blob: bf3d276dfdaa8d7a790d7e1bfe70920f85f42589 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/display/manager/managed_display_info.h"
#include <stdio.h>
#include <algorithm>
#include <string>
#include <vector>
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "ui/display/display.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/geometry/size_f.h"
#if defined(OS_WIN)
#include <windows.h>
#include "ui/display/win/dpi.h"
#endif
namespace display {
namespace {
// Use larger than max int to catch overflow early.
const int64_t kSynthesizedDisplayIdStart = 2200000000LL;
int64_t synthesized_display_id = kSynthesizedDisplayIdStart;
const float kDpi96 = 96.0;
bool use_125_dsf_for_ui_scaling = true;
// Check the content of |spec| and fill |bounds| and |device_scale_factor|.
// Returns true when |bounds| is found.
bool GetDisplayBounds(const std::string& spec,
gfx::Rect* bounds,
float* device_scale_factor) {
int width = 0;
int height = 0;
int x = 0;
int y = 0;
if (sscanf(spec.c_str(), "%dx%d*%f", &width, &height, device_scale_factor) >=
2 ||
sscanf(spec.c_str(), "%d+%d-%dx%d*%f", &x, &y, &width, &height,
device_scale_factor) >= 4) {
bounds->SetRect(x, y, width, height);
return true;
}
return false;
}
// Display mode list is sorted by:
// * the area in pixels in ascending order
// * refresh rate in descending order
struct ManagedDisplayModeSorter {
explicit ManagedDisplayModeSorter(bool is_internal)
: is_internal(is_internal) {}
bool operator()(const scoped_refptr<ManagedDisplayMode>& a,
const scoped_refptr<ManagedDisplayMode>& b) {
gfx::Size size_a_dip = a->GetSizeInDIP(is_internal);
gfx::Size size_b_dip = b->GetSizeInDIP(is_internal);
if (size_a_dip.GetArea() == size_b_dip.GetArea())
return (a->refresh_rate() > b->refresh_rate());
return (size_a_dip.GetArea() < size_b_dip.GetArea());
}
bool is_internal;
};
} // namespace
TouchCalibrationData::TouchCalibrationData() {}
TouchCalibrationData::TouchCalibrationData(
const TouchCalibrationData::CalibrationPointPairQuad& point_pairs,
const gfx::Size& bounds) : point_pairs(point_pairs),
bounds(bounds) {}
TouchCalibrationData::TouchCalibrationData(
const TouchCalibrationData& calibration_data)
: point_pairs(calibration_data.point_pairs),
bounds(calibration_data.bounds) {}
bool TouchCalibrationData::operator==(TouchCalibrationData other) const {
if (bounds != other.bounds)
return false;
CalibrationPointPairQuad quad_1 = point_pairs;
CalibrationPointPairQuad& quad_2 = other.point_pairs;
// Make sure the point pairs are in the correct order.
std::sort(quad_1.begin(), quad_1.end(), CalibrationPointPairCompare);
std::sort(quad_2.begin(), quad_2.end(), CalibrationPointPairCompare);
return quad_1 == quad_2;
}
ManagedDisplayMode::ManagedDisplayMode()
: refresh_rate_(0.0f),
is_interlaced_(false),
native_(false),
ui_scale_(1.0f),
device_scale_factor_(1.0f) {}
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size)
: size_(size),
refresh_rate_(0.0f),
is_interlaced_(false),
native_(false),
ui_scale_(1.0f),
device_scale_factor_(1.0f) {}
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size,
float refresh_rate,
bool is_interlaced,
bool native)
: size_(size),
refresh_rate_(refresh_rate),
is_interlaced_(is_interlaced),
native_(native),
ui_scale_(1.0f),
device_scale_factor_(1.0f) {}
ManagedDisplayMode::~ManagedDisplayMode() {}
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size,
float refresh_rate,
bool is_interlaced,
bool native,
float ui_scale,
float device_scale_factor)
: size_(size),
refresh_rate_(refresh_rate),
is_interlaced_(is_interlaced),
native_(native),
ui_scale_(ui_scale),
device_scale_factor_(device_scale_factor) {}
gfx::Size ManagedDisplayMode::GetSizeInDIP(bool is_internal) const {
gfx::SizeF size_dip(size_);
size_dip.Scale(ui_scale_);
// DSF=1.25 is special on internal display. The screen is drawn with DSF=1.25
// but it doesn't affect the screen size computation.
