blob: 0cd0ad684f3bbdd0deb2d657105d6222b1b9bef6 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/math_util.h"
#include <algorithm>
#include <cmath>
#include <limits>
#if defined(ARCH_CPU_X86_FAMILY)
#include <xmmintrin.h>
#endif
#include "base/trace_event/traced_value.h"
#include "base/values.h"
#include "ui/gfx/geometry/angle_conversions.h"
#include "ui/gfx/geometry/linear_gradient.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/rrect_f.h"
#include "ui/gfx/geometry/transform.h"
#include "ui/gfx/geometry/vector2d_conversions.h"
#include "ui/gfx/geometry/vector2d_f.h"
#include "ui/gfx/geometry/vector3d_f.h"
namespace cc {
static HomogeneousCoordinate ProjectHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p) {
SkScalar m22 = transform.rc(2, 2);
// In this case, the layer we are trying to project onto is perpendicular to
// ray (point p and z-axis direction) that we are trying to project. This
// happens when the layer is rotated so that it is infinitesimally thin, or
// when it is co-planar with the camera origin -- i.e. when the layer is
// invisible anyway.
if (!std::isnormal(m22))
return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
SkScalar z = -(transform.rc(2, 0) * p.x() + transform.rc(2, 1) * p.y() +
transform.rc(2, 3)) /
m22;
// Same underlying condition as the previous early return.
if (!std::isfinite(z))
return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
transform.TransformVector4(result.vec);
return result;
}
static HomogeneousCoordinate ProjectHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
*clipped = h.w() <= 0;
return h;
}
static HomogeneousCoordinate MapHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p) {
HomogeneousCoordinate result(p.x(), p.y(), 0.0, 1.0);
transform.TransformVector4(result.vec);
return result;
}
namespace {
// This is the tolerance for detecting an eyepoint-aligned edge.
const float kStationaryPointEpsilon = 0.00001f;
} // namespace
static void homogeneousLimitAtZero(SkScalar a1,
SkScalar w1,
SkScalar a2,
SkScalar w2,
float t,
float* limit) {
if (std::abs(a1 * w2 / w1 / a2 - 1.0f) > kStationaryPointEpsilon) {
// We are going to explode towards an infinity, but we choose the one that
// corresponds to the one on the positive side of w.
if (((1.0f - t) * a1 + t * a2) > 0) {
*limit = HomogeneousCoordinate::kInfiniteCoordinate;
} else {
*limit = -HomogeneousCoordinate::kInfiniteCoordinate;
}
} else {
*limit = a1 / w1; // (== a2 / w2) && == (1.0f - t) * a1 / w1 + t * a2 / w2
}
}
static gfx::PointF ComputeClippedCartesianPoint2dForEdge(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2) {
// Points h1 and h2 form a line in 4d, and any point on that line can be
// represented as an interpolation between h1 and h2:
// p = (1-t) h1 + (t) h2
//
// We want to compute the limit in 2 space of
// x = ((1-t) h1.x + (t) h2.x) / ((1-t) h1.w + (t) h2.w)
// y = ((1-t) h1.y + (t) h2.y) / ((1-t) h1.w + (t) h2.w)
// as ((1-t) h1.w + (t) h2.w) -> 0+
// The only answers to this are h1.x/h1.w == h2.x/h2.w, +/- infinity
// i.e., either the coordinate is not moving, or is trending to one
// infinity or the other.
// This assertion isn't really as strong as it looks because
// std::isfinite(h1.w()) or std::isfinite(h2.w()) might not be true
// (and they could be NaN).
// TODO(crbug.com/1219622): We should be able to assert something
// stronger here, and avoid dependencies on undefined floating point
// behavior.
DCHECK_NE(h1.w() <= 0, h2.w() <= 0);
float t = h1.w() / (h1.w() - h2.w());
float x;
float y;
homogeneousLimitAtZero(h1.x(), h1.w(), h2.x(), h2.w(), t, &x);
homogeneousLimitAtZero(h1.y(), h1.w(), h2.y(), h2.w(), t, &y);
return gfx::PointF(x, y);
}
static void homogeneousLimitNearZero(SkScalar a1,
SkScalar w1,
SkScalar a2,
SkScalar w2,
float t,
float* limit) {
if (std::abs(a1 * w2 / w1 / a2 - 1.0f) > kStationaryPointEpsilon) {
// t has been computed so that w is near but not at zero.
