| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/base/math_util.h" |
| |
| #include <stdint.h> |
| |
| #include <cmath> |
| #include <limits> |
| |
| #include "testing/gmock/include/gmock/gmock.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "ui/gfx/geometry/quad_f.h" |
| #include "ui/gfx/geometry/rect.h" |
| #include "ui/gfx/geometry/rect_f.h" |
| #include "ui/gfx/geometry/test/geometry_util.h" |
| #include "ui/gfx/geometry/transform.h" |
| |
| namespace cc { |
| namespace { |
| |
| TEST(MathUtilTest, ProjectionOfPerpendicularPlane) { |
| // In this case, the m33() element of the transform becomes zero, which could |
| // cause a divide-by-zero when projecting points/quads. |
| |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.set_rc(2, 2, 0); |
| |
| gfx::RectF rect = gfx::RectF(0, 0, 1, 1); |
| gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect); |
| |
| EXPECT_EQ(0, projected_rect.x()); |
| EXPECT_EQ(0, projected_rect.y()); |
| EXPECT_TRUE(projected_rect.IsEmpty()); |
| } |
| |
| TEST(MathUtilTest, ProjectionOfAlmostPerpendicularPlane) { |
| // In this case, the m33() element of the transform becomes almost zero, which |
| // could cause a divide-by-zero when projecting points/quads. |
| |
| gfx::Transform transform; |
| // The transform is from an actual test page: |
| // [ +1.0000 +0.0000 -1.0000 +3144132.0000 |
| // +0.0000 +1.0000 +0.0000 +0.0000 |
| // +16331238407143424.0000 +0.0000 -0.0000 +51346917453137000267776.0000 |
| // +0.0000 +0.0000 +0.0000 +1.0000 ] |
| transform.MakeIdentity(); |
| transform.set_rc(0, 2, -1); |
| transform.set_rc(0, 3, 3144132.0); |
| transform.set_rc(2, 0, 16331238407143424.0); |
| transform.set_rc(2, 2, -1e-33); |
| transform.set_rc(2, 3, 51346917453137000267776.0); |
| |
| gfx::RectF rect = gfx::RectF(0, 0, 1, 1); |
| gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect); |
| |
| EXPECT_EQ(0, projected_rect.x()); |
| EXPECT_EQ(0, projected_rect.y()); |
| EXPECT_TRUE(projected_rect.IsEmpty()) << projected_rect.ToString(); |
| } |
| |
| TEST(MathUtilTest, EnclosingClippedRectHandlesInfinityY) { |
| HomogeneousCoordinate h1(100, 10, 0, 1); |
| HomogeneousCoordinate h2(10, 10, 0, 1); |
| HomogeneousCoordinate h3(-10, -1, 0, -1); |
| HomogeneousCoordinate h4(-100, -1, 0, -1); |
| |
| // The bounds of the enclosing clipped rect should be 100 to 10 for x |
| // and 10 to infinity for y. However, if there is a bug where the result |
| // is set so big as to destroy the precision of ymin, we can't deal well |
| // with the resulting rect. |
| gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); |
| |
| EXPECT_FALSE(result.IsEmpty()); |
| EXPECT_TRUE(result.Contains(50.0f, 50.0f)); |
| EXPECT_TRUE(result.Contains(10.1f, 10.1f)); |
| EXPECT_TRUE(result.Contains(50.0f, 50000.0f)); |
| EXPECT_FALSE(result.Contains(100.1f, 50.0f)); |
| EXPECT_FALSE(result.Contains(9.9f, 50.0f)); |
| EXPECT_FALSE(result.Contains(50.0f, 9.9f)); |
| } |
| |
| TEST(MathUtilTest, EnclosingClippedRectHandlesNegativeInfinityX) { |
| HomogeneousCoordinate h1(100, 10, 0, 1); |
| HomogeneousCoordinate h2(-110, -10, 0, -1); |
| HomogeneousCoordinate h3(-110, -100, 0, -1); |
| HomogeneousCoordinate h4(100, 100, 0, 1); |
| |
| // The bounds of the enclosing clipped rect should be 100 to -infinity for x |
| // and 10 to 100 for y. However, if there is a bug where the result |
| // is set so big as to destroy the precision of ymin, we can't deal well |
| // with the resulting rect. |
| gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); |
| |
| EXPECT_FALSE(result.IsEmpty()); |
| EXPECT_TRUE(result.Contains(50.0f, 50.0f)); |
