blob: 9d5e92d50bbb9e35c381c58cbc79ef9becaacb77 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <vector>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_loop_current.h"
#include "base/message_loop/message_pump_for_io.h"
#include "base/message_loop/message_pump_type.h"
#include "base/pending_task.h"
#include "base/posix/eintr_wrapper.h"
#include "base/run_loop.h"
#include "base/single_thread_task_runner.h"
#include "base/synchronization/waitable_event.h"
#include "base/task/task_observer.h"
#include "base/task/thread_pool/thread_pool_instance.h"
#include "base/test/bind_test_util.h"
#include "base/test/gtest_util.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/test_simple_task_runner.h"
#include "base/test/test_timeouts.h"
#include "base/threading/platform_thread.h"
#include "base/threading/sequence_local_storage_slot.h"
#include "base/threading/thread.h"
#include "base/threading/thread_task_runner_handle.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_ANDROID)
#include "base/android/java_handler_thread.h"
#include "base/android/jni_android.h"
#include "base/test/android/java_handler_thread_helpers.h"
#endif
#if defined(OS_WIN)
#include "base/message_loop/message_pump_win.h"
#include "base/process/memory.h"
#include "base/strings/string16.h"
#include "base/win/current_module.h"
#include "base/win/message_window.h"
#include "base/win/scoped_handle.h"
#endif
namespace base {
// TODO(darin): Platform-specific MessageLoop tests should be grouped together
// to avoid chopping this file up with so many #ifdefs.
namespace {
class Foo : public RefCounted<Foo> {
public:
Foo() : test_count_(0) {}
void Test0() { ++test_count_; }
void Test1ConstRef(const std::string& a) {
++test_count_;
result_.append(a);
}
void Test1Ptr(std::string* a) {
++test_count_;
result_.append(*a);
}
void Test1Int(int a) { test_count_ += a; }
void Test2Ptr(std::string* a, std::string* b) {
++test_count_;
result_.append(*a);
result_.append(*b);
}
void Test2Mixed(const std::string& a, std::string* b) {
++test_count_;
result_.append(a);
result_.append(*b);
}
int test_count() const { return test_count_; }
const std::string& result() const { return result_; }
private:
friend class RefCounted<Foo>;
~Foo() = default;
int test_count_;
std::string result_;
DISALLOW_COPY_AND_ASSIGN(Foo);
};
// This function runs slowly to simulate a large amount of work being done.
static void SlowFunc(TimeDelta pause, int* quit_counter) {
PlatformThread::Sleep(pause);
if (--(*quit_counter) == 0)
RunLoop::QuitCurrentWhenIdleDeprecated();
}
// This function records the time when Run was called in a Time object, which is
// useful for building a variety of MessageLoop tests.
static void RecordRunTimeFunc(TimeTicks* run_time, int* quit_counter) {
*run_time = TimeTicks::Now();
// Cause our Run function to take some time to execute. As a result we can
// count on subsequent RecordRunTimeFunc()s running at a future time,
// without worry about the resolution of our system clock being an issue.
SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
}
enum TaskType {
MESSAGEBOX,
ENDDIALOG,
RECURSIVE,
TIMEDMESSAGELOOP,
QUITMESSAGELOOP,
ORDERED,
PUMPS,
SLEEP,
RUNS,
};
// Saves the order in which the tasks executed.
struct TaskItem {
TaskItem(TaskType t, int c, bool s) : type(t), cookie(c), start(s) {}
TaskType type;
int cookie;
bool start;
bool operator==(const TaskItem& other) const {
return type == other.type && cookie == other.cookie && start == other.start;
}
};
std::ostream& operator<<(std::ostream& os, TaskType type) {
switch (type) {
case MESSAGEBOX:
os << "MESSAGEBOX";
break;
case ENDDIALOG:
os << "ENDDIALOG";
break;
case RECURSIVE:
os << "RECURSIVE";
break;
case TIMEDMESSAGELOOP:
os << "TIMEDMESSAGELOOP";
break;
case QUITMESSAGELOOP:
os << "QUITMESSAGELOOP";
break;
case ORDERED:
os << "ORDERED";
break;
case PUMPS:
os << "PUMPS";
break;
case SLEEP:
os << "SLEEP";
break;
default:
NOTREACHED();
os << "Unknown TaskType";
break;
}
return os;
}
std::ostream& operator<<(std::ostream& os, const TaskItem& item) {
if (item.start)
return os << item.type << " " << item.cookie << " starts";
return os << item.type << " " << item.cookie << " ends";
}
class TaskList {
public:
void RecordStart(TaskType type, int cookie) {
TaskItem item(type, cookie, true);
DVLOG(1) << item;
task_list_.push_back(item);
}
void RecordEnd(TaskType type, int cookie) {
TaskItem item(type, cookie, false);
DVLOG(1) << item;
task_list_.push_back(item);
}
size_t Size() { return task_list_.size(); }
TaskItem Get(int n) { return task_list_[n]; }
private:
std::vector<TaskItem> task_list_;
};
class DummyTaskObserver : public TaskObserver {
public:
explicit DummyTaskObserver(int num_tasks)
: num_tasks_started_(0), num_tasks_processed_(0), num_tasks_(num_tasks) {}
DummyTaskObserver(int num_tasks, int num_tasks_started)
: num_tasks_started_(num_tasks_started),
num_tasks_processed_(0),
num_tasks_(num_tasks) {}
~DummyTaskObserver() override = default;
void WillProcessTask(const PendingTask& pending_task) override {
num_tasks_started_++;
EXPECT_LE(num_tasks_started_, num_tasks_);
EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
}
void DidProcessTask(const PendingTask& pending_task) override {
num_tasks_processed_++;
EXPECT_LE(num_tasks_started_, num_tasks_);
EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
}
int num_tasks_started() const { return num_tasks_started_; }
int num_tasks_processed() const { return num_tasks_processed_; }
private:
int num_tasks_started_;
int num_tasks_processed_;
const int num_tasks_;
DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
};
void RecursiveFunc(TaskList* order, int cookie, int depth, bool is_reentrant) {
order->RecordStart(RECURSIVE, cookie);
if (depth > 0) {
if (is_reentrant)
MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
BindOnce(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
}
order->RecordEnd(RECURSIVE, cookie);
}
void QuitFunc(TaskList* order, int cookie) {
order->RecordStart(QUITMESSAGELOOP, cookie);
RunLoop::QuitCurrentWhenIdleDeprecated();
order->RecordEnd(QUITMESSAGELOOP, cookie);
}
void PostNTasks(int posts_remaining) {
if (posts_remaining > 1) {
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&PostNTasks, posts_remaining - 1));
}
}
class MessageLoopTest : public ::testing::Test {};
#if defined(OS_WIN)
void SubPumpFunc(OnceClosure on_done) {
MessageLoopCurrent::ScopedNestableTaskAllower allow_nestable_tasks;
MSG msg;
while (::GetMessage(&msg, NULL, 0, 0)) {
::TranslateMessage(&msg);
::DispatchMessage(&msg);
}
std::move(on_done).Run();
}
const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
// common controls (like OpenFile) and StartDoc printing function can cause
// implicit message loops.