if (use_125_dsf_for_ui_scaling && is_internal &&
device_scale_factor_ == 1.25f)
return gfx::ToFlooredSize(size_dip);
size_dip.Scale(1.0f / device_scale_factor_);
return gfx::ToFlooredSize(size_dip);
}
bool ManagedDisplayMode::IsEquivalent(
const scoped_refptr<ManagedDisplayMode>& other) const {
const float kEpsilon = 0.0001f;
return size_ == other->size_ &&
std::abs(ui_scale_ - other->ui_scale_) < kEpsilon &&
std::abs(device_scale_factor_ - other->device_scale_factor_) <
kEpsilon;
}
// static
ManagedDisplayInfo ManagedDisplayInfo::CreateFromSpec(const std::string& spec) {
return CreateFromSpecWithID(spec, kInvalidDisplayId);
}
// static
ManagedDisplayInfo ManagedDisplayInfo::CreateFromSpecWithID(
const std::string& spec,
int64_t id) {
#if defined(OS_WIN)
gfx::Rect bounds_in_native(
gfx::Size(GetSystemMetrics(SM_CXSCREEN), GetSystemMetrics(SM_CYSCREEN)));
#else
// Default bounds for a display.
const int kDefaultHostWindowX = 200;
const int kDefaultHostWindowY = 200;
const int kDefaultHostWindowWidth = 1366;
const int kDefaultHostWindowHeight = 768;
gfx::Rect bounds_in_native(kDefaultHostWindowX, kDefaultHostWindowY,
kDefaultHostWindowWidth, kDefaultHostWindowHeight);
#endif
std::string main_spec = spec;
float ui_scale = 1.0f;
std::vector<std::string> parts = base::SplitString(
main_spec, "@", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
if (parts.size() == 2) {
double scale_in_double = 0;
if (base::StringToDouble(parts[1], &scale_in_double))
ui_scale = scale_in_double;
main_spec = parts[0];
}
parts = base::SplitString(main_spec, "/", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
Display::Rotation rotation(Display::ROTATE_0);
bool has_overscan = false;
if (!parts.empty()) {
main_spec = parts[0];
if (parts.size() >= 2) {
std::string options = parts[1];
for (size_t i = 0; i < options.size(); ++i) {
char c = options[i];
switch (c) {
case 'o':
has_overscan = true;
break;
case 'r': // rotate 90 degrees to 'right'.
rotation = Display::ROTATE_90;
break;
case 'u': // 180 degrees, 'u'pside-down.
rotation = Display::ROTATE_180;
break;
case 'l': // rotate 90 degrees to 'left'.
rotation = Display::ROTATE_270;
break;
}
}
}
}
float device_scale_factor = 1.0f;
if (!GetDisplayBounds(main_spec, &bounds_in_native, &device_scale_factor)) {
#if defined(OS_WIN)
device_scale_factor = win::GetDPIScale();
#endif
}
ManagedDisplayModeList display_modes;
parts = base::SplitString(main_spec, "#", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
if (parts.size() == 2) {
size_t native_mode = 0;
int largest_area = -1;
float highest_refresh_rate = -1.0f;
main_spec = parts[0];
std::string resolution_list = parts[1];
parts = base::SplitString(resolution_list, "|", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
for (size_t i = 0; i < parts.size(); ++i) {
gfx::Size size;
float refresh_rate = 0.0f;
bool is_interlaced = false;
gfx::Rect mode_bounds;
std::vector<std::string> resolution = base::SplitString(
parts[i], "%", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
if (GetDisplayBounds(resolution[0], &mode_bounds, &device_scale_factor)) {
size = mode_bounds.size();
if (resolution.size() > 1)
sscanf(resolution[1].c_str(), "%f", &refresh_rate);
if (size.GetArea() >= largest_area &&
refresh_rate > highest_refresh_rate) {
// Use mode with largest area and highest refresh rate as native.