*limit = ((1.0f - t) * a1 + t * a2) / ((1.0f - t) * w1 + t * w2);
// std::abs(*limit) should now be somewhere near
// HomogeneousCoordinate::kInfiniteCoordinate, preferably smaller than it,
// but there are edge cases where it will be larger (for example, if the
// point where a crosses 0 is very close to the point where w crosses 0),
// so it's hard to DCHECK() that this is the case.
} else {
*limit = a1 / w1; // (== a2 / w2) && == (1.0f - t) * a1 / w1 + t * a2 / w2
}
}
static gfx::Point3F ComputeClippedCartesianPoint3dForEdge(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2) {
// Points h1 and h2 form a line in 4d, and any point on that line can be
// represented as an interpolation between h1 and h2:
// p = (1-t) h1 + (t) h2
//
// We want to compute the limit in 3 space of
// x = ((1-t) h1.x + (t) h2.x) / ((1-t) h1.w + (t) h2.w)
// y = ((1-t) h1.y + (t) h2.y) / ((1-t) h1.w + (t) h2.w)
// z = ((1-t) h1.z + (t) h2.z) / ((1-t) h1.w + (t) h2.w)
// as ((1-t) h1.w + (t) h2.w) -> 0+
// The only answers to this are h1.x/h1.w == h2.x/h2.w, +/- infinity
// i.e., either the coordinate is not moving, or is trending to one
// infinity or the other.
// When we clamp to HomogeneousCoordinate::kInfiniteCoordinate we want
// to keep the result in the correct plane, which we do by computing
// a t that will result in the largest (in absolute value) of x, y, or
// z being HomogeneousCoordinate::kInfiniteCoordinate
// This assertion isn't really as strong as it looks because
// std::isfinite(h1.w()) or std::isfinite(h2.w()) might not be true
// (and they could be NaN).
// TODO(crbug.com/1219622): We should be able to assert something
// stronger here, and avoid dependencies on undefined floating point
// behavior.
DCHECK_NE(h1.w() <= 0, h2.w() <= 0);
float w_diff = h1.w() - h2.w();
float t = h1.w() / w_diff;
float max_numerator = std::max({std::abs((1.0f - t) * h1.x() + t * h2.x()),
std::abs((1.0f - t) * h1.y() + t * h2.y()),
std::abs((1.0f - t) * h1.z() + t * h2.z())});
// Shift t away from the point where w is zero, far enough so that the
// largest of the resulting x, y, and z will be about
// kInfiniteCoordinate. Add an extra epsilon() / 2.0 so that there's
// always enough movement (in case t_shift is very small, which it
// often is).
const float t_shift =
max_numerator / w_diff / HomogeneousCoordinate::kInfiniteCoordinate;
constexpr float half_epsilon = std::numeric_limits<float>::epsilon() / 2.0f;
DCHECK_EQ(w_diff > 0, t_shift > 0);
if (w_diff > 0) {
t = std::max(0.0f, t - (t_shift + half_epsilon));
} else {
t = std::min(1.0f, t - (t_shift - half_epsilon));
}
float x;
float y;
float z;
homogeneousLimitNearZero(h1.x(), h1.w(), h2.x(), h2.w(), t, &x);
homogeneousLimitNearZero(h1.y(), h1.w(), h2.y(), h2.w(), t, &y);
homogeneousLimitNearZero(h1.z(), h1.w(), h2.z(), h2.w(), t, &z);
return gfx::Point3F(x, y, z);
}
static inline void ExpandBoundsToIncludePoint(float* xmin,
float* xmax,
float* ymin,
float* ymax,
const gfx::PointF& p) {
*xmin = std::min(p.x(), *xmin);
*xmax = std::max(p.x(), *xmax);
*ymin = std::min(p.y(), *ymin);
*ymax = std::max(p.y(), *ymax);
}
static inline bool IsNearlyTheSame(float f, float g) {
// The idea behind this is to use this fraction of the larger of the
// two numbers as the limit of the difference. This breaks down near
// zero, so we reuse this as the minimum absolute size we will use
// for the base of the scale too.