void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
order->RecordStart(MESSAGEBOX, cookie);
if (is_reentrant)
MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
order->RecordEnd(MESSAGEBOX, cookie);
}
// Will end the MessageBox.
void EndDialogFunc(TaskList* order, int cookie) {
order->RecordStart(ENDDIALOG, cookie);
HWND window = GetActiveWindow();
if (window != NULL) {
EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
// Cheap way to signal that the window wasn't found if RunEnd() isn't
// called.
order->RecordEnd(ENDDIALOG, cookie);
}
}
void RecursiveFuncWin(scoped_refptr<SingleThreadTaskRunner> task_runner,
HANDLE event,
bool expect_window,
TaskList* order,
bool is_reentrant) {
task_runner->PostTask(FROM_HERE,
BindOnce(&RecursiveFunc, order, 1, 2, is_reentrant));
task_runner->PostTask(FROM_HERE,
BindOnce(&MessageBoxFunc, order, 2, is_reentrant));
task_runner->PostTask(FROM_HERE,
BindOnce(&RecursiveFunc, order, 3, 2, is_reentrant));
// The trick here is that for recursive task processing, this task will be
// ran _inside_ the MessageBox message loop, dismissing the MessageBox
// without a chance.
// For non-recursive task processing, this will be executed _after_ the
// MessageBox will have been dismissed by the code below, where
// expect_window_ is true.
task_runner->PostTask(FROM_HERE, BindOnce(&EndDialogFunc, order, 4));
task_runner->PostTask(FROM_HERE, BindOnce(&QuitFunc, order, 5));
// Enforce that every tasks are sent before starting to run the main thread
// message loop.
ASSERT_TRUE(SetEvent(event));
// Poll for the MessageBox. Don't do this at home! At the speed we do it,
// you will never realize one MessageBox was shown.
for (; expect_window;) {
HWND window = FindWindow(L"#32770", kMessageBoxTitle);
if (window) {
// Dismiss it.
for (;;) {
HWND button = FindWindowEx(window, NULL, L"Button", NULL);
if (button != NULL) {
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
break;
}
}
break;
}
}
}
#endif // defined(OS_WIN)
void PostNTasksThenQuit(int posts_remaining) {
if (posts_remaining > 1) {
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&PostNTasksThenQuit, posts_remaining - 1));
} else {
RunLoop::QuitCurrentWhenIdleDeprecated();
}
}
#if defined(OS_WIN)
class TestIOHandler : public MessagePumpForIO::IOHandler {
public:
TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
void OnIOCompleted(MessagePumpForIO::IOContext* context,
DWORD bytes_transfered,
DWORD error) override;
void Init();
void WaitForIO();
OVERLAPPED* context() { return &context_.overlapped; }
DWORD size() { return sizeof(buffer_); }
private:
char buffer_[48];
MessagePumpForIO::IOContext context_;
HANDLE signal_;
win::ScopedHandle file_;
bool wait_;
};
TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
: signal_(signal), wait_(wait) {
memset(buffer_, 0, sizeof(buffer_));
file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
FILE_FLAG_OVERLAPPED, NULL));
EXPECT_TRUE(file_.IsValid());
}
void TestIOHandler::Init() {
MessageLoopCurrentForIO::Get()->RegisterIOHandler(file_.Get(), this);
DWORD read;
EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
if (wait_)
WaitForIO();
}
void TestIOHandler::OnIOCompleted(MessagePumpForIO::IOContext* context,
DWORD bytes_transfered,
DWORD error) {
ASSERT_TRUE(context == &context_);
ASSERT_TRUE(SetEvent(signal_));
}
void TestIOHandler::WaitForIO() {
EXPECT_TRUE(MessageLoopCurrentForIO::Get()->WaitForIOCompletion(300, this));
EXPECT_TRUE(MessageLoopCurrentForIO::Get()->WaitForIOCompletion(400, this));
}
void RunTest_IOHandler() {
win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
ASSERT_TRUE(callback_called.IsValid());
const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
win::ScopedHandle server(
CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
ASSERT_TRUE(server.IsValid());
Thread thread("IOHandler test");
Thread::Options options;
options.message_pump_type = MessagePumpType::IO;
ASSERT_TRUE(thread.StartWithOptions(options));
TestIOHandler handler(kPipeName, callback_called.Get(), false);
thread.task_runner()->PostTask(
FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler)));
// Make sure the thread runs and sleeps for lack of work.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
const char buffer[] = "Hello there!";
DWORD written;
EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
void RunTest_WaitForIO() {
win::ScopedHandle callback1_called(CreateEvent(NULL, TRUE, FALSE, NULL));
win::ScopedHandle callback2_called(CreateEvent(NULL, TRUE, FALSE, NULL));
ASSERT_TRUE(callback1_called.IsValid());
ASSERT_TRUE(callback2_called.IsValid());
const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
win::ScopedHandle server1(
CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
win::ScopedHandle server2(
CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
ASSERT_TRUE(server1.IsValid());
ASSERT_TRUE(server2.IsValid());
Thread thread("IOHandler test");
Thread::Options options;
options.message_pump_type = MessagePumpType::IO;
ASSERT_TRUE(thread.StartWithOptions(options));
TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
thread.task_runner()->PostTask(
FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler1)));
// TODO(ajwong): Do we really need such long Sleeps in this function?
// Make sure the thread runs and sleeps for lack of work.
TimeDelta delay = TimeDelta::FromMilliseconds(100);
PlatformThread::Sleep(delay);
thread.task_runner()->PostTask(
FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler2)));
PlatformThread::Sleep(delay);
// At this time handler1 is waiting to be called, and the thread is waiting
// on the Init method of handler2, filtering only handler2 callbacks.
const char buffer[] = "Hello there!";
DWORD written;
EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
PlatformThread::Sleep(2 * delay);
EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
WaitForSingleObject(callback1_called.Get(), 0))
<< "handler1 has not been called";
EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
HANDLE objects[2] = {callback1_called.Get(), callback2_called.Get()};
DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
#endif // defined(OS_WIN)
} // namespace
//-----------------------------------------------------------------------------
// Each test is run against each type of MessageLoop. That way we are sure
// that message loops work properly in all configurations. Of course, in some
// cases, a unit test may only be for a particular type of loop.