largest_area = size.GetArea();
highest_refresh_rate = refresh_rate;
native_mode = i;
}
display_modes.push_back(make_scoped_refptr(
new ManagedDisplayMode(size, refresh_rate, is_interlaced, false,
1.0, device_scale_factor)));
}
}
scoped_refptr<ManagedDisplayMode> dm = display_modes[native_mode];
display_modes[native_mode] = new ManagedDisplayMode(
dm->size(), dm->refresh_rate(), dm->is_interlaced(), true,
dm->ui_scale(), dm->device_scale_factor());
}
if (id == kInvalidDisplayId)
id = synthesized_display_id++;
ManagedDisplayInfo display_info(
id, base::StringPrintf("Display-%d", static_cast<int>(id)), has_overscan);
display_info.set_device_scale_factor(device_scale_factor);
display_info.SetRotation(rotation, Display::ROTATION_SOURCE_ACTIVE);
display_info.set_configured_ui_scale(ui_scale);
display_info.SetBounds(bounds_in_native);
display_info.SetManagedDisplayModes(display_modes);
// To test the overscan, it creates the default 5% overscan.
if (has_overscan) {
int width = bounds_in_native.width() / device_scale_factor / 40;
int height = bounds_in_native.height() / device_scale_factor / 40;
display_info.SetOverscanInsets(gfx::Insets(height, width, height, width));
display_info.UpdateDisplaySize();
}
DVLOG(1) << "DisplayInfoFromSpec info=" << display_info.ToString()
<< ", spec=" << spec;
return display_info;
}
// static
void ManagedDisplayInfo::SetUse125DSFForUIScalingForTest(bool enable) {
use_125_dsf_for_ui_scaling = enable;
}
ManagedDisplayInfo::ManagedDisplayInfo()
: id_(kInvalidDisplayId),
has_overscan_(false),
active_rotation_source_(Display::ROTATION_SOURCE_UNKNOWN),
touch_support_(Display::TOUCH_SUPPORT_UNKNOWN),
has_touch_calibration_data_(false),
device_scale_factor_(1.0f),
device_dpi_(kDpi96),
overscan_insets_in_dip_(0, 0, 0, 0),
configured_ui_scale_(1.0f),
native_(false),
is_aspect_preserving_scaling_(false),
clear_overscan_insets_(false),
color_profile_(COLOR_PROFILE_STANDARD) {}
ManagedDisplayInfo::ManagedDisplayInfo(int64_t id,
const std::string& name,
bool has_overscan)
: id_(id),
name_(name),
has_overscan_(has_overscan),
active_rotation_source_(Display::ROTATION_SOURCE_UNKNOWN),
touch_support_(Display::TOUCH_SUPPORT_UNKNOWN),
has_touch_calibration_data_(false),
device_scale_factor_(1.0f),
device_dpi_(kDpi96),
overscan_insets_in_dip_(0, 0, 0, 0),
configured_ui_scale_(1.0f),
native_(false),
is_aspect_preserving_scaling_(false),
clear_overscan_insets_(false),
color_profile_(COLOR_PROFILE_STANDARD) {}
ManagedDisplayInfo::ManagedDisplayInfo(const ManagedDisplayInfo& other) =
default;
ManagedDisplayInfo::~ManagedDisplayInfo() {}
void ManagedDisplayInfo::SetRotation(Display::Rotation rotation,
Display::RotationSource source) {
rotations_[source] = rotation;
rotations_[Display::ROTATION_SOURCE_ACTIVE] = rotation;
active_rotation_source_ = source;
}
Display::Rotation ManagedDisplayInfo::GetActiveRotation() const {
return GetRotation(Display::ROTATION_SOURCE_ACTIVE);
}
Display::Rotation ManagedDisplayInfo::GetRotation(
Display::RotationSource source) const {
if (rotations_.find(source) == rotations_.end())
return Display::ROTATE_0;