| EXPECT_TRUE(result.Contains(10.1f, 10.1f)); |
| EXPECT_TRUE(result.Contains(0.0f, 99.9f)); |
| EXPECT_FALSE(result.Contains(100.1f, 50.0f)); |
| EXPECT_FALSE(result.Contains(50.0f, 100.1f)); |
| EXPECT_FALSE(result.Contains(50.0f, 9.9f)); |
| } |
| |
| TEST(MathUtilTest, EnclosingClippedRectHandlesInfinityXY) { |
| HomogeneousCoordinate h1(10, 10, 0, 1); |
| HomogeneousCoordinate h2(0, 0, 0, -1); |
| HomogeneousCoordinate h3(20, -10, 0, 1); |
| HomogeneousCoordinate h4(10, -10, 0, 1); |
| |
| // The bounds of the enclosing clipped rect should be 10 to infinity for x |
| // and -infinity to infinity for y. |
| // It would be quite easy for this result to not include anything useful. |
| gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); |
| |
| // Notes: (A) In the mapped shape, (B) In the enclosing rect, but not the |
| // mapped shape, (C) In the mapped shape, but clipped. |
| EXPECT_FALSE(result.IsEmpty()); |
| EXPECT_TRUE(result.Contains(10.0f, 10.0f)); // Note (A) |
| EXPECT_TRUE(result.Contains(10.11f, 10.1f)); // Note (A) |
| EXPECT_TRUE(result.Contains(10.1f, 10.11f)); // Note (B) |
| EXPECT_TRUE(result.Contains(1000.1f, 1000.2f)); // Note (B) |
| EXPECT_TRUE(result.Contains(20.0f, -10.0f)); // Note (A) |
| EXPECT_TRUE(result.Contains(20.1f, -10.0f)); // Note (A) |
| EXPECT_TRUE(result.Contains(20.0f, -10.1f)); // Note (B) |
| EXPECT_TRUE(result.Contains(10.0f, -10.0f)); // Note (A) |
| EXPECT_TRUE(result.Contains(10.0f, -10.1f)); // Note (B) |
| EXPECT_FALSE(result.Contains(0.0f, 0.0f)); // Note (C) |
| EXPECT_FALSE(result.Contains(0.0f, -9.9f)); // Note (C) |
| } |
| |
| TEST(MathUtilTest, EnclosingClippedRectUsesCorrectInitialBounds) { |
| HomogeneousCoordinate h1(-100, -100, 0, 1); |
| HomogeneousCoordinate h2(-10, -10, 0, 1); |
| HomogeneousCoordinate h3(10, 10, 0, -1); |
| HomogeneousCoordinate h4(100, 100, 0, -1); |
| |
| // The bounds of the enclosing clipped rect should be -100 to -10 for both x |
| // and y. However, if there is a bug where the initial xmin/xmax/ymin/ymax are |
| // initialized to numeric_limits<float>::min() (which is zero, not -flt_max) |
| // then the enclosing clipped rect will be computed incorrectly. |
| gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); |
| |
| // Due to floating point math in ComputeClippedPointForEdge this result |
| // is fairly imprecise. 0.15f was empirically determined. |
| EXPECT_RECTF_NEAR(gfx::RectF(-100, -100, 90, 90), result, 0.15f); |
| } |
| |
| TEST(MathUtilTest, EnclosingClippedRectHandlesSmallPositiveW) { |
| // When all homogeneous coordinates have w > 0, no clipping against the w = 0 |
| // plane is performed and the projected points are sent to gfx::QuadF's |
| // bounding box function. w can be made arbitrarily close to 0 on the positive |
| // side and cause precision problems later on unless it's handled properly. |
| |
| // Coordinates inspired by a real test page. One edge maps to approximately |
| // negative infinity, and the other is at x~109. |
| HomogeneousCoordinate h1(-154.0f, -109.0f, 0.0f, 6e-8f); |
| HomogeneousCoordinate h2(152.0f, 44.0f, 0.0f, 1.4f); |
| HomogeneousCoordinate h3(152.0f, 261.0f, 0.0f, 1.4f); |
| HomogeneousCoordinate h4(-154.0f, 108.0f, 0.0f, 6e-8f); |
| |
| // Confirm original behavior is problematic if we just divide by w. |
| gfx::QuadF naiveQuad = {{h1.x() / h1.w(), h1.y() / h1.w()}, |
| {h2.x() / h2.w(), h2.y() / h2.w()}, |
| {h3.x() / h3.w(), h3.y() / h3.w()}, |
| {h4.x() / h4.w(), h4.y() / h4.w()}}; |
| // The calculated min and max coordinates differ by ~2^31, well outside a |
| // floats ability to represent onscreen pixel coordinates and in this case, |