class MessageLoopTypedTest : public ::testing::TestWithParam<MessagePumpType> {
public:
MessageLoopTypedTest() = default;
~MessageLoopTypedTest() = default;
static std::string ParamInfoToString(
::testing::TestParamInfo<MessagePumpType> param_info) {
switch (param_info.param) {
case MessagePumpType::DEFAULT:
return "default_pump";
case MessagePumpType::IO:
return "IO_pump";
case MessagePumpType::UI:
return "UI_pump";
case MessagePumpType::CUSTOM:
break;
#if defined(OS_ANDROID)
case MessagePumpType::JAVA:
break;
#endif // defined(OS_ANDROID)
#if defined(OS_MACOSX)
case MessagePumpType::NS_RUNLOOP:
break;
#endif // defined(OS_MACOSX)
#if defined(OS_WIN)
case MessagePumpType::UI_WITH_WM_QUIT_SUPPORT:
break;
#endif // defined(OS_WIN)
}
NOTREACHED();
return "";
}
std::unique_ptr<MessageLoop> CreateMessageLoop() {
auto message_loop = base::WrapUnique(new MessageLoop(GetParam(), nullptr));
message_loop->BindToCurrentThread();
return message_loop;
}
private:
DISALLOW_COPY_AND_ASSIGN(MessageLoopTypedTest);
};
TEST_P(MessageLoopTypedTest, PostTask) {
auto loop = CreateMessageLoop();
// Add tests to message loop
scoped_refptr<Foo> foo(new Foo());
std::string a("a"), b("b"), c("c"), d("d");
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&Foo::Test0, foo));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, a));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&Foo::Test1Ptr, foo, &b));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&Foo::Test1Int, foo, 100));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&Foo::Test2Ptr, foo, &a, &c));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&Foo::Test2Mixed, foo, a, &d));
// After all tests, post a message that will shut down the message loop
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&RunLoop::QuitCurrentWhenIdleDeprecated));
// Now kick things off
RunLoop().Run();
EXPECT_EQ(foo->test_count(), 105);
EXPECT_EQ(foo->result(), "abacad");
}
TEST_P(MessageLoopTypedTest, PostDelayedTask_Basic) {
auto loop = CreateMessageLoop();
// Test that PostDelayedTask results in a delayed task.
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
int num_tasks = 1;
TimeTicks run_time;
TimeTicks time_before_run = TimeTicks::Now();
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks), kDelay);
RunLoop().Run();
TimeTicks time_after_run = TimeTicks::Now();
EXPECT_EQ(0, num_tasks);
EXPECT_LT(kDelay, time_after_run - time_before_run);
}
TEST_P(MessageLoopTypedTest, PostDelayedTask_InDelayOrder) {
auto loop = CreateMessageLoop();
// Test that two tasks with different delays run in the right order.
int num_tasks = 2;
TimeTicks run_time1, run_time2;
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks),
TimeDelta::FromMilliseconds(200));
// If we get a large pause in execution (due to a context switch) here, this
// test could fail.
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(10));
RunLoop().Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time2 < run_time1);
}
TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder) {
auto loop = CreateMessageLoop();
// Test that two tasks with the same delay run in the order in which they
// were posted.
//
// NOTE: This is actually an approximate test since the API only takes a
// "delay" parameter, so we are not exactly simulating two tasks that get
// posted at the exact same time. It would be nice if the API allowed us to
// specify the desired run time.
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
int num_tasks = 2;
TimeTicks run_time1, run_time2;
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay);
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay);
RunLoop().Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time1 < run_time2);
}
TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder_2) {
auto loop = CreateMessageLoop();
// Test that a delayed task still runs after a normal tasks even if the
// normal tasks take a long time to run.
const TimeDelta kPause = TimeDelta::FromMilliseconds(50);
int num_tasks = 2;
TimeTicks run_time;
loop->task_runner()->PostTask(FROM_HERE,
BindOnce(&SlowFunc, kPause, &num_tasks));
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks),
TimeDelta::FromMilliseconds(10));
TimeTicks time_before_run = TimeTicks::Now();
RunLoop().Run();
TimeTicks time_after_run = TimeTicks::Now();
EXPECT_EQ(0, num_tasks);
EXPECT_LT(kPause, time_after_run - time_before_run);
}
TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder_3) {
auto loop = CreateMessageLoop();
// Test that a delayed task still runs after a pile of normal tasks. The key
// difference between this test and the previous one is that here we return
// the MessageLoop a lot so we give the MessageLoop plenty of opportunities
// to maybe run the delayed task. It should know not to do so until the
// delayed task's delay has passed.
int num_tasks = 11;
TimeTicks run_time1, run_time2;
// Clutter the ML with tasks.
for (int i = 1; i < num_tasks; ++i)
loop->task_runner()->PostTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks));
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(1));
RunLoop().Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time2 > run_time1);
}
TEST_P(MessageLoopTypedTest, PostDelayedTask_SharedTimer) {
auto loop = CreateMessageLoop();
// Test that the interval of the timer, used to run the next delayed task, is
// set to a value corresponding to when the next delayed task should run.
// By setting num_tasks to 1, we ensure that the first task to run causes the
// run loop to exit.
int num_tasks = 1;
TimeTicks run_time1, run_time2;
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks),
TimeDelta::FromSeconds(1000));
loop->task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(10));
TimeTicks start_time = TimeTicks::Now();
RunLoop().Run();
EXPECT_EQ(0, num_tasks);
// Ensure that we ran in far less time than the slower timer.
TimeDelta total_time = TimeTicks::Now() - start_time;
EXPECT_GT(5000, total_time.InMilliseconds());
// In case both timers somehow run at nearly the same time, sleep a little
// and then run all pending to force them both to have run. This is just
// encouraging flakiness if there is any.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
RunLoop().RunUntilIdle();
EXPECT_TRUE(run_time1.is_null());
EXPECT_FALSE(run_time2.is_null());
}
namespace {
// This is used to inject a test point for recording the destructor calls for
// Closure objects send to MessageLoop::PostTask(). It is awkward usage since we
// are trying to hook the actual destruction, which is not a common operation.
class RecordDeletionProbe : public RefCounted<RecordDeletionProbe> {
public:
RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted)
: post_on_delete_(post_on_delete), was_deleted_(was_deleted) {}
void Run() {}
private:
friend class RefCounted<RecordDeletionProbe>;
~RecordDeletionProbe() {
*was_deleted_ = true;
if (post_on_delete_.get())
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&RecordDeletionProbe::Run, post_on_delete_));
}
scoped_refptr<RecordDeletionProbe> post_on_delete_;
bool* was_deleted_;
};
} // namespace
/* TODO(darin): MessageLoop does not support deleting all tasks in the */
/* destructor. */
/* Fails, http://crbug.com/50272. */
TEST_P(MessageLoopTypedTest, DISABLED_EnsureDeletion) {
bool a_was_deleted = false;
bool b_was_deleted = false;
{
auto loop = CreateMessageLoop();
loop->task_runner()->PostTask(
FROM_HERE, BindOnce(&RecordDeletionProbe::Run,
new RecordDeletionProbe(nullptr, &a_was_deleted)));
// TODO(ajwong): Do we really need 1000ms here?
loop->task_runner()->PostDelayedTask(
FROM_HERE,
BindOnce(&RecordDeletionProbe::Run,
new RecordDeletionProbe(nullptr, &b_was_deleted)),
TimeDelta::FromMilliseconds(1000));
}
EXPECT_TRUE(a_was_deleted);
EXPECT_TRUE(b_was_deleted);
}
/* TODO(darin): MessageLoop does not support deleting all tasks in the */
/* destructor. */
/* Fails, http://crbug.com/50272. */
TEST_P(MessageLoopTypedTest, DISABLED_EnsureDeletion_Chain) {
bool a_was_deleted = false;
bool b_was_deleted = false;
bool c_was_deleted = false;
{
auto loop = CreateMessageLoop();
// The scoped_refptr for each of the below is held either by the chained
// RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback.