return rotations_.at(source);
}
void ManagedDisplayInfo::Copy(const ManagedDisplayInfo& native_info) {
DCHECK(id_ == native_info.id_);
name_ = native_info.name_;
has_overscan_ = native_info.has_overscan_;
active_rotation_source_ = native_info.active_rotation_source_;
touch_support_ = native_info.touch_support_;
input_devices_ = native_info.input_devices_;
device_scale_factor_ = native_info.device_scale_factor_;
DCHECK(!native_info.bounds_in_native_.IsEmpty());
bounds_in_native_ = native_info.bounds_in_native_;
device_dpi_ = native_info.device_dpi_;
size_in_pixel_ = native_info.size_in_pixel_;
is_aspect_preserving_scaling_ = native_info.is_aspect_preserving_scaling_;
display_modes_ = native_info.display_modes_;
available_color_profiles_ = native_info.available_color_profiles_;
maximum_cursor_size_ = native_info.maximum_cursor_size_;
// Rotation, ui_scale, color_profile and overscan are given by preference,
// or unit tests. Don't copy if this native_info came from
// DisplayChangeObserver.
if (!native_info.native()) {
// Update the overscan_insets_in_dip_ either if the inset should be
// cleared, or has non empty insts.
if (native_info.clear_overscan_insets())
overscan_insets_in_dip_.Set(0, 0, 0, 0);
else if (!native_info.overscan_insets_in_dip_.IsEmpty())
overscan_insets_in_dip_ = native_info.overscan_insets_in_dip_;
has_touch_calibration_data_ = native_info.has_touch_calibration_data_;
if (has_touch_calibration_data_)
touch_calibration_data_ = native_info.touch_calibration_data_;
rotations_ = native_info.rotations_;
configured_ui_scale_ = native_info.configured_ui_scale_;
color_profile_ = native_info.color_profile();
}
}
void ManagedDisplayInfo::SetBounds(const gfx::Rect& new_bounds_in_native) {
bounds_in_native_ = new_bounds_in_native;
size_in_pixel_ = new_bounds_in_native.size();
UpdateDisplaySize();
}
float ManagedDisplayInfo::GetEffectiveDeviceScaleFactor() const {
if (Use125DSFForUIScaling() && device_scale_factor_ == 1.25f)
return (configured_ui_scale_ == 0.8f) ? 1.25f : 1.0f;
if (device_scale_factor_ == configured_ui_scale_)
return 1.0f;
return device_scale_factor_;
}
float ManagedDisplayInfo::GetEffectiveUIScale() const {
if (Use125DSFForUIScaling() && device_scale_factor_ == 1.25f)
return (configured_ui_scale_ == 0.8f) ? 1.0f : configured_ui_scale_;
if (device_scale_factor_ == configured_ui_scale_)
return 1.0f;
return configured_ui_scale_;
}
void ManagedDisplayInfo::UpdateDisplaySize() {
size_in_pixel_ = bounds_in_native_.size();
if (!overscan_insets_in_dip_.IsEmpty()) {
gfx::Insets insets_in_pixel =
overscan_insets_in_dip_.Scale(device_scale_factor_);
size_in_pixel_.Enlarge(-insets_in_pixel.width(), -insets_in_pixel.height());
} else {
overscan_insets_in_dip_.Set(0, 0, 0, 0);
}
if (GetActiveRotation() == Display::ROTATE_90 ||
GetActiveRotation() == Display::ROTATE_270) {
size_in_pixel_.SetSize(size_in_pixel_.height(), size_in_pixel_.width());
}
gfx::SizeF size_f(size_in_pixel_);
size_f.Scale(GetEffectiveUIScale());
size_in_pixel_ = gfx::ToFlooredSize(size_f);
}
void ManagedDisplayInfo::SetOverscanInsets(const gfx::Insets& insets_in_dip) {