| // the projected bounds fail to represent that one edge is still on screen. |
| gfx::RectF naiveBounds = naiveQuad.BoundingBox(); |
| EXPECT_TRUE(naiveBounds.right() <= 0.0f); |
| |
| // The bounds of the enclosing clipped rect should be neg. infinity to ~109 |
| // for x, and neg. infinity to pos. infinity for y. |
| gfx::RectF goodBounds = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); |
| EXPECT_FALSE(goodBounds.IsEmpty()); |
| EXPECT_FLOAT_EQ(-HomogeneousCoordinate::kInfiniteCoordinate, goodBounds.y()); |
| EXPECT_FLOAT_EQ(HomogeneousCoordinate::kInfiniteCoordinate, |
| goodBounds.bottom()); |
| EXPECT_FLOAT_EQ(-HomogeneousCoordinate::kInfiniteCoordinate, goodBounds.x()); |
| // 0.01f was empirically determined. |
| EXPECT_NEAR(152.0f / 1.4f, goodBounds.right(), 0.01f); |
| } |
| |
| TEST(MathUtilTest, EnclosingRectOfVerticesUsesCorrectInitialBounds) { |
| gfx::PointF vertices[3]; |
| int num_vertices = 3; |
| |
| vertices[0] = gfx::PointF(-10, -100); |
| vertices[1] = gfx::PointF(-100, -10); |
| vertices[2] = gfx::PointF(-30, -30); |
| |
| // The bounds of the enclosing rect should be -100 to -10 for both x and y. |
| // However, if there is a bug where the initial xmin/xmax/ymin/ymax are |
| // initialized to numeric_limits<float>::min() (which is zero, not -flt_max) |
| // then the enclosing clipped rect will be computed incorrectly. |
| gfx::RectF result = |
| MathUtil::ComputeEnclosingRectOfVertices(vertices, num_vertices); |
| |
| EXPECT_RECTF_EQ(gfx::RectF(-100, -100, 90, 90), result); |
| } |
| |
| TEST(MathUtilTest, SmallestAngleBetweenVectors) { |
| gfx::Vector2dF x(1, 0); |
| gfx::Vector2dF y(0, 1); |
| gfx::Vector2dF test_vector(0.5, 0.5); |
| |
| // Orthogonal vectors are at an angle of 90 degress. |
| EXPECT_EQ(90, MathUtil::SmallestAngleBetweenVectors(x, y)); |
| |
| // A vector makes a zero angle with itself. |
| EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(x, x)); |
| EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(y, y)); |
| EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(test_vector, test_vector)); |
| |
| // Parallel but reversed vectors are at 180 degrees. |
| EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(x, -x)); |
| EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(y, -y)); |
| EXPECT_FLOAT_EQ( |
| 180, MathUtil::SmallestAngleBetweenVectors(test_vector, -test_vector)); |
| |
| // The test vector is at a known angle. |
| EXPECT_FLOAT_EQ( |
| 45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, x))); |
| EXPECT_FLOAT_EQ( |
| 45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, y))); |
| } |
| |
| TEST(MathUtilTest, VectorProjection) { |
| gfx::Vector2dF x(1, 0); |
| gfx::Vector2dF y(0, 1); |
| gfx::Vector2dF test_vector(0.3f, 0.7f); |
| |
| // Orthogonal vectors project to a zero vector. |
| EXPECT_VECTOR2DF_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(x, y)); |
| EXPECT_VECTOR2DF_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(y, x)); |
| |
| // Projecting a vector onto the orthonormal basis gives the corresponding |
| // component of the vector. |
| EXPECT_VECTOR2DF_EQ(gfx::Vector2dF(test_vector.x(), 0), |
| MathUtil::ProjectVector(test_vector, x)); |
| EXPECT_VECTOR2DF_EQ(gfx::Vector2dF(0, test_vector.y()), |
| MathUtil::ProjectVector(test_vector, y)); |
| |
| // Finally check than an arbitrary vector projected to another one gives a |
| // vector parallel to the second vector. |
| gfx::Vector2dF target_vector(0.5, 0.2f); |
| gfx::Vector2dF projected_vector = |
| MathUtil::ProjectVector(test_vector, target_vector); |