RecordDeletionProbe* a = new RecordDeletionProbe(nullptr, &a_was_deleted);
RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted);
RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted);
loop->task_runner()->PostTask(FROM_HERE,
BindOnce(&RecordDeletionProbe::Run, c));
}
EXPECT_TRUE(a_was_deleted);
EXPECT_TRUE(b_was_deleted);
EXPECT_TRUE(c_was_deleted);
}
namespace {
void NestingFunc(int* depth) {
if (*depth > 0) {
*depth -= 1;
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&NestingFunc, depth));
MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
RunLoop().Run();
}
base::RunLoop::QuitCurrentWhenIdleDeprecated();
}
} // namespace
TEST_P(MessageLoopTypedTest, Nesting) {
auto loop = CreateMessageLoop();
int depth = 50;
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&NestingFunc, &depth));
RunLoop().Run();
EXPECT_EQ(depth, 0);
}
TEST_P(MessageLoopTypedTest, RecursiveDenial1) {
auto loop = CreateMessageLoop();
EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed());
TaskList order;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&RecursiveFunc, &order, 1, 2, false));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&RecursiveFunc, &order, 2, 2, false));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&QuitFunc, &order, 3));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(14U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
}
namespace {
void OrderedFunc(TaskList* order, int cookie) {
order->RecordStart(ORDERED, cookie);
order->RecordEnd(ORDERED, cookie);
}
} // namespace
TEST_P(MessageLoopTypedTest, RecursiveSupport1) {
auto loop = CreateMessageLoop();
TaskList order;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&RecursiveFunc, &order, 1, 2, true));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&RecursiveFunc, &order, 2, 2, true));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&QuitFunc, &order, 3));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(14U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
}
// Tests that non nestable tasks run in FIFO if there are no nested loops.
TEST_P(MessageLoopTypedTest, NonNestableWithNoNesting) {
auto loop = CreateMessageLoop();
TaskList order;
ThreadTaskRunnerHandle::Get()->PostNonNestableTask(
FROM_HERE, BindOnce(&OrderedFunc, &order, 1));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 2));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&QuitFunc, &order, 3));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(6U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(ORDERED, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
}
namespace {
void FuncThatPumps(TaskList* order, int cookie) {
order->RecordStart(PUMPS, cookie);
RunLoop(RunLoop::Type::kNestableTasksAllowed).RunUntilIdle();
order->RecordEnd(PUMPS, cookie);
}
void SleepFunc(TaskList* order, int cookie, TimeDelta delay) {
order->RecordStart(SLEEP, cookie);
PlatformThread::Sleep(delay);
order->RecordEnd(SLEEP, cookie);
}
} // namespace
// Tests that non nestable tasks don't run when there's code in the call stack.
TEST_P(MessageLoopTypedTest, NonNestableDelayedInNestedLoop) {
auto loop = CreateMessageLoop();
TaskList order;
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&FuncThatPumps, &order, 1));
ThreadTaskRunnerHandle::Get()->PostNonNestableTask(
FROM_HERE, BindOnce(&OrderedFunc, &order, 2));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 3));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
BindOnce(&SleepFunc, &order, 4, TimeDelta::FromMilliseconds(50)));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 5));
ThreadTaskRunnerHandle::Get()->PostNonNestableTask(
FROM_HERE, BindOnce(&QuitFunc, &order, 6));
RunLoop().Run();
// FIFO order.
ASSERT_EQ(12U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 3, false));
EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true));
EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false));
EXPECT_EQ(order.Get(5), TaskItem(ORDERED, 5, true));
EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 5, false));
EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true));
EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false));
}
namespace {
void FuncThatRuns(TaskList* order, int cookie, RunLoop* run_loop) {
order->RecordStart(RUNS, cookie);
{
MessageLoopCurrent::ScopedNestableTaskAllower allow;
run_loop->Run();
}
order->RecordEnd(RUNS, cookie);
}
void FuncThatQuitsNow() {
base::RunLoop::QuitCurrentDeprecated();
}
} // namespace
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, QuitNow) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop run_loop;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&run_loop)));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 2));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&FuncThatQuitsNow));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 3));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&FuncThatQuitsNow));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&OrderedFunc, &order, 4)); // never runs
RunLoop().Run();
ASSERT_EQ(6U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, RunLoopQuitTop) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_run_loop;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
outer_run_loop.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 2));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
nested_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, RunLoopQuitNested) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_run_loop;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
nested_run_loop.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 2));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
outer_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Quits current loop and immediately runs a nested loop.
void QuitAndRunNestedLoop(TaskList* order,
int cookie,
RunLoop* outer_run_loop,
RunLoop* nested_run_loop) {
order->RecordStart(RUNS, cookie);
outer_run_loop->Quit();
nested_run_loop->Run();
order->RecordEnd(RUNS, cookie);
}
// Test that we can run nested loop after quitting the current one.
TEST_P(MessageLoopTypedTest, RunLoopNestedAfterQuit) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_run_loop;
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
nested_run_loop.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&QuitAndRunNestedLoop, &order, 1, &outer_run_loop,
&nested_run_loop));
outer_run_loop.Run();
ASSERT_EQ(2U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, RunLoopQuitBogus) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_run_loop;
RunLoop bogus_run_loop;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
bogus_run_loop.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 2));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
outer_run_loop.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
nested_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, RunLoopQuitDeep) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop outer_run_loop;
RunLoop nested_loop1;
RunLoop nested_loop2;
RunLoop nested_loop3;
RunLoop nested_loop4;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_loop1)));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&FuncThatRuns, &order, 2, Unretained(&nested_loop2)));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&FuncThatRuns, &order, 3, Unretained(&nested_loop3)));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&FuncThatRuns, &order, 4, Unretained(&nested_loop4)));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 5));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
outer_run_loop.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 6));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
nested_loop1.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 7));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
nested_loop2.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 8));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
nested_loop3.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 9));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
nested_loop4.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 10));
outer_run_loop.Run();
ASSERT_EQ(18U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit works before RunWithID.
TEST_P(MessageLoopTypedTest, RunLoopQuitOrderBefore) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop run_loop;
run_loop.Quit();
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&OrderedFunc, &order, 1)); // never runs
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&FuncThatQuitsNow)); // never runs
run_loop.Run();
ASSERT_EQ(0U, order.Size());
}
// Tests RunLoopQuit works during RunWithID.
TEST_P(MessageLoopTypedTest, RunLoopQuitOrderDuring) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop run_loop;
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 1));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, run_loop.QuitClosure());
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); // never runs
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&FuncThatQuitsNow)); // never runs
run_loop.Run();
ASSERT_EQ(2U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit works after RunWithID.
TEST_P(MessageLoopTypedTest, RunLoopQuitOrderAfter) {
auto loop = CreateMessageLoop();
TaskList order;
RunLoop run_loop;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&run_loop)));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 2));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&FuncThatQuitsNow));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 3));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, run_loop.QuitClosure()); // has no affect
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&OrderedFunc, &order, 4));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&FuncThatQuitsNow));
run_loop.allow_quit_current_deprecated_ = true;
RunLoop outer_run_loop;
outer_run_loop.Run();
ASSERT_EQ(8U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// There was a bug in the MessagePumpGLib where posting tasks recursively
// caused the message loop to hang, due to the buffer of the internal pipe
// becoming full. Test all MessageLoop types to ensure this issue does not
// exist in other MessagePumps.
