blob: f2bc7d9785f98169614cbf0bc219b1dd653b091d [file] [log] [blame]
/*
* Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TransformationMatrix_h
#define TransformationMatrix_h
#include "SkMatrix44.h"
#include "platform/geometry/FloatPoint.h"
#include "platform/geometry/FloatPoint3D.h"
#include "wtf/Alignment.h"
#include "wtf/Allocator.h"
#include "wtf/CPU.h"
#include "wtf/PtrUtil.h"
#include <memory>
#include <string.h> // for memcpy
namespace blink {
class AffineTransform;
class IntRect;
class LayoutRect;
class FloatRect;
class FloatQuad;
class FloatBox;
struct Rotation;
#if CPU(X86_64)
#define TRANSFORMATION_MATRIX_USE_X86_64_SSE2
#endif
// TransformationMatrix must not be allocated on Oilpan's heap since
// Oilpan doesn't (yet) have an ability to allocate the TransformationMatrix
// with 16-byte alignment. PartitionAlloc has the ability.
class PLATFORM_EXPORT TransformationMatrix {
USING_FAST_MALLOC(TransformationMatrix);
public:
#if defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2)
typedef WTF_ALIGNED(double, Matrix4[4][4], 16);
#else
typedef double Matrix4[4][4];
#endif
static std::unique_ptr<TransformationMatrix> create() {
return wrapUnique(new TransformationMatrix());
}
static std::unique_ptr<TransformationMatrix> create(
const TransformationMatrix& t) {
return wrapUnique(new TransformationMatrix(t));
}
static std::unique_ptr<TransformationMatrix> create(double a,
double b,
double c,
double d,
double e,
double f) {
return wrapUnique(new TransformationMatrix(a, b, c, d, e, f));
}
static std::unique_ptr<TransformationMatrix> create(double m11,
double m12,
double m13,
double m14,
double m21,
double m22,
double m23,
double m24,
double m31,
double m32,
double m33,
double m34,
double m41,
double m42,
double m43,
double m44) {
return wrapUnique(new TransformationMatrix(m11, m12, m13, m14, m21, m22,
m23, m24, m31, m32, m33, m34,
m41, m42, m43, m44));
}
TransformationMatrix() {
checkAlignment();
makeIdentity();
}
TransformationMatrix(const AffineTransform&);
TransformationMatrix(const TransformationMatrix& t) {
checkAlignment();
*this = t;
}
TransformationMatrix(double a,
double b,
double c,
double d,
double e,
double f) {
checkAlignment();
setMatrix(a, b, c, d, e, f);
}
TransformationMatrix(double m11,
double m12,
double m13,
double m14,
double m21,
double m22,
double m23,
double m24,
double m31,
double m32,
double m33,
double m34,
double m41,
double m42,
double m43,
double m44) {
checkAlignment();
setMatrix(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41,
m42, m43, m44);
}
TransformationMatrix(const SkMatrix44& matrix) {
setMatrix(
matrix.get(0, 0), matrix.get(1, 0), matrix.get(2, 0), matrix.get(3, 0),
matrix.get(0, 1), matrix.get(1, 1), matrix.get(2, 1), matrix.get(3, 1),
matrix.get(0, 2), matrix.get(1, 2), matrix.get(2, 2), matrix.get(3, 2),
matrix.get(0, 3), matrix.get(1, 3), matrix.get(2, 3), matrix.get(3, 3));
}
void setMatrix(double a, double b, double c, double d, double e, double f) {
m_matrix[0][0] = a;
m_matrix[0][1] = b;
m_matrix[0][2] = 0;
m_matrix[0][3] = 0;
m_matrix[1][0] = c;
m_matrix[1][1] = d;
m_matrix[1][2] = 0;
m_matrix[1][3] = 0;
m_matrix[2][0] = 0;
m_matrix[2][1] = 0;
m_matrix[2][2] = 1;
m_matrix[2][3] = 0;
m_matrix[3][0] = e;
m_matrix[3][1] = f;
m_matrix[3][2] = 0;
m_matrix[3][3] = 1;
}
void setMatrix(double m11,
double m12,
double m13,
double m14,
double m21,
double m22,
double m23,
double m24,
double m31,
double m32,
double m33,
double m34,
double m41,
double m42,
double m43,
double m44) {
m_matrix[0][0] = m11;
m_matrix[0][1] = m12;
m_matrix[0][2] = m13;
m_matrix[0][3] = m14;
m_matrix[1][0] = m21;
m_matrix[1][1] = m22;
m_matrix[1][2] = m23;
m_matrix[1][3] = m24;
m_matrix[2][0] = m31;
m_matrix[2][1] = m32;
m_matrix[2][2] = m33;
m_matrix[2][3] = m34;
m_matrix[3][0] = m41;
m_matrix[3][1] = m42;
m_matrix[3][2] = m43;
m_matrix[3][3] = m44;
}
TransformationMatrix& operator=(const TransformationMatrix& t) {
setMatrix(t.m_matrix);
return *this;
}
TransformationMatrix& makeIdentity() {