static const float epsilon_scale = 0.00001f;
return std::abs(f - g) <
epsilon_scale * std::max({std::abs(f), std::abs(g), epsilon_scale});
}
static inline bool IsNearlyTheSame(const gfx::PointF& lhs,
const gfx::PointF& rhs) {
return IsNearlyTheSame(lhs.x(), rhs.x()) && IsNearlyTheSame(lhs.y(), rhs.y());
}
static inline bool IsNearlyTheSame(const gfx::Point3F& lhs,
const gfx::Point3F& rhs) {
return IsNearlyTheSame(lhs.x(), rhs.x()) &&
IsNearlyTheSame(lhs.y(), rhs.y()) && IsNearlyTheSame(lhs.z(), rhs.z());
}
static inline void AddVertexToClippedQuad3d(const gfx::Point3F& new_vertex,
gfx::Point3F clipped_quad[6],
int* num_vertices_in_clipped_quad,
bool* need_to_clamp) {
if (*num_vertices_in_clipped_quad > 0 &&
IsNearlyTheSame(clipped_quad[*num_vertices_in_clipped_quad - 1],
new_vertex))
return;
DCHECK_LT(*num_vertices_in_clipped_quad, 6);
clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
(*num_vertices_in_clipped_quad)++;
if (new_vertex.x() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.x() > HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.y() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.y() > HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.z() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.z() > HomogeneousCoordinate::kInfiniteCoordinate) {
*need_to_clamp = true;
}
}
gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
const gfx::Rect& src_rect) {
return MapEnclosingClippedRectIgnoringError(transform, src_rect, 0.f);
}
gfx::Rect MathUtil::MapEnclosingClippedRectIgnoringError(
const gfx::Transform& transform,
const gfx::Rect& src_rect,
float ignore_error) {
if (transform.IsIdentityOrIntegerTranslation())
return src_rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
gfx::RectF mapped_rect = MapClippedRect(transform, gfx::RectF(src_rect));
return gfx::ToEnclosingRectIgnoringError(mapped_rect, ignore_error);
}
gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
const gfx::RectF& src_rect) {
if (transform.IsIdentityOrTranslation())
return src_rect + transform.To2dTranslation();
// Apply the transform, but retain the result in homogeneous coordinates.
HomogeneousCoordinate hc0 = MapHomogeneousPoint(transform, src_rect.origin());
HomogeneousCoordinate hc1 =
MapHomogeneousPoint(transform, src_rect.top_right());
HomogeneousCoordinate hc2 =
MapHomogeneousPoint(transform, src_rect.bottom_right());
HomogeneousCoordinate hc3 =
MapHomogeneousPoint(transform, src_rect.bottom_left());
return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
}
gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
const gfx::Rect& src_rect) {
if (transform.IsIdentityOrIntegerTranslation())
return src_rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
gfx::RectF projected_rect =
ProjectClippedRect(transform, gfx::RectF(src_rect));
// gfx::ToEnclosingRect crashes if called on a RectF with any NaN coordinate.
if (std::isnan(projected_rect.x()) || std::isnan(projected_rect.y()) ||
std::isnan(projected_rect.right()) || std::isnan(projected_rect.bottom()))
return gfx::Rect();
return gfx::ToEnclosingRect(projected_rect);
}
gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
const gfx::RectF& src_rect) {
if (transform.IsIdentityOrTranslation())
return src_rect + transform.To2dTranslation();
// Perform the projection, but retain the result in homogeneous coordinates.