| EXPECT_EQ(projected_vector.x() / target_vector.x(), |
| projected_vector.y() / target_vector.y()); |
| } |
| |
| TEST(MathUtilTest, MapEnclosedRectWith2dAxisAlignedTransform) { |
| gfx::Rect input(1, 2, 3, 4); |
| gfx::Rect output; |
| gfx::Transform transform; |
| |
| // Identity. |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_EQ(input, output); |
| |
| // Integer translate. |
| transform.Translate(2.0, 3.0); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_EQ(gfx::Rect(3, 5, 3, 4), output); |
| |
| // Non-integer translate. |
| transform.Translate(0.5, 0.5); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_EQ(gfx::Rect(4, 6, 2, 3), output); |
| |
| // Scale. |
| transform = gfx::Transform(); |
| transform.Scale(2.0, 3.0); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_EQ(gfx::Rect(2, 6, 6, 12), output); |
| |
| // Rotate Z. |
| transform = gfx::Transform(); |
| transform.Translate(1.0, 2.0); |
| transform.RotateAboutZAxis(90.0); |
| transform.Translate(-1.0, -2.0); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_EQ(gfx::Rect(-3, 2, 4, 3), output); |
| |
| // Rotate X. |
| transform = gfx::Transform(); |
| transform.RotateAboutXAxis(90.0); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| transform = gfx::Transform(); |
| transform.RotateAboutXAxis(180.0); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_EQ(gfx::Rect(1, -6, 3, 4), output); |
| |
| // Rotate Y. |
| transform = gfx::Transform(); |
| transform.RotateAboutYAxis(90.0); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| transform = gfx::Transform(); |
| transform.RotateAboutYAxis(180.0); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_EQ(gfx::Rect(-4, 2, 3, 4), output); |
| |
| // Translate Z. |
| transform = gfx::Transform(); |
| transform.ApplyPerspectiveDepth(10.0); |
| transform.Translate3d(0.0, 0.0, 5.0); |
| output = |
| MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); |
| EXPECT_EQ(gfx::Rect(2, 4, 6, 8), output); |
| } |
| |
| TEST(MathUtilTest, MapEnclosingRectWithLargeTransforms) { |
| gfx::Rect input(1, 2, 100, 200); |
| gfx::Rect output; |
| |
| gfx::Transform large_x_scale = gfx::Transform::MakeScale(1e37, 1.0); |
| |
| gfx::Transform infinite_x_scale; |
| infinite_x_scale = large_x_scale * large_x_scale; |
| |
| gfx::Transform large_y_scale = gfx::Transform::MakeScale(1.0, 1e37); |
| |
| gfx::Transform infinite_y_scale; |
| infinite_y_scale = large_y_scale * large_y_scale; |
| |
| gfx::Transform rotation; |
| rotation.RotateAboutYAxis(170.0); |
| |
| // The following code should not crash due to NaNs. The result rects are |
| // empty because either the geometry was saturated or NaNs were set to 0. |
| output = MathUtil::MapEnclosingClippedRect(large_x_scale, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = MathUtil::MapEnclosingClippedRect(large_x_scale * rotation, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = MathUtil::MapEnclosingClippedRect(infinite_x_scale, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = |
| MathUtil::MapEnclosingClippedRect(infinite_x_scale * rotation, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = MathUtil::MapEnclosingClippedRect(large_y_scale, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = MathUtil::MapEnclosingClippedRect(large_y_scale * rotation, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = MathUtil::MapEnclosingClippedRect(infinite_y_scale, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = |
| MathUtil::MapEnclosingClippedRect(infinite_y_scale * rotation, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| } |
| |
| TEST(MathUtilTest, MapEnclosingRectIgnoringError) { |
