blob: 7577f2efbe14983df4fb6df88f1e1c3b07d34abb [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "remoting/protocol/spake2_authenticator.h"
#include <utility>
#include "base/base64.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/sys_byteorder.h"
#include "crypto/hmac.h"
#include "crypto/secure_util.h"
#include "remoting/base/constants.h"
#include "remoting/base/rsa_key_pair.h"
#include "remoting/protocol/ssl_hmac_channel_authenticator.h"
#include "third_party/boringssl/src/include/openssl/curve25519.h"
#include "third_party/libjingle_xmpp/xmllite/xmlelement.h"
namespace remoting {
namespace protocol {
namespace {
// Each peer sends 2 messages: <spake-message> and <verification-hash>. The
// content of <spake-message> is the output of SPAKE2_generate_msg() and must
// be passed to SPAKE2_process_msg() on the other end. This is enough to
// generate authentication key. <verification-hash> is sent to confirm that both
// ends get the same authentication key (which means they both know the
// password). This verification hash is calculated in
// CalculateVerificationHash() as follows:
// HMAC_SHA256(auth_key, ("host"|"client") + local_jid.length() + local_jid +
// remote_jid.length() + remote_jid)
// where auth_key is the key produced by SPAKE2.
const buzz::StaticQName kSpakeMessageTag = {kChromotingXmlNamespace,
"spake-message"};
const buzz::StaticQName kVerificationHashTag = {kChromotingXmlNamespace,
"verification-hash"};
const buzz::StaticQName kCertificateTag = {kChromotingXmlNamespace,
"certificate"};
std::unique_ptr<buzz::XmlElement> EncodeBinaryValueToXml(
const buzz::StaticQName& qname,
const std::string& content) {
std::string content_base64;
base::Base64Encode(content, &content_base64);
std::unique_ptr<buzz::XmlElement> result(new buzz::XmlElement(qname));
result->SetBodyText(content_base64);
return result;
}
// Finds tag named |qname| in base_message and decodes it from base64 and stores
// in |data|. If the element is not present then found is set to false otherwise
// it's set to true. If the element is there and it's content cound't be decoded
// then false is returned.
bool DecodeBinaryValueFromXml(const buzz::XmlElement* message,
const buzz::QName& qname,
bool* found,
std::string* data) {
const buzz::XmlElement* element = message->FirstNamed(qname);
*found = element != nullptr;
if (!*found)
return true;
if (!base::Base64Decode(element->BodyText(), data)) {
LOG(WARNING) << "Failed to parse " << qname.LocalPart();
return false;
}
return !data->empty();
}
std::string PrefixWithLength(const std::string& str) {
uint32_t length = base::HostToNet32(str.size());
return std::string(reinterpret_cast<char*>(&length), sizeof(length)) + str;
}
} // namespace
// static
std::unique_ptr<Authenticator> Spake2Authenticator::CreateForClient(
const std::string& local_id,
const std::string& remote_id,
const std::string& shared_secret,
Authenticator::State initial_state) {
return base::WrapUnique(new Spake2Authenticator(
local_id, remote_id, shared_secret, false, initial_state));
}
// static
std::unique_ptr<Authenticator> Spake2Authenticator::CreateForHost(
const std::string& local_id,
const std::string& remote_id,
const std::string& local_cert,
scoped_refptr<RsaKeyPair> key_pair,
const std::string& shared_secret,
Authenticator::State initial_state) {
std::unique_ptr<Spake2Authenticator> result(new Spake2Authenticator(
local_id, remote_id, shared_secret, true, initial_state));
result->local_cert_ = local_cert;
result->local_key_pair_ = key_pair;
return std::move(result);
}
Spake2Authenticator::Spake2Authenticator(const std::string& local_id,
const std::string& remote_id,
const std::string& shared_secret,
bool is_host,
Authenticator::State initial_state)
: local_id_(local_id),
remote_id_(remote_id),
shared_secret_(shared_secret),
is_host_(is_host),
state_(initial_state) {
spake2_context_ = SPAKE2_CTX_new(
is_host ? spake2_role_bob : spake2_role_alice,
reinterpret_cast<const uint8_t*>(local_id_.data()), local_id_.size(),
reinterpret_cast<const uint8_t*>(remote_id_.data()), remote_id_.size());
// Generate first message and push it to |pending_messages_|.
uint8_t message[SPAKE2_MAX_MSG_SIZE];
size_t message_size;
int result = SPAKE2_generate_msg(
spake2_context_, message, &message_size, sizeof(message),
reinterpret_cast<const uint8_t*>(shared_secret_.data()),
shared_secret_.size());
CHECK(result);
local_spake_message_.assign(reinterpret_cast<char*>(message), message_size);
}
Spake2Authenticator::~Spake2Authenticator() {
SPAKE2_CTX_free(spake2_context_);
}
Authenticator::State Spake2Authenticator::state() const {
if (state_ == ACCEPTED && !outgoing_verification_hash_.empty())
return MESSAGE_READY;
return state_;
}
bool Spake2Authenticator::started() const {
return started_;
}
Authenticator::RejectionReason Spake2Authenticator::rejection_reason() const {
DCHECK_EQ(state(), REJECTED);
return rejection_reason_;
}
void Spake2Authenticator::ProcessMessage(const buzz::XmlElement* message,
const base::Closure& resume_callback) {
ProcessMessageInternal(message);
resume_callback.Run();
}
void Spake2Authenticator::ProcessMessageInternal(
const buzz::XmlElement* message) {
DCHECK_EQ(state(), WAITING_MESSAGE);
// Parse the certificate.