setMatrix(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
return *this;
}
bool isIdentity() const {
return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 &&
m_matrix[0][3] == 0 && m_matrix[1][0] == 0 && m_matrix[1][1] == 1 &&
m_matrix[1][2] == 0 && m_matrix[1][3] == 0 && m_matrix[2][0] == 0 &&
m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 &&
m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0 &&
m_matrix[3][3] == 1;
}
// Map a 3D point through the transform, returning a 3D point.
FloatPoint3D mapPoint(const FloatPoint3D&) const;
// Map a 2D point through the transform, returning a 2D point.
// Note that this ignores the z component, effectively projecting the point
// into the z=0 plane.
FloatPoint mapPoint(const FloatPoint&) const;
// If the matrix has 3D components, the z component of the result is
// dropped, effectively projecting the rect into the z=0 plane
FloatRect mapRect(const FloatRect&) const;
// Rounds the resulting mapped rectangle out. This is helpful for bounding
// box computations but may not be what is wanted in other contexts.
IntRect mapRect(const IntRect&) const;
LayoutRect mapRect(const LayoutRect&) const;
// If the matrix has 3D components, the z component of the result is
// dropped, effectively projecting the quad into the z=0 plane
FloatQuad mapQuad(const FloatQuad&) const;
// Map a point on the z=0 plane into a point on
// the plane with with the transform applied, by extending
// a ray perpendicular to the source plane and computing
// the local x,y position of the point where that ray intersects
// with the destination plane.
FloatPoint projectPoint(const FloatPoint&, bool* clamped = 0) const;
// Projects the four corners of the quad
FloatQuad projectQuad(const FloatQuad&, bool* clamped = 0) const;
// Projects the four corners of the quad and takes a bounding box,
// while sanitizing values created when the w component is negative.
LayoutRect clampedBoundsOfProjectedQuad(const FloatQuad&) const;
void transformBox(FloatBox&) const;
double m11() const { return m_matrix[0][0]; }
void setM11(double f) { m_matrix[0][0] = f; }
double m12() const { return m_matrix[0][1]; }
void setM12(double f) { m_matrix[0][1] = f; }
double m13() const { return m_matrix[0][2]; }
void setM13(double f) { m_matrix[0][2] = f; }
double m14() const { return m_matrix[0][3]; }
void setM14(double f) { m_matrix[0][3] = f; }
double m21() const { return m_matrix[1][0]; }
void setM21(double f) { m_matrix[1][0] = f; }
double m22() const { return m_matrix[1][1]; }
void setM22(double f) { m_matrix[1][1] = f; }
double m23() const { return m_matrix[1][2]; }
void setM23(double f) { m_matrix[1][2] = f; }
double m24() const { return m_matrix[1][3]; }
void setM24(double f) { m_matrix[1][3] = f; }
double m31() const { return m_matrix[2][0]; }
void setM31(double f) { m_matrix[2][0] = f; }
double m32() const { return m_matrix[2][1]; }
void setM32(double f) { m_matrix[2][1] = f; }
double m33() const { return m_matrix[2][2]; }
void setM33(double f) { m_matrix[2][2] = f; }
double m34() const { return m_matrix[2][3]; }
void setM34(double f) { m_matrix[2][3] = f; }
double m41() const { return m_matrix[3][0]; }
void setM41(double f) { m_matrix[3][0] = f; }
double m42() const { return m_matrix[3][1]; }
void setM42(double f) { m_matrix[3][1] = f; }
double m43() const { return m_matrix[3][2]; }
void setM43(double f) { m_matrix[3][2] = f; }
double m44() const { return m_matrix[3][3]; }
void setM44(double f) { m_matrix[3][3] = f; }
double a() const { return m_matrix[0][0]; }
void setA(double a) { m_matrix[0][0] = a; }
double b() const { return m_matrix[0][1]; }
void setB(double b) { m_matrix[0][1] = b; }
double c() const { return m_matrix[1][0]; }
void setC(double c) { m_matrix[1][0] = c; }
double d() const { return m_matrix[1][1]; }
void setD(double d) { m_matrix[1][1] = d; }
double e() const { return m_matrix[3][0]; }
void setE(double e) { m_matrix[3][0] = e; }
double f() const { return m_matrix[3][1]; }
void setF(double f) { m_matrix[3][1] = f; }
// *this = *this * mat.