| float scale = 2.00001; |
| gfx::Rect input(0, 0, 1000, 500); |
| gfx::Rect output; |
| |
| gfx::Transform transform = gfx::Transform::MakeScale(scale); |
| output = |
| MathUtil::MapEnclosingClippedRectIgnoringError(transform, input, 0.f); |
| EXPECT_EQ(gfx::Rect(0, 0, 2001, 1001), output); |
| |
| output = |
| MathUtil::MapEnclosingClippedRectIgnoringError(transform, input, 0.002f); |
| EXPECT_EQ(gfx::Rect(0, 0, 2001, 1001), output); |
| |
| output = |
| MathUtil::MapEnclosingClippedRectIgnoringError(transform, input, 0.02f); |
| EXPECT_EQ(gfx::Rect(0, 0, 2000, 1000), output); |
| } |
| |
| TEST(MathUtilTest, ProjectEnclosingRectWithLargeTransforms) { |
| gfx::Rect input(1, 2, 100, 200); |
| gfx::Rect output; |
| |
| gfx::Transform large_x_scale = gfx::Transform::MakeScale(1e37, 1.0); |
| |
| gfx::Transform infinite_x_scale; |
| infinite_x_scale = large_x_scale * large_x_scale; |
| |
| gfx::Transform large_y_scale = gfx::Transform::MakeScale(1.0, 1e37); |
| |
| gfx::Transform infinite_y_scale; |
| infinite_y_scale = large_y_scale * large_y_scale; |
| |
| gfx::Transform rotation; |
| rotation.RotateAboutYAxis(170.0); |
| |
| // The following code should not crash due to NaNs. The result rects are |
| // empty because either the geometry was saturated or NaNs were set to 0. |
| output = MathUtil::ProjectEnclosingClippedRect(large_x_scale, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = |
| MathUtil::ProjectEnclosingClippedRect(large_x_scale * rotation, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = MathUtil::ProjectEnclosingClippedRect(infinite_x_scale, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = |
| MathUtil::ProjectEnclosingClippedRect(infinite_x_scale * rotation, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = MathUtil::ProjectEnclosingClippedRect(large_y_scale, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = |
| MathUtil::ProjectEnclosingClippedRect(large_y_scale * rotation, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = MathUtil::ProjectEnclosingClippedRect(infinite_y_scale, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| |
| output = |
| MathUtil::ProjectEnclosingClippedRect(infinite_y_scale * rotation, input); |
| EXPECT_TRUE(output.IsEmpty()); |
| } |
| |
| TEST(MathUtilTest, RoundUp) { |
| static_assert(MathUtil::UncheckedRoundUp(45, 10) == 50); |
| for (int multiplier = 1; multiplier <= 10; ++multiplier) { |
| // Try attempts in descending order, so that we can |
| // determine the correct value before it's needed. |
| int correct; |
| for (int attempt = 5 * multiplier; attempt >= -5 * multiplier; --attempt) { |
| if ((attempt % multiplier) == 0) |
| correct = attempt; |
| EXPECT_EQ(correct, MathUtil::UncheckedRoundUp(attempt, multiplier)) |
| << "attempt=" << attempt << " multiplier=" << multiplier; |
| } |
| } |
| |
| for (unsigned multiplier = 1; multiplier <= 10; ++multiplier) { |
| // Try attempts in descending order, so that we can |
| // determine the correct value before it's needed. |
| unsigned correct; |
| for (unsigned attempt = 5 * multiplier; attempt > 0; --attempt) { |
| if ((attempt % multiplier) == 0) |
| correct = attempt; |
| EXPECT_EQ(correct, MathUtil::UncheckedRoundUp(attempt, multiplier)) |
| << "attempt=" << attempt << " multiplier=" << multiplier; |
| } |
| EXPECT_EQ(0u, MathUtil::UncheckedRoundUp(0u, multiplier)) |
| << "attempt=0 multiplier=" << multiplier; |
| } |
| } |
| |
| TEST(MathUtilTest, RoundUpOverflow) { |
| // Rounding up 123 by 50 is 150, which overflows int8_t, but fits in uint8_t. |
| EXPECT_FALSE(MathUtil::VerifyRoundup<int8_t>(123, 50)); |