gfx::QuadF q = gfx::QuadF(src_rect);
HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
return ComputeEnclosingClippedRect(h1, h2, h3, h4);
}
gfx::QuadF MathUtil::InverseMapQuadToLocalSpace(
const gfx::Transform& device_transform,
const gfx::QuadF& device_quad) {
DCHECK(device_transform.IsFlat());
gfx::Transform inverse_device_transform =
device_transform.GetCheckedInverse();
bool clipped = false;
gfx::QuadF local_quad =
MathUtil::MapQuad(inverse_device_transform, device_quad, &clipped);
// We should not DCHECK(!clipped) here, because anti-aliasing inflation may
// cause device_quad to become clipped. To our knowledge this scenario does
// not need to be handled differently than the unclipped case.
return local_quad;
}
gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
const gfx::Transform& transform,
const gfx::Rect& rect) {
DCHECK(transform.Preserves2dAxisAlignment());
DCHECK_GT(transform.rc(3, 3), 0);
DCHECK(std::isnormal(transform.rc(3, 3)));
if (transform.IsIdentityOrIntegerTranslation())
return rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
if (transform.IsIdentityOrTranslation()) {
gfx::Vector2dF offset = transform.To2dTranslation();
return gfx::ToEnclosedRect(gfx::RectF(rect) + offset);
}
HomogeneousCoordinate hc0 =
MapHomogeneousPoint(transform, gfx::PointF(rect.origin()));
HomogeneousCoordinate hc1 =
MapHomogeneousPoint(transform, gfx::PointF(rect.bottom_right()));
DCHECK(!hc0.ShouldBeClipped());
DCHECK(!hc1.ShouldBeClipped());
gfx::PointF top_left(hc0.CartesianPoint2d());
gfx::PointF bottom_right(hc1.CartesianPoint2d());
return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right));
}
bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform,
const gfx::QuadF& src_quad,
gfx::Point3F clipped_quad[6],
int* num_vertices_in_clipped_quad) {
// This is different from the 2D version because, when we clamp
// coordinates to [-HomogeneousCoordinate::kInfiniteCoordinate,
// HomogeneousCoordinate::kInfiniteCoordinate], we need to do the
// clamping while keeping the points coplanar.
HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, src_quad.p1());
HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, src_quad.p2());
HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, src_quad.p3());
HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, src_quad.p4());
// The order of adding the vertices to the array is chosen so that
// clockwise / counter-clockwise orientation is retained.
*num_vertices_in_clipped_quad = 0;
bool need_to_clamp = false;
if (!h1.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h1.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h1, h2),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h2.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h2.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h2, h3),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h3.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h3.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h3, h4),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h4.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h4.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h4, h1),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (*num_vertices_in_clipped_quad > 2 &&
IsNearlyTheSame(clipped_quad[0],
clipped_quad[*num_vertices_in_clipped_quad - 1]))
*num_vertices_in_clipped_quad -= 1;
if (need_to_clamp) {
// Some of the values need to be clamped, but we need to keep them
// coplanar while doing so.
// First, build a normal vector to the plane by averaging the
// cross products of adjacent edges.
gfx::Vector3dF normal(0.0f, 0.0f, 0.0f);
if (*num_vertices_in_clipped_quad > 2) {
gfx::Vector3dF loop_vector =
clipped_quad[0] - clipped_quad[*num_vertices_in_clipped_quad - 1];
gfx::Vector3dF prev_vector(loop_vector);
for (int i = 1; i < *num_vertices_in_clipped_quad; ++i) {
gfx::Vector3dF cur_vector = clipped_quad[i] - clipped_quad[i - 1];
normal += CrossProduct(prev_vector, cur_vector);
prev_vector = cur_vector;
}
normal += CrossProduct(prev_vector, loop_vector);
}
bool clamp_by_points = false;
float length = normal.Length();
if (std::isnormal(length)) { // exclude 0, denormals, +/- inf, NaN
normal.InvScale(length);
// Find the vector to the point in the plane closest to (0,0,0).