bool cert_present;
if (!DecodeBinaryValueFromXml(message, kCertificateTag, &cert_present,
&remote_cert_)) {
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
// Client always expects certificate in the first message.
if (!is_host_ && remote_cert_.empty()) {
LOG(WARNING) << "No valid host certificate.";
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
bool spake_message_present = false;
std::string spake_message;
bool verification_hash_present = false;
std::string verification_hash;
if (!DecodeBinaryValueFromXml(message, kSpakeMessageTag,
&spake_message_present, &spake_message) ||
!DecodeBinaryValueFromXml(message, kVerificationHashTag,
&verification_hash_present,
&verification_hash)) {
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
// |auth_key_| is generated when <spake-message> is received.
if (auth_key_.empty()) {
if (!spake_message_present) {
LOG(WARNING) << "<spake-message> not found.";
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
uint8_t key[SPAKE2_MAX_KEY_SIZE];
size_t key_size;
started_ = true;
int result = SPAKE2_process_msg(
spake2_context_, key, &key_size, sizeof(key),
reinterpret_cast<const uint8_t*>(spake_message.data()),
spake_message.size());
if (!result) {
state_ = REJECTED;
rejection_reason_ = INVALID_CREDENTIALS;
return;
}
CHECK(key_size);
auth_key_.assign(reinterpret_cast<char*>(key), key_size);
outgoing_verification_hash_ =
CalculateVerificationHash(is_host_, local_id_, remote_id_);
expected_verification_hash_ =
CalculateVerificationHash(!is_host_, remote_id_, local_id_);
} else if (spake_message_present) {
LOG(WARNING) << "Received duplicate <spake-message>.";
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
if (spake_message_sent_ && !verification_hash_present) {
LOG(WARNING) << "Didn't receive <verification-hash> when expected.";
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
if (verification_hash_present) {
if (verification_hash.size() != expected_verification_hash_.size() ||
!crypto::SecureMemEqual(verification_hash.data(),
expected_verification_hash_.data(),
verification_hash.size())) {
state_ = REJECTED;
rejection_reason_ = INVALID_CREDENTIALS;
return;
}
state_ = ACCEPTED;
return;
}
state_ = MESSAGE_READY;
}
std::unique_ptr<buzz::XmlElement> Spake2Authenticator::GetNextMessage() {
DCHECK_EQ(state(), MESSAGE_READY);
std::unique_ptr<buzz::XmlElement> message = CreateEmptyAuthenticatorMessage();
if (!spake_message_sent_) {
if (!local_cert_.empty()) {
message->AddElement(
EncodeBinaryValueToXml(kCertificateTag, local_cert_).release());
}
message->AddElement(
EncodeBinaryValueToXml(kSpakeMessageTag, local_spake_message_)
.release());
spake_message_sent_ = true;
}
if (!outgoing_verification_hash_.empty()) {
message->AddElement(EncodeBinaryValueToXml(kVerificationHashTag,
outgoing_verification_hash_)
.release());
outgoing_verification_hash_.clear();
}
if (state_ != ACCEPTED) {
state_ = WAITING_MESSAGE;
}
return message;
}
const std::string& Spake2Authenticator::GetAuthKey() const {
return auth_key_;
}
std::unique_ptr<ChannelAuthenticator>
Spake2Authenticator::CreateChannelAuthenticator() const {
DCHECK_EQ(state(), ACCEPTED);
CHECK(!auth_key_.empty());
if (is_host_) {
return SslHmacChannelAuthenticator::CreateForHost(
local_cert_, local_key_pair_, auth_key_);
} else {
return SslHmacChannelAuthenticator::CreateForClient(remote_cert_,
auth_key_);
}
}
std::string Spake2Authenticator::CalculateVerificationHash(
bool from_host,
const std::string& local_id,
const std::string& remote_id) {
std::string message = (from_host ? "host" : "client") +
PrefixWithLength(local_id) +
PrefixWithLength(remote_id);
crypto::HMAC hmac(crypto::HMAC::SHA256);
std::string result(hmac.DigestLength(), '\0');
if (!hmac.Init(auth_key_) ||
!hmac.Sign(message, reinterpret_cast<uint8_t*>(&result[0]),
result.length())) {
LOG(FATAL) << "Failed to calculate HMAC.";
}
return result;
}
} // namespace protocol
} // namespace remoting