//
// On Linux, the pipe buffer size is 64KiB by default. The bug caused one
// byte accumulated in the pipe per two posts, so we should repeat 128K
// times to reproduce the bug.
#if defined(OS_FUCHSIA)
// TODO(crbug.com/810077): This is flaky on Fuchsia.
#define MAYBE_RecursivePosts DISABLED_RecursivePosts
#else
#define MAYBE_RecursivePosts RecursivePosts
#endif
TEST_P(MessageLoopTypedTest, MAYBE_RecursivePosts) {
const int kNumTimes = 1 << 17;
auto loop = CreateMessageLoop();
loop->task_runner()->PostTask(FROM_HERE,
BindOnce(&PostNTasksThenQuit, kNumTimes));
RunLoop().Run();
}
TEST_P(MessageLoopTypedTest, NestableTasksAllowedAtTopLevel) {
auto loop = CreateMessageLoop();
EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed());
}
// Nestable tasks shouldn't be allowed to run reentrantly by default (regression
// test for https://crbug.com/754112).
TEST_P(MessageLoopTypedTest, NestableTasksDisallowedByDefault) {
auto loop = CreateMessageLoop();
RunLoop run_loop;
loop->task_runner()->PostTask(
FROM_HERE,
BindOnce(
[](RunLoop* run_loop) {
EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed());
run_loop->Quit();
},
Unretained(&run_loop)));
run_loop.Run();
}
TEST_P(MessageLoopTypedTest, NestableTasksProcessedWhenRunLoopAllows) {
auto loop = CreateMessageLoop();
RunLoop run_loop;
loop->task_runner()->PostTask(
FROM_HERE,
BindOnce(
[](RunLoop* run_loop) {
// This test would hang if this RunLoop wasn't of type
// kNestableTasksAllowed (i.e. this is testing that this is
// processed and doesn't hang).
RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed);
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
BindOnce(
[](RunLoop* nested_run_loop) {
// Each additional layer of application task nesting
// requires its own allowance. The kNestableTasksAllowed
// RunLoop allowed this task to be processed but further
// nestable tasks are by default disallowed from this
// layer.
EXPECT_FALSE(
MessageLoopCurrent::Get()->NestableTasksAllowed());
nested_run_loop->Quit();
},
Unretained(&nested_run_loop)));
nested_run_loop.Run();
run_loop->Quit();
},
Unretained(&run_loop)));
run_loop.Run();
}
TEST_P(MessageLoopTypedTest, NestableTasksAllowedExplicitlyInScope) {
auto loop = CreateMessageLoop();
RunLoop run_loop;
loop->task_runner()->PostTask(
FROM_HERE,
BindOnce(
[](RunLoop* run_loop) {
{
MessageLoopCurrent::ScopedNestableTaskAllower
allow_nestable_tasks;
EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed());
}
EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed());
run_loop->Quit();
},
Unretained(&run_loop)));
run_loop.Run();
}
TEST_P(MessageLoopTypedTest, NestableTasksAllowedManually) {
auto loop = CreateMessageLoop();
RunLoop run_loop;
loop->task_runner()->PostTask(
FROM_HERE,
BindOnce(
[](RunLoop* run_loop) {
EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed());
MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed());
MessageLoopCurrent::Get()->SetNestableTasksAllowed(false);
EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed());
run_loop->Quit();
},
Unretained(&run_loop)));
run_loop.Run();
}
TEST_P(MessageLoopTypedTest, IsIdleForTesting) {
auto loop = CreateMessageLoop();
EXPECT_TRUE(loop->IsIdleForTesting());
loop->task_runner()->PostTask(FROM_HERE, BindOnce([]() {}));
loop->task_runner()->PostDelayedTask(FROM_HERE, BindOnce([]() {}),
TimeDelta::FromMilliseconds(10));
EXPECT_FALSE(loop->IsIdleForTesting());
RunLoop().RunUntilIdle();
EXPECT_TRUE(loop->IsIdleForTesting());
PlatformThread::Sleep(TimeDelta::FromMilliseconds(20));
EXPECT_TRUE(loop->IsIdleForTesting());
}
TEST_P(MessageLoopTypedTest, IsIdleForTestingNonNestableTask) {
auto loop = CreateMessageLoop();
RunLoop run_loop;
EXPECT_TRUE(loop->IsIdleForTesting());
bool nested_task_run = false;
loop->task_runner()->PostTask(
FROM_HERE, BindLambdaForTesting([&]() {
RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed);
loop->task_runner()->PostNonNestableTask(
FROM_HERE, BindLambdaForTesting([&]() { nested_task_run = true; }));
loop->task_runner()->PostTask(FROM_HERE, BindLambdaForTesting([&]() {
EXPECT_FALSE(nested_task_run);
EXPECT_TRUE(loop->IsIdleForTesting());
}));
nested_run_loop.RunUntilIdle();
EXPECT_FALSE(nested_task_run);
EXPECT_FALSE(loop->IsIdleForTesting());
}));
run_loop.RunUntilIdle();
EXPECT_TRUE(nested_task_run);
EXPECT_TRUE(loop->IsIdleForTesting());
}
INSTANTIATE_TEST_SUITE_P(,
MessageLoopTypedTest,
::testing::Values(MessagePumpType::DEFAULT,
MessagePumpType::UI,
MessagePumpType::IO),
MessageLoopTypedTest::ParamInfoToString);
#if defined(OS_WIN)
// Verifies that the MessageLoop ignores WM_QUIT, rather than quitting.
// Users of MessageLoop typically expect to control when their RunLoops stop
// Run()ning explicitly, via QuitClosure() etc (see https://crbug.com/720078).
TEST_F(MessageLoopTest, WmQuitIsIgnored) {
MessageLoop loop(MessagePumpType::UI);
// Post a WM_QUIT message to the current thread.
::PostQuitMessage(0);
// Post a task to the current thread, with a small delay to make it less
// likely that we process the posted task before looking for WM_* messages.
bool task_was_run = false;
RunLoop run_loop;
loop.task_runner()->PostDelayedTask(
FROM_HERE,
BindOnce(
[](bool* flag, OnceClosure closure) {
*flag = true;
std::move(closure).Run();
},
&task_was_run, run_loop.QuitClosure()),
TestTimeouts::tiny_timeout());
// Run the loop, and ensure that the posted task is processed before we quit.
run_loop.Run();
EXPECT_TRUE(task_was_run);
}
TEST_F(MessageLoopTest, WmQuitIsNotIgnoredWithEnableWmQuit) {
MessageLoop loop(MessagePumpType::UI);
static_cast<MessageLoopForUI*>(&loop)->EnableWmQuit();
// Post a WM_QUIT message to the current thread.
::PostQuitMessage(0);
// Post a task to the current thread, with a small delay to make it less
// likely that we process the posted task before looking for WM_* messages.
