blob: fefcd72f23d7177f48a743d6bc33cf610fe72b67 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is a simple application that stress-tests the crash recovery of the disk
// cache. The main application starts a copy of itself on a loop, checking the
// exit code of the child process. When the child dies in an unexpected way,
// the main application quits.
// The child application has two threads: one to exercise the cache in an
// infinite loop, and another one to asynchronously kill the process.
// A regular build should never crash.
// To test that the disk cache doesn't generate critical errors with regular
// application level crashes, edit stress_support.h.
#include <string>
#include <vector>
#include "base/at_exit.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/command_line.h"
#include "base/debug/debugger.h"
#include "base/files/file_path.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "base/path_service.h"
#include "base/process/launch.h"
#include "base/process/process.h"
#include "base/run_loop.h"
#include "base/single_thread_task_runner.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "base/threading/thread_task_runner_handle.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/disk_cache/blockfile/backend_impl.h"
#include "net/disk_cache/blockfile/stress_support.h"
#include "net/disk_cache/blockfile/trace.h"
#include "net/disk_cache/disk_cache.h"
#include "net/disk_cache/disk_cache_test_util.h"
#if defined(OS_WIN)
#include "base/logging_win.h"
#endif
using base::Time;
const int kError = -1;
const int kExpectedCrash = 100;
// Starts a new process.
int RunSlave(int iteration) {
base::FilePath exe;
PathService::Get(base::FILE_EXE, &exe);
base::CommandLine cmdline(exe);
cmdline.AppendArg(base::IntToString(iteration));
base::Process process = base::LaunchProcess(cmdline, base::LaunchOptions());
if (!process.IsValid()) {
printf("Unable to run test\n");
return kError;
}
int exit_code;
if (!process.WaitForExit(&exit_code)) {
printf("Unable to get return code\n");
return kError;
}
return exit_code;
}
// Main loop for the master process.
int MasterCode() {
for (int i = 0; i < 100000; i++) {
int ret = RunSlave(i);
if (kExpectedCrash != ret)
return ret;
}
printf("More than enough...\n");
return 0;
}
// -----------------------------------------------------------------------
std::string GenerateStressKey() {
char key[20 * 1024];
size_t size = 50 + rand() % 20000;
CacheTestFillBuffer(key, size, true);
key[size - 1] = '\0';
return std::string(key);
}
// kNumKeys is meant to be enough to have about 3x or 4x iterations before
// the process crashes.
#ifdef NDEBUG
const int kNumKeys = 4000;
#else
const int kNumKeys = 1200;
#endif
const int kNumEntries = 30;
const int kBufferSize = 2000;
const int kReadSize = 20;
// Things that an entry can be doing.
enum Operation { NONE, OPEN, CREATE, READ, WRITE, DOOM };
// This class encapsulates a cache entry and the operations performed on that
// entry. An entry is opened or created as needed, the current content is then
// verified and then something is written to the entry. At that point, the
// |state_| becomes NONE again, waiting for another write, unless the entry is
// closed or deleted.
class EntryWrapper {
public:
EntryWrapper() : entry_(nullptr), state_(NONE) {
buffer_ = new net::IOBuffer(kBufferSize);
memset(buffer_->data(), 'k', kBufferSize);
}
Operation state() const { return state_; }
void DoOpen(int key);
private:
void OnOpenDone(int key, int result);
void DoRead();
void OnReadDone(int result);
void DoWrite();
void OnWriteDone(int size, int result);
void DoDelete(const std::string& key);
void OnDeleteDone(int result);
void DoIdle();
disk_cache::Entry* entry_;
Operation state_;
scoped_refptr<net::IOBuffer> buffer_;
};
// The data that the main thread is working on.
struct Data {
Data() : pendig_operations(0), writes(0), iteration(0), cache(nullptr) {}
int pendig_operations; // Counter of simultaneous operations.
int writes; // How many writes since this iteration started.
int iteration; // The iteration (number of crashes).