overscan_insets_in_dip_ = insets_in_dip;
}
gfx::Insets ManagedDisplayInfo::GetOverscanInsetsInPixel() const {
return overscan_insets_in_dip_.Scale(device_scale_factor_);
}
void ManagedDisplayInfo::SetManagedDisplayModes(
const ManagedDisplayModeList& display_modes) {
display_modes_ = display_modes;
std::sort(display_modes_.begin(), display_modes_.end(),
ManagedDisplayModeSorter(Display::IsInternalDisplayId(id_)));
}
gfx::Size ManagedDisplayInfo::GetNativeModeSize() const {
for (size_t i = 0; i < display_modes_.size(); ++i) {
if (display_modes_[i]->native())
return display_modes_[i]->size();
}
return gfx::Size();
}
std::string ManagedDisplayInfo::ToString() const {
int rotation_degree = static_cast<int>(GetActiveRotation()) * 90;
std::string devices_str;
for (size_t i = 0; i < input_devices_.size(); ++i) {
devices_str += base::IntToString(input_devices_[i]);
if (i != input_devices_.size() - 1)
devices_str += ", ";
}
std::string result = base::StringPrintf(
"ManagedDisplayInfo[%lld] native bounds=%s, size=%s, device-scale=%g, "
"overscan=%s, rotation=%d, ui-scale=%g, touchscreen=%s, "
"input_devices=[%s]",
static_cast<long long int>(id_), bounds_in_native_.ToString().c_str(),
size_in_pixel_.ToString().c_str(), device_scale_factor_,
overscan_insets_in_dip_.ToString().c_str(), rotation_degree,
configured_ui_scale_,
touch_support_ == Display::TOUCH_SUPPORT_AVAILABLE
? "yes"
: touch_support_ == Display::TOUCH_SUPPORT_UNAVAILABLE ? "no"
: "unknown",
devices_str.c_str());
return result;
}
std::string ManagedDisplayInfo::ToFullString() const {
std::string display_modes_str;
ManagedDisplayModeList::const_iterator iter = display_modes_.begin();
for (; iter != display_modes_.end(); ++iter) {
scoped_refptr<ManagedDisplayMode> m(*iter);
if (!display_modes_str.empty())
display_modes_str += ",";
base::StringAppendF(
&display_modes_str, "(%dx%d@%g%c%s %g/%g)", m->size().width(),
m->size().height(), m->refresh_rate(), m->is_interlaced() ? 'I' : 'P',
m->native() ? "(N)" : "", m->ui_scale(), m->device_scale_factor());
}
return ToString() + ", display_modes==" + display_modes_str;
}
void ManagedDisplayInfo::SetColorProfile(ColorCalibrationProfile profile) {
if (IsColorProfileAvailable(profile))
color_profile_ = profile;
}
bool ManagedDisplayInfo::IsColorProfileAvailable(
ColorCalibrationProfile profile) const {
return std::find(available_color_profiles_.begin(),
available_color_profiles_.end(),
profile) != available_color_profiles_.end();
}
bool ManagedDisplayInfo::Use125DSFForUIScaling() const {
return use_125_dsf_for_ui_scaling && Display::IsInternalDisplayId(id_);
}
void ManagedDisplayInfo::AddInputDevice(int id) {
input_devices_.push_back(id);
}
void ManagedDisplayInfo::ClearInputDevices() {
input_devices_.clear();
}
void ResetDisplayIdForTest() {
synthesized_display_id = kSynthesizedDisplayIdStart;
}
void ManagedDisplayInfo::SetTouchCalibrationData(
const TouchCalibrationData& touch_calibration_data) {
has_touch_calibration_data_ = true;
touch_calibration_data_ = touch_calibration_data;
}
} // namespace display