
gl_->TexImage2D(
GL_TEXTURE_2D, kLevel, kFormat, kTexWidth, kTexHeight, kBorder,
kFormat, kType, nullptr);
gl_->TexSubImage2D(
GL_TEXTURE_2D, kLevel, kTexSubXOffset, kTexSubYOffset,
kSrcSubImageWidth, kSrcSubImageHeight, kFormat, kType,
src_pixels.get());
texSubImageExpected.pixel_store_i.Init(GL_UNPACK_ALIGNMENT, alignment);
texSubImageExpected.tex_image_2d.Init(
GL_TEXTURE_2D, kLevel, kFormat, kTexWidth, kTexHeight,
kFormat, kType, 0, 0);
texSubImageExpected.tex_sub_image_2d.Init(
GL_TEXTURE_2D, kLevel, kTexSubXOffset, kTexSubYOffset,
kSrcSubImageWidth, kSrcSubImageHeight, kFormat, kType, mem.id,
mem.offset, GL_FALSE);
EXPECT_EQ(0, memcmp(&texSubImageExpected, commands,
sizeof(texSubImageExpected)));
} else {
gl_->TexImage2D(
GL_TEXTURE_2D, kLevel, kFormat,
kSrcSubImageWidth, kSrcSubImageHeight, kBorder, kFormat, kType,
src_pixels.get());
texImageExpected.pixel_store_i.Init(GL_UNPACK_ALIGNMENT, alignment);
texImageExpected.tex_image_2d.Init(
GL_TEXTURE_2D, kLevel, kFormat, kSrcSubImageWidth,
kSrcSubImageHeight, kFormat, kType, mem.id, mem.offset);
EXPECT_EQ(0, memcmp(&texImageExpected, commands,
sizeof(texImageExpected)));
}
for (int y = 0; y < kSrcSubImageHeight; ++y) {
const uint8_t* src_row =
src_pixels.get() + client_skip_size + y * client_padded_row_size;
const uint8_t* dst_row = mem.ptr + y * service_padded_row_size;
EXPECT_EQ(0, memcmp(src_row, dst_row, service_unpadded_row_size));
}
ClearCommands();
}
}
}
TEST_F(GLES3ImplementationTest, SubImage3DUnpack) {
static const GLint unpack_alignments[] = { 1, 2, 4, 8 };
static const GLenum kFormat = GL_RGB;
static const GLenum kType = GL_UNSIGNED_BYTE;
static const GLint kLevel = 0;
static const GLint kBorder = 0;
// We're testing using the unpack params to pull a subimage out of a larger
// source of pixels. Here we specify the subimage by its border rows /
// columns.
static const GLint kSrcWidth = 23;
static const GLint kSrcHeight = 7;
static const GLint kSrcSubImageX0 = 11;
static const GLint kSrcSubImageX1 = 16;
static const GLint kSrcSubImageY0 = 1;
static const GLint kSrcSubImageY1 = 4;
static const GLint kSrcSubImageZ0 = 2;
static const GLint kSrcSubImageZ1 = 5;
static const GLint kSrcSubImageWidth = kSrcSubImageX1 - kSrcSubImageX0;
static const GLint kSrcSubImageHeight = kSrcSubImageY1 - kSrcSubImageY0;
static const GLint kSrcSubImageDepth = kSrcSubImageZ1 - kSrcSubImageZ0;
// these are only used in the texsubimage tests
static const GLint kTexWidth = 255;
static const GLint kTexHeight = 127;
static const GLint kTexDepth = 11;
static const GLint kTexSubXOffset = 119;
static const GLint kTexSubYOffset = 63;
static const GLint kTexSubZOffset = 1;
struct {
cmds::PixelStorei pixel_store_i[3];
cmds::TexImage3D tex_image_3d;
} texImageExpected;
struct {
cmds::PixelStorei pixel_store_i[3];
cmds::TexImage3D tex_image_3d;
cmds::TexSubImage3D tex_sub_image_3d;
} texSubImageExpected;
uint32_t pixel_size;
PixelStoreParams pixel_params;
// Makes sure the pixels size is large enough for all tests.
pixel_params.alignment = 8;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizesES3(
kSrcWidth, kSrcHeight, kSrcSubImageZ1, kFormat, kType,
pixel_params, &pixel_size, nullptr, nullptr, nullptr, nullptr));
std::unique_ptr<uint8_t[]> src_pixels;
src_pixels.reset(new uint8_t[pixel_size]);
for (size_t i = 0; i < pixel_size; ++i) {
src_pixels[i] = static_cast<uint8_t>(i % 255);
}
for (int sub = 0; sub < 2; ++sub) {
for (size_t a = 0; a < base::size(unpack_alignments); ++a) {
const void* commands = GetPut();
GLint alignment = unpack_alignments[a];
gl_->PixelStorei(GL_UNPACK_ALIGNMENT, alignment);
gl_->PixelStorei(GL_UNPACK_ROW_LENGTH, kSrcWidth);
gl_->PixelStorei(GL_UNPACK_IMAGE_HEIGHT, kSrcHeight);
gl_->PixelStorei(GL_UNPACK_SKIP_PIXELS, kSrcSubImageX0);
gl_->PixelStorei(GL_UNPACK_SKIP_ROWS, kSrcSubImageY0);
gl_->PixelStorei(GL_UNPACK_SKIP_IMAGES, kSrcSubImageZ0);
uint32_t client_size;
uint32_t client_unpadded_row_size;
uint32_t client_padded_row_size;
uint32_t client_skip_size;
{
PixelStoreParams params;
params.alignment = alignment;
params.row_length = kSrcWidth;
params.image_height = kSrcHeight;
params.skip_pixels = kSrcSubImageX0;
params.skip_rows = kSrcSubImageY0;
params.skip_images = kSrcSubImageZ0;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizesES3(
kSrcSubImageWidth, kSrcSubImageHeight, kSrcSubImageDepth,
kFormat, kType, params,
&client_size, &client_unpadded_row_size, &client_padded_row_size,
&client_skip_size, nullptr));
ASSERT_TRUE(client_size + client_skip_size <= pixel_size);
}
uint32_t service_size;
uint32_t service_unpadded_row_size;
uint32_t service_padded_row_size;
uint32_t service_skip_size;
{
PixelStoreParams params;
// For pixels we send to service side, we already applied all unpack
// parameters except for UNPACK_ALIGNMENT.