disk_cache::BackendImpl* cache;
std::string keys[kNumKeys];
EntryWrapper entries[kNumEntries];
};
Data* g_data = nullptr;
void EntryWrapper::DoOpen(int key) {
DCHECK_EQ(state_, NONE);
if (entry_)
return DoRead();
state_ = OPEN;
int rv = g_data->cache->OpenEntry(
g_data->keys[key], &entry_,
base::Bind(&EntryWrapper::OnOpenDone, base::Unretained(this), key));
if (rv != net::ERR_IO_PENDING)
OnOpenDone(key, rv);
}
void EntryWrapper::OnOpenDone(int key, int result) {
if (result == net::OK)
return DoRead();
CHECK_EQ(state_, OPEN);
state_ = CREATE;
result = g_data->cache->CreateEntry(
g_data->keys[key], &entry_,
base::Bind(&EntryWrapper::OnOpenDone, base::Unretained(this), key));
if (result != net::ERR_IO_PENDING)
OnOpenDone(key, result);
}
void EntryWrapper::DoRead() {
int current_size = entry_->GetDataSize(0);
if (!current_size)
return DoWrite();
state_ = READ;
memset(buffer_->data(), 'k', kReadSize);
int rv = entry_->ReadData(
0, 0, buffer_.get(), kReadSize,
base::Bind(&EntryWrapper::OnReadDone, base::Unretained(this)));
if (rv != net::ERR_IO_PENDING)
OnReadDone(rv);
}
void EntryWrapper::OnReadDone(int result) {
DCHECK_EQ(state_, READ);
CHECK_EQ(result, kReadSize);
CHECK_EQ(0, memcmp(buffer_->data(), "Write: ", 7));
DoWrite();
}
void EntryWrapper::DoWrite() {
bool truncate = (rand() % 2 == 0);
int size = kBufferSize - (rand() % 20) * kBufferSize / 20;
state_ = WRITE;
base::snprintf(buffer_->data(), kBufferSize,
"Write: %d iter: %d, size: %d, truncate: %d ",
g_data->writes, g_data->iteration, size, truncate ? 1 : 0);
int rv = entry_->WriteData(
0, 0, buffer_.get(), size,
base::Bind(&EntryWrapper::OnWriteDone, base::Unretained(this), size),
truncate);
if (rv != net::ERR_IO_PENDING)
OnWriteDone(size, rv);
}
void EntryWrapper::OnWriteDone(int size, int result) {
DCHECK_EQ(state_, WRITE);
CHECK_EQ(size, result);
if (!(g_data->writes++ % 100))
printf("Entries: %d \r", g_data->writes);
int random = rand() % 100;
std::string key = entry_->GetKey();
if (random > 90)
return DoDelete(key); // 10% delete then close.
if (random > 60) { // 20% close.
entry_->Close();
entry_ = nullptr;
}
if (random > 80)
return DoDelete(key); // 10% close then delete.
DoIdle(); // 60% do another write later.
}
void EntryWrapper::DoDelete(const std::string& key) {
state_ = DOOM;
int rv = g_data->cache->DoomEntry(
key, base::Bind(&EntryWrapper::OnDeleteDone, base::Unretained(this)));
if (rv != net::ERR_IO_PENDING)
OnDeleteDone(rv);
}
void EntryWrapper::OnDeleteDone(int result) {
DCHECK_EQ(state_, DOOM);
if (entry_) {
entry_->Close();
entry_ = nullptr;
}
DoIdle();
}
void LoopTask();
void EntryWrapper::DoIdle() {
state_ = NONE;
g_data->pendig_operations--;
DCHECK(g_data->pendig_operations);
base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
base::Bind(&LoopTask));
}
// The task that keeps the main thread busy. Whenever an entry becomes idle this
// task is executed again.
void LoopTask() {
if (g_data->pendig_operations >= kNumEntries)
return;
int slot = rand() % kNumEntries;
if (g_data->entries[slot].state() == NONE) {
// Each slot will have some keys assigned to it so that the same entry will
// not be open by two slots, which means that the state is well known at
// all times.
int keys_per_entry = kNumKeys / kNumEntries;
int key = rand() % keys_per_entry + keys_per_entry * slot;
g_data->pendig_operations++;
g_data->entries[slot].DoOpen(key);
}
base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
base::Bind(&LoopTask));
}
// This thread will loop forever, adding and removing entries from the cache.