TransformationMatrix& multiply(const TransformationMatrix&);
TransformationMatrix& scale(double);
TransformationMatrix& scaleNonUniform(double sx, double sy);
TransformationMatrix& scale3d(double sx, double sy, double sz);
TransformationMatrix& rotate(double d) { return rotate3d(0, 0, d); }
// Angles are in degrees.
TransformationMatrix& rotate3d(double rx, double ry, double rz);
TransformationMatrix& rotate3d(const Rotation&);
// The vector (x,y,z) is normalized if it's not already. A vector of
// (0,0,0) uses a vector of (0,0,1).
TransformationMatrix& rotate3d(double x, double y, double z, double angle);
TransformationMatrix& translate(double tx, double ty);
TransformationMatrix& translate3d(double tx, double ty, double tz);
// translation added with a post-multiply
TransformationMatrix& translateRight(double tx, double ty);
TransformationMatrix& translateRight3d(double tx, double ty, double tz);
TransformationMatrix& skew(double angleX, double angleY);
TransformationMatrix& skewX(double angle) { return skew(angle, 0); }
TransformationMatrix& skewY(double angle) { return skew(0, angle); }
TransformationMatrix& applyPerspective(double p);
// Changes the transform to apply as if the origin were at (x, y, z).
TransformationMatrix& applyTransformOrigin(double x, double y, double z);
TransformationMatrix& applyTransformOrigin(const FloatPoint3D& origin) {
return applyTransformOrigin(origin.x(), origin.y(), origin.z());
}
// Changes the transform to:
//
// scale3d(z, z, z) * mat * scale3d(1/z, 1/z, 1/z)
//
// Useful for mapping zoomed points to their zoomed transformed result:
//
// new_mat * (scale3d(z, z, z) * x) == scale3d(z, z, z) * (mat * x)
//
TransformationMatrix& zoom(double zoomFactor);
bool isInvertible() const;
// This method returns the identity matrix if it is not invertible.
// Use isInvertible() before calling this if you need to know.
TransformationMatrix inverse() const;
// decompose the matrix into its component parts
typedef struct {
double scaleX, scaleY, scaleZ;
double skewXY, skewXZ, skewYZ;
double quaternionX, quaternionY, quaternionZ, quaternionW;
double translateX, translateY, translateZ;
double perspectiveX, perspectiveY, perspectiveZ, perspectiveW;
} DecomposedType;
bool decompose(DecomposedType&) const WARN_UNUSED_RETURN;
void recompose(const DecomposedType&);
void blend(const TransformationMatrix& from, double progress);
bool isAffine() const {
return m13() == 0 && m14() == 0 && m23() == 0 && m24() == 0 && m31() == 0 &&
m32() == 0 && m33() == 1 && m34() == 0 && m43() == 0 && m44() == 1;
}
// Throw away the non-affine parts of the matrix (lossy!)
void makeAffine();
AffineTransform toAffineTransform() const;
// Flatten into a 2-D transformation (non-invertable).