RunLoop run_loop;
loop.task_runner()->PostDelayedTask(FROM_HERE,
BindOnce(
[](OnceClosure closure) {
ADD_FAILURE();
std::move(closure).Run();
},
run_loop.QuitClosure()),
TestTimeouts::tiny_timeout());
// Run the loop. It should not result in ADD_FAILURE() getting called.
run_loop.Run();
}
TEST_F(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
MessageLoop message_loop(MessagePumpType::UI);
// Test that the interval of the timer, used to run the next delayed task, is
// set to a value corresponding to when the next delayed task should run.
// By setting num_tasks to 1, we ensure that the first task to run causes the
// run loop to exit.
int num_tasks = 1;
TimeTicks run_time;
RunLoop run_loop;
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));
// This very delayed task should never run.
message_loop.task_runner()->PostDelayedTask(
FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks),
TimeDelta::FromSeconds(1000));
// This slightly delayed task should run from within SubPumpFunc.
message_loop.task_runner()->PostDelayedTask(FROM_HERE,
BindOnce(&::PostQuitMessage, 0),
TimeDelta::FromMilliseconds(10));
Time start_time = Time::Now();
run_loop.Run();
EXPECT_EQ(1, num_tasks);
// Ensure that we ran in far less time than the slower timer.
TimeDelta total_time = Time::Now() - start_time;
EXPECT_GT(5000, total_time.InMilliseconds());
// In case both timers somehow run at nearly the same time, sleep a little
// and then run all pending to force them both to have run. This is just
// encouraging flakiness if there is any.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
RunLoop().RunUntilIdle();
EXPECT_TRUE(run_time.is_null());
}
namespace {
// When this fires (per the associated WM_TIMER firing), it posts an
// application task to quit the native loop.
bool QuitOnSystemTimer(UINT message,
WPARAM wparam,
LPARAM lparam,
LRESULT* result) {
if (message == static_cast<UINT>(WM_TIMER)) {
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
BindOnce(&::PostQuitMessage, 0));
}
return true;
}
// When this fires (per the associated WM_TIMER firing), it posts a delayed
// application task to quit the native loop.
bool DelayedQuitOnSystemTimer(UINT message,
WPARAM wparam,
LPARAM lparam,
LRESULT* result) {
if (message == static_cast<UINT>(WM_TIMER)) {
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE, BindOnce(&::PostQuitMessage, 0),
TimeDelta::FromMilliseconds(10));
}
return true;
}
} // namespace
// This is a regression test for
// https://crrev.com/c/1455266/9/base/message_loop/message_pump_win.cc#125
// See below for the delayed task version.
TEST_F(MessageLoopTest, PostImmediateTaskFromSystemPump) {
MessageLoop message_loop(MessagePumpType::UI);
RunLoop run_loop;
// A native message window to generate a system message which invokes
// QuitOnSystemTimer() when the native timer fires.
win::MessageWindow local_message_window;
local_message_window.Create(BindRepeating(&QuitOnSystemTimer));
ASSERT_TRUE(::SetTimer(local_message_window.hwnd(), 0, 20, nullptr));
// The first task will enter a native message loop. This test then verifies
// that the pump is able to run an immediate application task after the native
// pump went idle.
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));
// Test success is determined by not hanging in this Run() call.
run_loop.Run();
}
// This is a regression test for
// https://crrev.com/c/1455266/9/base/message_loop/message_pump_win.cc#125 This
// is the delayed task equivalent of the above PostImmediateTaskFromSystemPump
// test.
TEST_F(MessageLoopTest, PostDelayedTaskFromSystemPump) {
MessageLoop message_loop(MessagePumpType::UI);
RunLoop run_loop;
// A native message window to generate a system message which invokes
// DelayedQuitOnSystemTimer() when the native timer fires.
win::MessageWindow local_message_window;
local_message_window.Create(BindRepeating(&DelayedQuitOnSystemTimer));
ASSERT_TRUE(::SetTimer(local_message_window.hwnd(), 0, 20, nullptr));
// The first task will enter a native message loop. This test then verifies
// that the pump is able to run a delayed application task after the native
// pump went idle.
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));
// Test success is determined by not hanging in this Run() call.
run_loop.Run();
}
TEST_F(MessageLoopTest, WmQuitIsVisibleToSubPump) {
MessageLoop message_loop(MessagePumpType::UI);
// Regression test for https://crbug.com/888559. When processing a
// kMsgHaveWork we peek and remove the next message and dispatch that ourself,
// to minimize impact of these messages on message-queue processing. If we
// received kMsgHaveWork dispatched by a nested pump (e.g. ::GetMessage()
// loop) then there is a risk that the next message is that loop's WM_QUIT
// message, which must be processed directly by ::GetMessage() for the loop to
// actually quit. This test verifies that WM_QUIT exits works as expected even
// if it happens to immediately follow a kMsgHaveWork in the queue.
RunLoop run_loop;
// This application task will enter the subpump.
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));
// This application task will post a native WM_QUIT.
message_loop.task_runner()->PostTask(FROM_HERE,
BindOnce(&::PostQuitMessage, 0));
// The presence of this application task means that the pump will see a
// non-empty queue after processing the previous application task (which
// posted the WM_QUIT) and hence will repost a kMsgHaveWork message in the
// native event queue. Without the fix to https://crbug.com/888559, this would
// previously result in the subpump processing kMsgHaveWork and it stealing
// the WM_QUIT message, leaving the test hung in the subpump.
message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
// Test success is determined by not hanging in this Run() call.
run_loop.Run();
}
TEST_F(MessageLoopTest, RepostingWmQuitDoesntStarveUpcomingNativeLoop) {
MessageLoop message_loop(MessagePumpType::UI);
// This test ensures that application tasks are being processed by the native
// subpump despite the kMsgHaveWork event having already been consumed by the
// time the subpump is entered. This is subtly enforced by
// MessageLoopCurrent::ScopedNestableTaskAllower which will ScheduleWork()
// upon construction (and if it's absent, the MessageLoop shouldn't process
// application tasks so kMsgHaveWork is irrelevant).
// Note: This test also fails prior to the fix for https://crbug.com/888559
// (in fact, the last two tasks are sufficient as a regression test), probably
// because of a dangling kMsgHaveWork recreating the effect from
// MessageLoopTest.NativeMsgProcessingDoesntStealWmQuit.
RunLoop run_loop;
// This application task will post a native WM_QUIT which will be ignored
// by the main message pump.
message_loop.task_runner()->PostTask(FROM_HERE,
BindOnce(&::PostQuitMessage, 0));
// Make sure the pump does a few extra cycles and processes (ignores) the
// WM_QUIT.
message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
// This application task will enter the subpump.
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));
// Post an application task that will post WM_QUIT to the nested loop. The
// test will hang if the subpump doesn't process application tasks as it
// should.
message_loop.task_runner()->PostTask(FROM_HERE,
BindOnce(&::PostQuitMessage, 0));
// Test success is determined by not hanging in this Run() call.
run_loop.Run();
}
// TODO(https://crbug.com/890016): Enable once multiple layers of nested loops
// works.
TEST_F(MessageLoopTest,
DISABLED_UnwindingMultipleSubPumpsDoesntStarveApplicationTasks) {
MessageLoop message_loop(MessagePumpType::UI);
// Regression test for https://crbug.com/890016.