// iteration is the current crash cycle, so the entries on the cache are marked
// to know which instance of the application wrote them.
void StressTheCache(int iteration) {
int cache_size = 0x2000000; // 32MB.
uint32_t mask = 0xfff; // 4096 entries.
base::FilePath path;
PathService::Get(base::DIR_TEMP, &path);
path = path.AppendASCII("cache_test_stress");
base::Thread cache_thread("CacheThread");
if (!cache_thread.StartWithOptions(
base::Thread::Options(base::MessageLoop::TYPE_IO, 0)))
return;
g_data = new Data();
g_data->iteration = iteration;
g_data->cache = new disk_cache::BackendImpl(
path, mask, cache_thread.task_runner().get(), NULL);
g_data->cache->SetMaxSize(cache_size);
g_data->cache->SetFlags(disk_cache::kNoLoadProtection);
net::TestCompletionCallback cb;
int rv = g_data->cache->Init(cb.callback());
if (cb.GetResult(rv) != net::OK) {
printf("Unable to initialize cache.\n");
return;
}
printf("Iteration %d, initial entries: %d\n", iteration,
g_data->cache->GetEntryCount());
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
for (int i = 0; i < kNumKeys; i++)
g_data->keys[i] = GenerateStressKey();
base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
base::Bind(&LoopTask));
base::RunLoop().Run();
}
// We want to prevent the timer thread from killing the process while we are
// waiting for the debugger to attach.
bool g_crashing = false;
// RunSoon() and CrashCallback() reference each other, unfortunately.
void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner);
void CrashCallback() {
// Keep trying to run.
RunSoon(base::ThreadTaskRunnerHandle::Get());
if (g_crashing)
return;
if (rand() % 100 > 30) {
printf("sweet death...\n");
#if defined(OS_WIN)
// Windows does more work on _exit() than we would like.
base::Process::Current().Terminate(kExpectedCrash, false);
#elif defined(OS_POSIX)
// On POSIX, _exit() will terminate the process with minimal cleanup,
// and it is cleaner than killing.
_exit(kExpectedCrash);
#endif
}
}
void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner) {
const base::TimeDelta kTaskDelay = base::TimeDelta::FromSeconds(10);
task_runner->PostDelayedTask(FROM_HERE, base::Bind(&CrashCallback),
kTaskDelay);
}
// We leak everything here :)
bool StartCrashThread() {
base::Thread* thread = new base::Thread("party_crasher");
if (!thread->Start())
return false;
RunSoon(thread->task_runner());
return true;
}
void CrashHandler(const std::string& str) {
g_crashing = true;
base::debug::BreakDebugger();
}
bool MessageHandler(int severity, const char* file, int line,
size_t message_start, const std::string& str) {
const size_t kMaxMessageLen = 48;
char message[kMaxMessageLen];
size_t len = std::min(str.length() - message_start, kMaxMessageLen - 1);
memcpy(message, str.c_str() + message_start, len);
message[len] = '\0';
#if !defined(DISK_CACHE_TRACE_TO_LOG)
disk_cache::Trace("%s", message);
#endif
return false;
}
// -----------------------------------------------------------------------
#if defined(OS_WIN)
// {B9A153D4-31C3-48e4-9ABF-D54383F14A0D}
const GUID kStressCacheTraceProviderName = {
0xb9a153d4, 0x31c3, 0x48e4,
{ 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } };
#endif
int main(int argc, const char* argv[]) {
// Setup an AtExitManager so Singleton objects will be destructed.
base::AtExitManager at_exit_manager;
if (argc < 2)
return MasterCode();
logging::SetLogAssertHandler(CrashHandler);
logging::SetLogMessageHandler(MessageHandler);
#if defined(OS_WIN)
logging::LogEventProvider::Initialize(kStressCacheTraceProviderName);
#else
base::CommandLine::Init(argc, argv);
logging::LoggingSettings settings;
settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG;
logging::InitLogging(settings);
#endif
// Some time for the memory manager to flush stuff.
base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(3));
base::MessageLoopForIO message_loop;
char* end;
long int iteration = strtol(argv[1], &end, 0);
if (!StartCrashThread()) {
printf("failed to start thread\n");
return kError;
}
StressTheCache(iteration);
return 0;
}