// Same as gfx::Transform::FlattenTo2d(); see the docs for that function for
// details and discussion.
void flattenTo2d();
bool operator==(const TransformationMatrix& m2) const {
return m_matrix[0][0] == m2.m_matrix[0][0] &&
m_matrix[0][1] == m2.m_matrix[0][1] &&
m_matrix[0][2] == m2.m_matrix[0][2] &&
m_matrix[0][3] == m2.m_matrix[0][3] &&
m_matrix[1][0] == m2.m_matrix[1][0] &&
m_matrix[1][1] == m2.m_matrix[1][1] &&
m_matrix[1][2] == m2.m_matrix[1][2] &&
m_matrix[1][3] == m2.m_matrix[1][3] &&
m_matrix[2][0] == m2.m_matrix[2][0] &&
m_matrix[2][1] == m2.m_matrix[2][1] &&
m_matrix[2][2] == m2.m_matrix[2][2] &&
m_matrix[2][3] == m2.m_matrix[2][3] &&
m_matrix[3][0] == m2.m_matrix[3][0] &&
m_matrix[3][1] == m2.m_matrix[3][1] &&
m_matrix[3][2] == m2.m_matrix[3][2] &&
m_matrix[3][3] == m2.m_matrix[3][3];
}
bool operator!=(const TransformationMatrix& other) const {
return !(*this == other);
}
// *this = *this * t
TransformationMatrix& operator*=(const TransformationMatrix& t) {
return multiply(t);
}
// result = *this * t
TransformationMatrix operator*(const TransformationMatrix& t) const {
TransformationMatrix result = *this;
result.multiply(t);
return result;
}
bool isIdentityOrTranslation() const {
return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 &&
m_matrix[0][3] == 0 && m_matrix[1][0] == 0 && m_matrix[1][1] == 1 &&
m_matrix[1][2] == 0 && m_matrix[1][3] == 0 && m_matrix[2][0] == 0 &&
m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 &&
m_matrix[3][3] == 1;
}
bool isIdentityOr2DTranslation() const {
return isIdentityOrTranslation() && m_matrix[3][2] == 0;
}
bool isIntegerTranslation() const;
// If this transformation is identity or 2D translation, returns the
// translation.
FloatSize to2DTranslation() const;
typedef float FloatMatrix4[16];
void toColumnMajorFloatArray(FloatMatrix4& result) const;
static SkMatrix44 toSkMatrix44(const TransformationMatrix&);
// If |asMatrix|, return the matrix in row-major order. Otherwise, return
// the transform's decomposition which shows the translation, scale, etc.
String toString(bool asMatrix = false) const;
private:
// multiply passed 2D point by matrix (assume z=0)
void multVecMatrix(double x, double y, double& dstX, double& dstY) const;
FloatPoint internalMapPoint(const FloatPoint& sourcePoint) const {
double resultX;
double resultY;
multVecMatrix(sourcePoint.x(), sourcePoint.y(), resultX, resultY);
return FloatPoint(static_cast<float>(resultX), static_cast<float>(resultY));
}
// multiply passed 3D point by matrix
void multVecMatrix(double x,
double y,
double z,
double& dstX,
double& dstY,
double& dstZ) const;
FloatPoint3D internalMapPoint(const FloatPoint3D& sourcePoint) const {
double resultX;
double resultY;
double resultZ;
multVecMatrix(sourcePoint.x(), sourcePoint.y(), sourcePoint.z(), resultX,
resultY, resultZ);
return FloatPoint3D(static_cast<float>(resultX),
static_cast<float>(resultY),
static_cast<float>(resultZ));
}
void setMatrix(const Matrix4 m) {
if (m && m != m_matrix)
memcpy(m_matrix, m, sizeof(Matrix4));
}
void checkAlignment() {
#if defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2)
// m_matrix can cause this class to require higher than usual alignment.
// Make sure the allocator handles this.
ASSERT((reinterpret_cast<uintptr_t>(this) &
(WTF_ALIGN_OF(TransformationMatrix) - 1)) == 0);
#endif
}
Matrix4 m_matrix;
};
// Redeclared here to avoid ODR issues.
// See platform/testing/TransformPrinters.h.
void PrintTo(const TransformationMatrix&, std::ostream*);
} // namespace blink
#endif // TransformationMatrix_h