gfx::Vector3dF shortest_from_zero(normal);
shortest_from_zero.Scale(
DotProduct(normal, clipped_quad[0] - gfx::Point3F(0.0f, 0.0f, 0.0f)));
// Find the the point in the plane that is at x=0 and y=0
float z_at_xy_zero = 0.0f;
if (shortest_from_zero.x() == 0.0f && shortest_from_zero.y() == 0.0f) {
z_at_xy_zero = shortest_from_zero.z();
} else if (shortest_from_zero.z() != 0) {
// Compute the vector v pointing from the shortest_from_zero
// point to the point with x=0 and y=0. If both v and normal
// are projected into the x/y plane, they should point in
// opposite directions.
gfx::Vector3dF v = CrossProduct(
normal, CrossProduct(gfx::Vector3dF(0.0f, 0.0f, 1.0f), normal));
DCHECK(std::abs(normal.x() * v.y() - normal.y() * v.x()) < 0.00001f);
// It doesn't matter whether we use x or y, unless one of them
// is zero or very close to it.
float r = std::abs(v.x()) > std::abs(v.y())
? shortest_from_zero.x() / v.x()
: shortest_from_zero.y() / v.y();
z_at_xy_zero = shortest_from_zero.z() - v.z() * r;
} else {
// Plane is parallel to the z axis. This means it's not
// visible, so just fall back to clamping by points.
clamp_by_points = true;
}
if (!clamp_by_points) {
// If z_at_xy_zero is more than 3/4 of kInfiniteCoordinate
// distance from zero, move everything in the z axis so
// z_at_xy_zero is that distance from zero, so that we don't end
// up clamping away the parts that fit within what's likely to
// be the visible area.
constexpr float max_distance =
0.75 * HomogeneousCoordinate::kInfiniteCoordinate;
if (std::abs(z_at_xy_zero) > max_distance) {
float z_delta;
if (z_at_xy_zero > 0) {
z_delta = max_distance - z_at_xy_zero;
} else {
z_delta = -max_distance - z_at_xy_zero;
}
for (int i = 0; i < *num_vertices_in_clipped_quad; ++i) {
clipped_quad[i].set_z(clipped_quad[i].z() + z_delta);
}
z_at_xy_zero += z_delta;
}
// Move all the points towards (0, 0, z_at_xy_zero) until all
// their coordinates are less than kInfiniteCoordinate.
for (int i = 0; i < *num_vertices_in_clipped_quad; ++i) {
gfx::Point3F& point = clipped_quad[i];
float t = 1.0f;
float x_abs = std::abs(point.x());
if (x_abs > HomogeneousCoordinate::kInfiniteCoordinate) {
t = std::min(t, HomogeneousCoordinate::kInfiniteCoordinate / x_abs);
}
float y_abs = std::abs(point.y());
if (y_abs > HomogeneousCoordinate::kInfiniteCoordinate) {
t = std::min(t, HomogeneousCoordinate::kInfiniteCoordinate / y_abs);
}
float z = point.z();
if (std::abs(z) > HomogeneousCoordinate::kInfiniteCoordinate) {
// From the clamping to max_distance above, we should have
// made std::abs(z_at_xy_zero) < kInfiniteCoordinate.
// However, if it started off very large we might not have.
float z_at_xy_zero_clamped =
std::min(float{HomogeneousCoordinate::kInfiniteCoordinate},
std::max(-HomogeneousCoordinate::kInfiniteCoordinate,
z_at_xy_zero));
float z_offset = z - z_at_xy_zero_clamped;
float z_space =
(z > 0 ? HomogeneousCoordinate::kInfiniteCoordinate
: -HomogeneousCoordinate::kInfiniteCoordinate) -
z_at_xy_zero_clamped;
DCHECK_NE(z_offset, 0.0f);
DCHECK_NE(z_space, 0.0f);
DCHECK_EQ(z_offset > 0, z_space > 0);
t = std::min(t, z_space / z_offset);
}
if (t != 1.0f) {
DCHECK(0.0f <= t && t < 1.0f);
point.set_x(t * point.x());
point.set_y(t * point.y());
point.set_z((1.0f - t) * z_at_xy_zero + t * point.z());
}
}
}
} else {
// Our points were colinear, so there's no plane to maintain.