params.alignment = alignment;
ASSERT_TRUE(GLES2Util::ComputeImageDataSizesES3(
kSrcSubImageWidth, kSrcSubImageHeight, kSrcSubImageDepth,
kFormat, kType, params,
&service_size, &service_unpadded_row_size, &service_padded_row_size,
&service_skip_size, nullptr));
ASSERT_TRUE(service_size <= MaxTransferBufferSize());
ASSERT_TRUE(service_skip_size == 0);
ASSERT_TRUE(client_unpadded_row_size == service_unpadded_row_size);
}
ExpectedMemoryInfo mem = GetExpectedMemory(service_size);
if (sub) {
gl_->TexImage3D(
GL_TEXTURE_3D, kLevel, kFormat, kTexWidth, kTexHeight, kTexDepth,
kBorder, kFormat, kType, nullptr);
gl_->TexSubImage3D(
GL_TEXTURE_3D, kLevel,
kTexSubXOffset, kTexSubYOffset, kTexSubZOffset,
kSrcSubImageWidth, kSrcSubImageHeight, kSrcSubImageDepth,
kFormat, kType, src_pixels.get());
texSubImageExpected.pixel_store_i[0].Init(
GL_UNPACK_ALIGNMENT, alignment);
texSubImageExpected.pixel_store_i[1].Init(
GL_UNPACK_ROW_LENGTH, kSrcWidth);
texSubImageExpected.pixel_store_i[2].Init(
GL_UNPACK_IMAGE_HEIGHT, kSrcHeight);
texSubImageExpected.tex_image_3d.Init(
GL_TEXTURE_3D, kLevel, kFormat, kTexWidth, kTexHeight, kTexDepth,
kFormat, kType, 0, 0);
texSubImageExpected.tex_sub_image_3d.Init(
GL_TEXTURE_3D, kLevel,
kTexSubXOffset, kTexSubYOffset, kTexSubZOffset,
kSrcSubImageWidth, kSrcSubImageHeight, kSrcSubImageDepth,
kFormat, kType, mem.id, mem.offset, GL_FALSE);
EXPECT_EQ(0, memcmp(&texSubImageExpected, commands,
sizeof(texSubImageExpected)));
} else {
gl_->TexImage3D(
GL_TEXTURE_3D, kLevel, kFormat,
kSrcSubImageWidth, kSrcSubImageHeight, kSrcSubImageDepth,
kBorder, kFormat, kType, src_pixels.get());
texImageExpected.pixel_store_i[0].Init(GL_UNPACK_ALIGNMENT, alignment);
texImageExpected.pixel_store_i[1].Init(
GL_UNPACK_ROW_LENGTH, kSrcWidth);
texImageExpected.pixel_store_i[2].Init(
GL_UNPACK_IMAGE_HEIGHT, kSrcHeight);
texImageExpected.tex_image_3d.Init(
GL_TEXTURE_3D, kLevel, kFormat,
kSrcSubImageWidth, kSrcSubImageHeight, kSrcSubImageDepth,
kFormat, kType, mem.id, mem.offset);
EXPECT_EQ(0, memcmp(&texImageExpected, commands,
sizeof(texImageExpected)));
}
for (int z = 0; z < kSrcSubImageDepth; ++z) {
for (int y = 0; y < kSrcSubImageHeight; ++y) {
const uint8_t* src_row = src_pixels.get() + client_skip_size +
(kSrcHeight * z + y) * client_padded_row_size;
const uint8_t* dst_row = mem.ptr +
(kSrcSubImageHeight * z + y) * service_padded_row_size;
EXPECT_EQ(0, memcmp(src_row, dst_row, service_unpadded_row_size));
}
}
ClearCommands();
}
}
}
// Test texture related calls with invalid arguments.
TEST_F(GLES2ImplementationTest, TextureInvalidArguments) {
struct Cmds {
cmds::TexImage2D tex_image_2d;
cmd::SetToken set_token;
};
const GLenum kTarget = GL_TEXTURE_2D;
const GLint kLevel = 0;
const GLenum kFormat = GL_RGB;
const GLsizei kWidth = 3;
const GLsizei kHeight = 4;
const GLint kBorder = 0;
const GLint kInvalidBorder = 1;
const GLenum kType = GL_UNSIGNED_BYTE;
const GLint kPixelStoreUnpackAlignment = 4;
static uint8_t pixels[] = {
11, 12, 13, 13, 14, 15, 15, 16, 17, 101, 102, 103, 21, 22, 23,
23, 24, 25, 25, 26, 27, 201, 202, 203, 31, 32, 33, 33, 34, 35,
35, 36, 37, 123, 124, 125, 41, 42, 43, 43, 44, 45, 45, 46, 47,
};