| EXPECT_TRUE(MathUtil::VerifyRoundup<uint8_t>(123, 50)); |
| } |
| |
| TEST(MathUtilTest, RoundDown) { |
| static_assert(MathUtil::UncheckedRoundDown(45, 10) == 40); |
| for (int multiplier = 1; multiplier <= 10; ++multiplier) { |
| // Try attempts in ascending order, so that we can |
| // determine the correct value before it's needed. |
| int correct; |
| for (int attempt = -5 * multiplier; attempt <= 5 * multiplier; ++attempt) { |
| if ((attempt % multiplier) == 0) |
| correct = attempt; |
| EXPECT_EQ(correct, MathUtil::UncheckedRoundDown(attempt, multiplier)) |
| << "attempt=" << attempt << " multiplier=" << multiplier; |
| } |
| } |
| |
| for (unsigned multiplier = 1; multiplier <= 10; ++multiplier) { |
| // Try attempts in ascending order, so that we can |
| // determine the correct value before it's needed. |
| unsigned correct; |
| for (unsigned attempt = 0; attempt <= 5 * multiplier; ++attempt) { |
| if ((attempt % multiplier) == 0) |
| correct = attempt; |
| EXPECT_EQ(correct, MathUtil::UncheckedRoundDown(attempt, multiplier)) |
| << "attempt=" << attempt << " multiplier=" << multiplier; |
| } |
| } |
| } |
| |
| TEST(MathUtilTest, RoundDownUnderflow) { |
| // Rounding down -123 by 50 is -150, which underflows int8_t, but fits in |
| // int16_t. |
| EXPECT_FALSE(MathUtil::VerifyRoundDown<int8_t>(-123, 50)); |
| EXPECT_TRUE(MathUtil::VerifyRoundDown<int16_t>(-123, 50)); |
| } |
| |
| #define EXPECT_SIMILAR_VALUE(x, y) \ |
| EXPECT_TRUE(MathUtil::IsFloatNearlyTheSame(x, y)) |
| #define EXPECT_DISSIMILAR_VALUE(x, y) \ |
| EXPECT_FALSE(MathUtil::IsFloatNearlyTheSame(x, y)) |
| |
| // Arbitrary point that shouldn't be different from zero. |
| static const float zeroish = 1.0e-11f; |
| |
| TEST(MathUtilTest, Approximate) { |
| // Same should be similar. |
| EXPECT_SIMILAR_VALUE(1.0f, 1.0f); |
| |
| // Zero should not cause similarity issues. |
| EXPECT_SIMILAR_VALUE(0.0f, 0.0f); |
| |
| // Chosen sensitivity makes hardware sense, whether small or large. |
| EXPECT_SIMILAR_VALUE(0.0f, std::nextafter(0.0f, 1.0f)); |
| EXPECT_SIMILAR_VALUE(1000000.0f, std::nextafter(1000000.0f, 0.0f)); |
| |
| // Make sure that neither the side you approach, nor the order of |
| // parameters matter at the borderline case. |
| EXPECT_SIMILAR_VALUE(std::nextafter(0.0f, 1.0f), 0.0f); |
| EXPECT_SIMILAR_VALUE(std::nextafter(1000000.0f, 0.0f), 1000000.0f); |
| EXPECT_SIMILAR_VALUE(0.0f, std::nextafter(0.0f, -1.0f)); |
| EXPECT_SIMILAR_VALUE(1000000.0f, std::nextafter(1000000.0f, 1e9f)); |
| EXPECT_SIMILAR_VALUE(std::nextafter(0.0f, -1.0f), 0.0f); |
| EXPECT_SIMILAR_VALUE(std::nextafter(1000000.0f, 1e9f), 1000000.0f); |
| |
| // Double check our arbitrary constant. Mostly this is for the |
| // following Point tests. |
| EXPECT_SIMILAR_VALUE(0.0f, zeroish); |
| |
| // Arbitrary point that is different from one for Approximate tests. |
| EXPECT_SIMILAR_VALUE(1.0f, 1.000001f); |
| |
| // Arbitrary (large) difference close to 1. |
| EXPECT_SIMILAR_VALUE(10000000.0f, 10000001.0f); |
| |
| // Make sure one side being zero doesn't hide real differences. |
| EXPECT_DISSIMILAR_VALUE(0.0f, 1.0f); |
| EXPECT_DISSIMILAR_VALUE(1.0f, 0.0f); |
| |
| // Make sure visible differences don't disappear. |
| EXPECT_DISSIMILAR_VALUE(1.0f, 2.0f); |
| EXPECT_DISSIMILAR_VALUE(10000.0f, 10001.0f); |
| } |
| |
| #define EXPECT_SIMILAR_POINT_F(x, y) \ |
| EXPECT_TRUE(MathUtil::IsNearlyTheSameForTesting(gfx::PointF x, gfx::PointF y)) |
| #define EXPECT_DISSIMILAR_POINT_F(x, y) \ |
| EXPECT_FALSE( \ |
| MathUtil::IsNearlyTheSameForTesting(gfx::PointF x, gfx::PointF y)) |
| |
| TEST(MathUtilTest, ApproximatePointF) { |