// Tests that the subpump is still processing application tasks after
// unwinding from nested subpumps (i.e. that they didn't consume the last
// kMsgHaveWork).
RunLoop run_loop;
// Enter multiple levels of nested subpumps.
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce(&SubPumpFunc, DoNothing::Once()));
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce(&SubPumpFunc, DoNothing::Once()));
// Quit two layers (with tasks in between to allow each quit to be handled
// before continuing -- ::PostQuitMessage() sets a bit, it's not a real queued
// message :
// https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453).
message_loop.task_runner()->PostTask(FROM_HERE,
BindOnce(&::PostQuitMessage, 0));
message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
message_loop.task_runner()->PostTask(FROM_HERE,
BindOnce(&::PostQuitMessage, 0));
message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
bool last_task_ran = false;
message_loop.task_runner()->PostTask(
FROM_HERE, BindOnce([](bool* to_set) { *to_set = true; },
Unretained(&last_task_ran)));
message_loop.task_runner()->PostTask(FROM_HERE,
BindOnce(&::PostQuitMessage, 0));
run_loop.Run();
EXPECT_TRUE(last_task_ran);
}
namespace {
// A side effect of this test is the generation a beep. Sorry.
void RunTest_RecursiveDenial2(MessagePumpType message_pump_type) {
MessageLoop loop(message_pump_type);
Thread worker("RecursiveDenial2_worker");
Thread::Options options;
options.message_pump_type = message_pump_type;
ASSERT_EQ(true, worker.StartWithOptions(options));
TaskList order;
win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.task_runner()->PostTask(
FROM_HERE, BindOnce(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(),
event.Get(), true, &order, false));
// Let the other thread execute.
WaitForSingleObject(event.Get(), INFINITE);
RunLoop().Run();
ASSERT_EQ(17u, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
// When EndDialogFunc is processed, the window is already dismissed, hence no
// "end" entry.
EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
}
} // namespace
// This test occasionally hangs. See http://crbug.com/44567.
TEST_F(MessageLoopTest, DISABLED_RecursiveDenial2) {
RunTest_RecursiveDenial2(MessagePumpType::DEFAULT);
RunTest_RecursiveDenial2(MessagePumpType::UI);
RunTest_RecursiveDenial2(MessagePumpType::IO);
}
// A side effect of this test is the generation a beep. Sorry. This test also
// needs to process windows messages on the current thread.
TEST_F(MessageLoopTest, RecursiveSupport2) {
MessageLoop loop(MessagePumpType::UI);
Thread worker("RecursiveSupport2_worker");
Thread::Options options;
options.message_pump_type = MessagePumpType::UI;
ASSERT_EQ(true, worker.StartWithOptions(options));
TaskList order;
win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.task_runner()->PostTask(
FROM_HERE, BindOnce(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(),
event.Get(), false, &order, true));
// Let the other thread execute.
WaitForSingleObject(event.Get(), INFINITE);
RunLoop().Run();
ASSERT_EQ(18u, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
// Note that this executes in the MessageBox modal loop.
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
/* The order can subtly change here. The reason is that when RecursiveFunc(1)
is called in the main thread, if it is faster than getting to the
PostTask(FROM_HERE, BindOnce(&QuitFunc) execution, the order of task
execution can change. We don't care anyway that the order isn't correct.
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
*/
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
}
#endif // defined(OS_WIN)
TEST_F(MessageLoopTest, TaskObserver) {
const int kNumPosts = 6;
DummyTaskObserver observer(kNumPosts);
MessageLoop loop;
loop.AddTaskObserver(&observer);
loop.task_runner()->PostTask(FROM_HERE,
BindOnce(&PostNTasksThenQuit, kNumPosts));
RunLoop().Run();
loop.RemoveTaskObserver(&observer);
EXPECT_EQ(kNumPosts, observer.num_tasks_started());
EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
}
#if defined(OS_WIN)
TEST_F(MessageLoopTest, IOHandler) {
RunTest_IOHandler();
}
TEST_F(MessageLoopTest, WaitForIO) {
RunTest_WaitForIO();
}
TEST_F(MessageLoopTest, HighResolutionTimer) {
MessageLoop message_loop;
Time::EnableHighResolutionTimer(true);
constexpr TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
constexpr TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
{
// Post a fast task to enable the high resolution timers.
RunLoop run_loop;
message_loop.task_runner()->PostDelayedTask(
FROM_HERE,
BindOnce(
[](RunLoop* run_loop) {
EXPECT_TRUE(Time::IsHighResolutionTimerInUse());
run_loop->QuitWhenIdle();
},
&run_loop),
kFastTimer);
run_loop.Run();
}
EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
{
// Check that a slow task does not trigger the high resolution logic.
RunLoop run_loop;
message_loop.task_runner()->PostDelayedTask(
FROM_HERE,
BindOnce(
[](RunLoop* run_loop) {
EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
run_loop->QuitWhenIdle();
},
&run_loop),
kSlowTimer);
run_loop.Run();
}
Time::EnableHighResolutionTimer(false);
Time::ResetHighResolutionTimerUsage();
}
#endif // defined(OS_WIN)
namespace {
// Inject a test point for recording the destructor calls for Closure objects
// send to MessageLoop::PostTask(). It is awkward usage since we are trying to
// hook the actual destruction, which is not a common operation.
class DestructionObserverProbe : public RefCounted<DestructionObserverProbe> {
public:
DestructionObserverProbe(bool* task_destroyed,
bool* destruction_observer_called)
: task_destroyed_(task_destroyed),
destruction_observer_called_(destruction_observer_called) {}
virtual void Run() {
// This task should never run.
ADD_FAILURE();
}
private:
friend class RefCounted<DestructionObserverProbe>;
virtual ~DestructionObserverProbe() {
EXPECT_FALSE(*destruction_observer_called_);
*task_destroyed_ = true;
}
bool* task_destroyed_;
bool* destruction_observer_called_;
};
class MLDestructionObserver : public MessageLoopCurrent::DestructionObserver {
public:
MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
: task_destroyed_(task_destroyed),
destruction_observer_called_(destruction_observer_called),
task_destroyed_before_message_loop_(false) {}
void WillDestroyCurrentMessageLoop() override {
task_destroyed_before_message_loop_ = *task_destroyed_;
*destruction_observer_called_ = true;
}
bool task_destroyed_before_message_loop() const {
return task_destroyed_before_message_loop_;
}
private:
bool* task_destroyed_;
bool* destruction_observer_called_;
bool task_destroyed_before_message_loop_;
};
} // namespace
TEST_F(MessageLoopTest, DestructionObserverTest) {
// Verify that the destruction observer gets called at the very end (after
// all the pending tasks have been destroyed).
MessageLoop* loop = new MessageLoop;
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
bool task_destroyed = false;
bool destruction_observer_called = false;
MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
MessageLoopCurrent::Get()->AddDestructionObserver(&observer);
loop->task_runner()->PostDelayedTask(
FROM_HERE,
BindOnce(&DestructionObserverProbe::Run,
base::MakeRefCounted<DestructionObserverProbe>(
&task_destroyed, &destruction_observer_called)),
kDelay);
delete loop;
EXPECT_TRUE(observer.task_destroyed_before_message_loop());
// The task should have been destroyed when we deleted the loop.