clamp_by_points = true;
}
if (clamp_by_points) {
// Just clamp each point separately in each axis, just like we do
// for 2D.
for (int i = 0; i < *num_vertices_in_clipped_quad; ++i) {
gfx::Point3F& point = clipped_quad[i];
point.set_x(
std::clamp(point.x(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
point.set_y(
std::clamp(point.y(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
point.set_z(
std::clamp(point.z(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
}
}
}
DCHECK_LE(*num_vertices_in_clipped_quad, 6);
return (*num_vertices_in_clipped_quad >= 4);
}
gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
const gfx::PointF vertices[],
int num_vertices) {
if (num_vertices < 2)
return gfx::RectF();
float xmin = std::numeric_limits<float>::max();
float xmax = -std::numeric_limits<float>::max();
float ymin = std::numeric_limits<float>::max();
float ymax = -std::numeric_limits<float>::max();
for (int i = 0; i < num_vertices; ++i)
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
return gfx::RectF(gfx::PointF(xmin, ymin),
gfx::SizeF(xmax - xmin, ymax - ymin));
}
gfx::RectF MathUtil::ComputeEnclosingClippedRect(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2,
const HomogeneousCoordinate& h3,
const HomogeneousCoordinate& h4) {
// This function performs clipping as necessary and computes the enclosing 2d
// gfx::RectF of the vertices. Doing these two steps simultaneously allows us
// to avoid the overhead of storing an unknown number of clipped vertices.
// If no vertices on the quad are clipped, then we can simply return the
// enclosing rect directly.
bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
h3.ShouldBeClipped() || h4.ShouldBeClipped();
if (!something_clipped) {
gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
h2.CartesianPoint2d(),
h3.CartesianPoint2d(),
h4.CartesianPoint2d());
return mapped_quad.BoundingBox();
}
bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
h3.ShouldBeClipped() && h4.ShouldBeClipped();
if (everything_clipped)
return gfx::RectF();
float xmin = std::numeric_limits<float>::max();
float xmax = -std::numeric_limits<float>::max();
float ymin = std::numeric_limits<float>::max();
float ymax = -std::numeric_limits<float>::max();
if (!h1.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h1.CartesianPoint2d());
if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h1, h2));
if (!h2.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h2.CartesianPoint2d());
if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h2, h3));
if (!h3.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h3.CartesianPoint2d());
if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h3, h4));
if (!h4.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h4.CartesianPoint2d());
if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h4, h1));
return gfx::RectF(gfx::PointF(xmin, ymin),
gfx::SizeF(xmax - xmin, ymax - ymin));
}
gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
const gfx::QuadF& q,
bool* clipped) {
if (transform.IsIdentityOrTranslation()) {
gfx::QuadF mapped_quad(q);
mapped_quad += transform.To2dTranslation();
*clipped = false;
return mapped_quad;
}
HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, q.p1());
HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, q.p2());
HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, q.p3());
HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, q.p4());
*clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
h3.ShouldBeClipped() || h4.ShouldBeClipped();
// Result will be invalid if clipped == true. But, compute it anyway just in
// case, to emulate existing behavior.
return gfx::QuadF(h1.CartesianPoint2d(),
h2.CartesianPoint2d(),
h3.CartesianPoint2d(),
h4.CartesianPoint2d());
}
gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
if (h.w() > 0) {
*clipped = false;
return h.CartesianPoint2d();
}
// The cartesian coordinates will be invalid after dividing by w.