| // Same is similar. |
| EXPECT_SIMILAR_POINT_F((0.0f, 0.0f), (0.0f, 0.0f)); |
| |
| // Not over sensitive on each axis. |
| EXPECT_SIMILAR_POINT_F((zeroish, 0.0f), (0.0f, 0.0f)); |
| EXPECT_SIMILAR_POINT_F((0.0f, zeroish), (0.0f, 0.0f)); |
| EXPECT_SIMILAR_POINT_F((0.0f, 0.0f), (zeroish, 0.0f)); |
| EXPECT_SIMILAR_POINT_F((0.0f, 0.0f), (0.0f, zeroish)); |
| |
| // Still sensitive to any axis. |
| EXPECT_DISSIMILAR_POINT_F((1.0f, 0.0f), (0.0f, 0.0f)); |
| EXPECT_DISSIMILAR_POINT_F((0.0f, 1.0f), (0.0f, 0.0f)); |
| EXPECT_DISSIMILAR_POINT_F((0.0f, 0.0f), (1.0f, 0.0f)); |
| EXPECT_DISSIMILAR_POINT_F((0.0f, 0.0f), (0.0f, 1.0f)); |
| |
| // Not crossed over, sensitive on each side of each axis. |
| EXPECT_SIMILAR_POINT_F((0.0f, 1.0f), (0.0f, 1.0f)); |
| EXPECT_SIMILAR_POINT_F((1.0f, 2.0f), (1.0f, 2.0f)); |
| EXPECT_DISSIMILAR_POINT_F((3.0f, 2.0f), (1.0f, 2.0f)); |
| EXPECT_DISSIMILAR_POINT_F((1.0f, 3.0f), (1.0f, 1.0f)); |
| EXPECT_DISSIMILAR_POINT_F((1.0f, 2.0f), (3.0f, 2.0f)); |
| EXPECT_DISSIMILAR_POINT_F((1.0f, 2.0f), (1.0f, 3.0f)); |
| } |
| |
| #define EXPECT_SIMILAR_POINT_3F(x, y) \ |
| EXPECT_TRUE( \ |
| MathUtil::IsNearlyTheSameForTesting(gfx::Point3F x, gfx::Point3F y)) |
| #define EXPECT_DISSIMILAR_POINT_3F(x, y) \ |
| EXPECT_FALSE( \ |
| MathUtil::IsNearlyTheSameForTesting(gfx::Point3F x, gfx::Point3F y)) |
| |
| TEST(MathUtilTest, ApproximatePoint3F) { |
| // Same same. |
| EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, 0.0f), (0.0f, 0.0f, 0.0f)); |
| EXPECT_SIMILAR_POINT_3F((zeroish, 0.0f, 0.0f), (0.0f, 0.0f, 0.0f)); |
| EXPECT_SIMILAR_POINT_3F((0.0f, zeroish, 0.0f), (0.0f, 0.0f, 0.0f)); |
| EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, zeroish), (0.0f, 0.0f, 0.0f)); |
| EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, 0.0f), (zeroish, 0.0f, 0.0f)); |
| EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, 0.0f), (0.0f, zeroish, 0.0f)); |
| EXPECT_SIMILAR_POINT_3F((0.0f, 0.0f, 0.0f), (0.0f, 0.0f, zeroish)); |
| |
| // Not crossed over, sensitive on each side of each axis. |
| EXPECT_SIMILAR_POINT_3F((1.0f, 2.0f, 3.0f), (1.0f, 2.0f, 3.0f)); |
| EXPECT_DISSIMILAR_POINT_3F((4.0f, 2.0f, 3.0f), (1.0f, 2.0f, 3.0f)); |
| EXPECT_DISSIMILAR_POINT_3F((1.0f, 4.0f, 3.0f), (1.0f, 1.0f, 3.0f)); |
| EXPECT_DISSIMILAR_POINT_3F((1.0f, 2.0f, 4.0f), (1.0f, 2.0f, 1.0f)); |
| EXPECT_DISSIMILAR_POINT_3F((1.0f, 2.0f, 3.0f), (4.0f, 2.0f, 3.0f)); |
| EXPECT_DISSIMILAR_POINT_3F((1.0f, 2.0f, 3.0f), (1.0f, 4.0f, 3.0f)); |
| EXPECT_DISSIMILAR_POINT_3F((1.0f, 2.0f, 3.0f), (1.0f, 2.0f, 4.0f)); |
| } |
| |
| // This takes a quad for which two points, (at x = -99) are behind and below |
| // the eyepoint and checks to make sure we build a quad that doesn't include |
| // anything from w<0 space. We used to build a degenerate quad. |
| TEST(MathUtilTest, MapClippedQuadDuplicateTriangle) { |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.ApplyPerspectiveDepth(50.0); |
| transform.RotateAboutYAxis(89.0); |
| // We are almost looking along the X-Y plane from (-50, almost 0) |
| |
| gfx::QuadF src_quad(gfx::PointF(0.0f, -50.0f), gfx::PointF(0.0f, -100.0f), |
| gfx::PointF(-99.0f, -300.0f), |
| gfx::PointF(-99.0f, -100.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| // If we include anything from w<0 space, it will produce positive y |
| // coordinates rather than negative ones. |
| for (int i = 0; i < num_vertices_in_clipped_quad; ++i) { |
| EXPECT_LE(clipped_quad[i].y(), 0); |
| } |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 4); |
| } |
| |
| // This takes a quad for which two points are identical and checks to make |