EXPECT_TRUE(task_destroyed);
EXPECT_TRUE(destruction_observer_called);
}
// Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
// posts tasks on that message loop.
TEST_F(MessageLoopTest, ThreadMainTaskRunner) {
MessageLoop loop;
scoped_refptr<Foo> foo(new Foo());
std::string a("a");
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, a));
// Post quit task;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce(&RunLoop::QuitCurrentWhenIdleDeprecated));
// Now kick things off
RunLoop().Run();
EXPECT_EQ(foo->test_count(), 1);
EXPECT_EQ(foo->result(), "a");
}
TEST_F(MessageLoopTest, IsType) {
MessageLoop loop(MessagePumpType::UI);
EXPECT_TRUE(loop.IsType(MessagePumpType::UI));
EXPECT_FALSE(loop.IsType(MessagePumpType::IO));
EXPECT_FALSE(loop.IsType(MessagePumpType::DEFAULT));
}
#if defined(OS_WIN)
void EmptyFunction() {}
void PostMultipleTasks() {
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
base::BindOnce(&EmptyFunction));
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
base::BindOnce(&EmptyFunction));
}
static const int kSignalMsg = WM_USER + 2;
void PostWindowsMessage(HWND message_hwnd) {
PostMessage(message_hwnd, kSignalMsg, 0, 2);
}
void EndTest(bool* did_run, HWND hwnd) {
*did_run = true;
PostMessage(hwnd, WM_CLOSE, 0, 0);
}
int kMyMessageFilterCode = 0x5002;
LRESULT CALLBACK TestWndProcThunk(HWND hwnd,
UINT message,
WPARAM wparam,
LPARAM lparam) {
if (message == WM_CLOSE)
EXPECT_TRUE(DestroyWindow(hwnd));
if (message != kSignalMsg)
return DefWindowProc(hwnd, message, wparam, lparam);
switch (lparam) {
case 1:
// First, we post a task that will post multiple no-op tasks to make sure
// that the pump's incoming task queue does not become empty during the
// test.
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::BindOnce(&PostMultipleTasks));
// Next, we post a task that posts a windows message to trigger the second
// stage of the test.
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::BindOnce(&PostWindowsMessage, hwnd));
break;
case 2:
// Since we're about to enter a modal loop, tell the message loop that we
// intend to nest tasks.
MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
bool did_run = false;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::BindOnce(&EndTest, &did_run, hwnd));
// Run a nested windows-style message loop and verify that our task runs.
// If it doesn't, then we'll loop here until the test times out.
MSG msg;
while (GetMessage(&msg, 0, 0, 0)) {
if (!CallMsgFilter(&msg, kMyMessageFilterCode))
DispatchMessage(&msg);
// If this message is a WM_CLOSE, explicitly exit the modal loop.
// Posting a WM_QUIT should handle this, but unfortunately
// MessagePumpWin eats WM_QUIT messages even when running inside a modal
// loop.
if (msg.message == WM_CLOSE)
break;
}
EXPECT_TRUE(did_run);
RunLoop::QuitCurrentWhenIdleDeprecated();
break;
}
return 0;
}
TEST_F(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
MessageLoop loop(MessagePumpType::UI);
HINSTANCE instance = CURRENT_MODULE();
WNDCLASSEX wc = {0};
wc.cbSize = sizeof(wc);
wc.lpfnWndProc = TestWndProcThunk;
wc.hInstance = instance;
wc.lpszClassName = L"MessageLoopTest_HWND";
ATOM atom = RegisterClassEx(&wc);
ASSERT_TRUE(atom);
HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
HWND_MESSAGE, 0, instance, 0);
ASSERT_TRUE(message_hwnd) << GetLastError();
ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
RunLoop().Run();
ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
}
#endif // defined(OS_WIN)
TEST_F(MessageLoopTest, SetTaskRunner) {
MessageLoop loop;
scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
loop.SetTaskRunner(new_runner);
EXPECT_EQ(new_runner, loop.task_runner());
EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
}
TEST_F(MessageLoopTest, OriginalRunnerWorks) {
MessageLoop loop;
scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
loop.SetTaskRunner(new_runner);
scoped_refptr<Foo> foo(new Foo());
original_runner->PostTask(FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, "a"));
RunLoop().RunUntilIdle();
EXPECT_EQ(1, foo->test_count());
}
TEST_F(MessageLoopTest, DeleteUnboundLoop) {
// It should be possible to delete an unbound message loop on a thread which
// already has another active loop. This happens when thread creation fails.
MessageLoop loop;
std::unique_ptr<MessageLoop> unbound_loop(
MessageLoop::CreateUnbound(MessagePumpType::DEFAULT));
unbound_loop.reset();
EXPECT_TRUE(loop.task_runner()->RunsTasksInCurrentSequence());
EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
}
// Verify that tasks posted to and code running in the scope of the same
// MessageLoop access the same SequenceLocalStorage values.
TEST_F(MessageLoopTest, SequenceLocalStorageSetGet) {
MessageLoop loop;
SequenceLocalStorageSlot<int> slot;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindLambdaForTesting([&]() { slot.emplace(11); }));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindLambdaForTesting([&]() { EXPECT_EQ(*slot, 11); }));
RunLoop().RunUntilIdle();
EXPECT_EQ(*slot, 11);
}
// Verify that tasks posted to and code running in different MessageLoops access
// different SequenceLocalStorage values.
TEST_F(MessageLoopTest, SequenceLocalStorageDifferentMessageLoops) {
SequenceLocalStorageSlot<int> slot;
{
MessageLoop loop;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindLambdaForTesting([&]() { slot.emplace(11); }));
RunLoop().RunUntilIdle();
EXPECT_EQ(*slot, 11);
}
MessageLoop loop;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindLambdaForTesting([&]() { EXPECT_FALSE(slot); }));
RunLoop().RunUntilIdle();
EXPECT_NE(slot.GetOrCreateValue(), 11);
}
namespace {
class PostTaskOnDestroy {
public:
PostTaskOnDestroy(int times) : times_remaining_(times) {}
~PostTaskOnDestroy() { PostTaskWithPostingDestructor(times_remaining_); }
// Post a task that will repost itself on destruction |times| times.
static void PostTaskWithPostingDestructor(int times) {
if (times > 0) {
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, BindOnce([](std::unique_ptr<PostTaskOnDestroy>) {},
std::make_unique<PostTaskOnDestroy>(times - 1)));
}
}
private:
const int times_remaining_;
DISALLOW_COPY_AND_ASSIGN(PostTaskOnDestroy);
};
} // namespace
// Test that MessageLoop destruction handles a task's destructor posting another
// task.
TEST(MessageLoopDestructionTest, DestroysFineWithPostTaskOnDestroy) {
std::unique_ptr<MessageLoop> loop = std::make_unique<MessageLoop>();
PostTaskOnDestroy::PostTaskWithPostingDestructor(10);
loop.reset();
}
} // namespace base