*clipped = true;
// Avoid dividing by w if w == 0.
if (!h.w())
return gfx::PointF();
// This return value will be invalid because clipped == true, but (1) users of
// this code should be ignoring the return value when clipped == true anyway,
// and (2) this behavior is more consistent with existing behavior of WebKit
// transforms if the user really does not ignore the return value.
return h.CartesianPoint2d();
}
gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
// Avoid dividing by w if w == 0.
if (!h.w())
return gfx::PointF();
// This return value will be invalid if clipped == true, but (1) users of
// this code should be ignoring the return value when clipped == true anyway,
// and (2) this behavior is more consistent with existing behavior of WebKit
// transforms if the user really does not ignore the return value.
return h.CartesianPoint2d();
}
gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
if (!h.w())
return gfx::Point3F();
return h.CartesianPoint3d();
}
gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
const gfx::RectF& scale_outer_rect,
const gfx::RectF& scale_inner_rect) {
gfx::RectF output_inner_rect = input_outer_rect;
float scale_rect_to_input_scale_x =
scale_outer_rect.width() / input_outer_rect.width();
float scale_rect_to_input_scale_y =
scale_outer_rect.height() / input_outer_rect.height();
gfx::Vector2dF top_left_diff =
scale_inner_rect.origin() - scale_outer_rect.origin();
gfx::Vector2dF bottom_right_diff =
scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
output_inner_rect.Inset(
gfx::InsetsF::TLBR(top_left_diff.y() / scale_rect_to_input_scale_y,
top_left_diff.x() / scale_rect_to_input_scale_x,
-bottom_right_diff.y() / scale_rect_to_input_scale_y,
-bottom_right_diff.x() / scale_rect_to_input_scale_x));
return output_inner_rect;
}
float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
const gfx::Vector2dF& v2) {
double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
// Clamp to compensate for rounding errors.
dot_product = std::clamp(dot_product, -1.0, 1.0);
return static_cast<float>(gfx::RadToDeg(std::acos(dot_product)));
}
gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
const gfx::Vector2dF& destination) {
float projected_length =
gfx::DotProduct(source, destination) / destination.LengthSquared();
return gfx::Vector2dF(projected_length * destination.x(),
projected_length * destination.y());
}
bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
if (!raw_value->is_list())
return false;
const base::Value::List& list = raw_value->GetList();
if (list.size() != 4)
return false;
for (const auto& val : list) {
if (!val.is_int()) {
return false;
}
}
int x = list[0].GetInt();
int y = list[1].GetInt();
int w = list[2].GetInt();
int h = list[3].GetInt();
*out_rect = gfx::Rect(x, y, w, h);
return true;
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Size& s,
base::trace_event::TracedValue* res) {
res->BeginDictionary(name);
res->SetDouble("width", s.width());
res->SetDouble("height", s.height());
res->EndDictionary();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::SizeF& s,
base::trace_event::TracedValue* res) {
res->BeginDictionary(name);
res->SetDouble("width", s.width());
res->SetDouble("height", s.height());
res->EndDictionary();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Rect& r,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(r.x());
res->AppendInteger(r.y());
res->AppendInteger(r.width());
res->AppendInteger(r.height());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Point& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(pt.x());
res->AppendInteger(pt.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::PointF& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(pt.x());
res->AppendDouble(pt.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Point3F& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(pt.x());
res->AppendDouble(pt.y());
res->AppendDouble(pt.z());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Vector2d& v,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(v.x());
res->AppendInteger(v.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Vector2dF& v,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(v.x());
res->AppendDouble(v.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::QuadF& q,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(q.p1().x());
res->AppendDouble(q.p1().y());
res->AppendDouble(q.p2().x());
res->AppendDouble(q.p2().y());
res->AppendDouble(q.p3().x());
res->AppendDouble(q.p3().y());
res->AppendDouble(q.p4().x());
res->AppendDouble(q.p4().y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::RectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.x());
res->AppendDouble(rect.y());
res->AppendDouble(rect.width());
res->AppendDouble(rect.height());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Transform& transform,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col)
res->AppendDouble(transform.rc(row, col));
}
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::BoxF& box,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(box.x());
res->AppendInteger(box.y());
res->AppendInteger(box.z());
res->AppendInteger(box.width());
res->AppendInteger(box.height());
res->AppendInteger(box.depth());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::RRectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.rect().x());
res->AppendDouble(rect.rect().y());
res->AppendDouble(rect.rect().width());
res->AppendDouble(rect.rect().height());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).y());
res->EndArray();
}
void MathUtil::AddCornerRadiiToTracedValue(
const char* name,
const gfx::RRectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::LinearGradient& gradient,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(gradient.angle());
res->AppendInteger(gradient.step_count());
for (size_t i = 0; i < gradient.step_count(); i++) {
res->AppendDouble(gradient.steps()[i].fraction);
res->AppendInteger(gradient.steps()[i].alpha);
}
res->EndArray();
}
double MathUtil::AsDoubleSafely(double value) {
return std::min(value, std::numeric_limits<double>::max());
}
float MathUtil::AsFloatSafely(float value) {
return std::min(value, std::numeric_limits<float>::max());
}
gfx::Vector3dF MathUtil::GetXAxis(const gfx::Transform& transform) {
if (transform.IsScaleOrTranslation()) {
return gfx::Vector3dF(transform.To2dScale().x(), 0, 0);
}
return gfx::Vector3dF(transform.rc(0, 0), transform.rc(1, 0),
transform.rc(2, 0));
}
gfx::Vector3dF MathUtil::GetYAxis(const gfx::Transform& transform) {
if (transform.IsScaleOrTranslation()) {
return gfx::Vector3dF(0, transform.To2dScale().y(), 0);
}
return gfx::Vector3dF(transform.rc(0, 1), transform.rc(1, 1),
transform.rc(2, 1));
}
ScopedSubnormalFloatDisabler::ScopedSubnormalFloatDisabler() {
#if defined(ARCH_CPU_X86_FAMILY)
// Turn on "subnormals are zero" and "flush to zero" CSR flags.
orig_state_ = _mm_getcsr();
_mm_setcsr(orig_state_ | 0x8040);
#endif
}
ScopedSubnormalFloatDisabler::~ScopedSubnormalFloatDisabler() {
#if defined(ARCH_CPU_X86_FAMILY)
_mm_setcsr(orig_state_);
#endif
}
bool MathUtil::IsFloatNearlyTheSame(float left, float right) {
return IsNearlyTheSame(left, right);
}
bool MathUtil::IsNearlyTheSameForTesting(const gfx::PointF& left,
const gfx::PointF& right) {
return IsNearlyTheSame(left, right);
}
bool MathUtil::IsNearlyTheSameForTesting(const gfx::Point3F& left,
const gfx::Point3F& right) {
return IsNearlyTheSame(left, right);
}
// Equivalent to SkMatrix::HasPerspective
bool MathUtil::SkM44HasPerspective(const SkM44& m) {
return (m.rc(3, 0) != 0 || m.rc(3, 1) != 0 || m.rc(3, 2) != 0 ||
m.rc(3, 3) != 1);
}
// Since some operations assume a 2d transformation, check to make sure that
// is the case by seeing that the z-axis is identity
bool MathUtil::SkM44Is2D(const SkM44& m) {
return (m.rc(0, 2) == 0 && m.rc(1, 2) == 0 && m.rc(2, 2) == 1 &&
m.rc(2, 0) == 0 && m.rc(2, 1) == 0 && m.rc(2, 3) == 0 &&
m.rc(3, 2) == 0);
}
// Equivalent to SkMatrix::PreservesAxisAlignment
// Checks if the transformation is a 90 degree rotation or scaling
// See SkMatrix::computeTypeMask
bool MathUtil::SkM44Preserves2DAxisAlignment(const SkM44& m) {
// Conservatively assume that perspective transforms would not preserve
// axis-alignment
if (!SkM44Is2D(m) || SkM44HasPerspective(m))
return false;
// Does the matrix have skew components
if (m.rc(0, 1) != 0 || m.rc(1, 0) != 0) {
// Rects only map to rects if both skews are non-zero and both scale
// components are zero (i.e. it's a +/-90-degree rotation)
return (m.rc(0, 0) == 0 && m.rc(1, 1) == 0 && m.rc(0, 1) != 0 &&
m.rc(1, 0) != 0);
}
// Since the matrix has no skewing, it maps to a rectangle so long as the
// scale components are non-zero
return (m.rc(0, 0) != 0 && m.rc(1, 1) != 0);
}
} // namespace cc