| // sure we build a triangle. |
| TEST(MathUtilTest, MapClippedQuadDuplicatePoints) { |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.RotateAboutYAxis(45.0); |
| |
| gfx::QuadF src_quad(gfx::PointF(-99.0f, -50.0f), gfx::PointF(-99.0f, -50.0f), |
| gfx::PointF(0.0f, 100.0f), gfx::PointF(0.0f, -100.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 3); |
| } |
| |
| // This takes a quad for which two points are identical and checks to make |
| // sure we build a triangle. The quirk here is that the two shared points are |
| // first and last, not sequential. |
| TEST(MathUtilTest, MapClippedQuadDuplicatePointsWrapped) { |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.RotateAboutYAxis(45.0); |
| |
| gfx::QuadF src_quad(gfx::PointF(-99.0f, -50.0f), gfx::PointF(0.0f, 100.0f), |
| gfx::PointF(0.0f, -100.0f), gfx::PointF(-99.0f, -50.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 3); |
| } |
| |
| // Here we map and clip a quad with only one point that disappears to infinity |
| // behind us. We don't want two vertices at infinity crossing in and out |
| // of w < 0 space. |
| TEST(MathUtilTest, MapClippedQuadDuplicateQuad) { |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.ApplyPerspectiveDepth(50.0); |
| transform.RotateAboutYAxis(89.0); |
| |
| gfx::QuadF src_quad(gfx::PointF(0.0f, -50.0f), gfx::PointF(400.0f, -50.0f), |
| gfx::PointF(0.0f, -100.0f), gfx::PointF(-99.0f, -300.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| // If we include anything from w<0 space, it will produce positive y |
| // coordinates rather than negative ones. |
| for (int i = 0; i < num_vertices_in_clipped_quad; ++i) { |
| EXPECT_LE(clipped_quad[i].y(), 0); |
| } |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 5); |
| } |
| |
| #define EXPECT_LT_LT(a, b, c) \ |
| do { \ |
| auto b_evaluated = b; \ |
| EXPECT_LT(a, b_evaluated); \ |
| EXPECT_LT(b_evaluated, c); \ |
| } while (0) |
| |
| #define EXPECT_LE_LT(a, b, c) \ |
| do { \ |
| auto b_evaluated = b; \ |
| EXPECT_LE(a, b_evaluated); \ |
| EXPECT_LT(b_evaluated, c); \ |
| } while (0) |
| |
| #define EXPECT_LT_LE(a, b, c) \ |
| do { \ |
| auto b_evaluated = b; \ |
| EXPECT_LT(a, b_evaluated); \ |
| EXPECT_LE(b_evaluated, c); \ |
| } while (0) |
| |
| #define EXPECT_LE_LE(a, b, c) \ |
| do { \ |
| auto b_evaluated = b; \ |
| EXPECT_LE(a, b_evaluated); \ |
| EXPECT_LE(b_evaluated, c); \ |
| } while (0) |
| |
| // Here we map and clip a quad with a point that disappears to infinity behind |
| // us while staying finite in one dimension (i.e., x goes to 0 as w goes to 0, |
| // and x' is constant along the edge). |
| TEST(MathUtilTest, MapClippedQuadInfiniteInSomeDimensions) { |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.ApplyPerspectiveDepth(50.0); |
| transform.RotateAboutXAxis(89.0); |
| |
| gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(0.0f, 100.0f), |
| gfx::PointF(100.0f, 100.0f), gfx::PointF(100.0f, 0.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 4); |
| |
| EXPECT_EQ(clipped_quad[0].x(), 0.0f); |
| EXPECT_EQ(clipped_quad[0].y(), 0.0f); |
| EXPECT_EQ(clipped_quad[0].z(), 0.0f); |
| |
| EXPECT_EQ(clipped_quad[1].x(), 0.0f); |
| EXPECT_LT_LT(17000.0f, clipped_quad[1].y(), 18000.0f); |
| EXPECT_LT_LE(998000.0f, clipped_quad[1].z(), 1000000.0f); |
| |
| EXPECT_LT_LE(998000.0f, clipped_quad[2].x(), 1000000.0f); |
| EXPECT_LT_LT(8500.0f, clipped_quad[2].y(), 9000.0f); |
| EXPECT_LT_LE(499000.0f, clipped_quad[2].z(), 500000.0f); |
| |
| EXPECT_EQ(clipped_quad[3].x(), 100.0f); |
| EXPECT_EQ(clipped_quad[3].y(), 0.0f); |
| EXPECT_EQ(clipped_quad[3].z(), 0.0f); |
| } |
| |
| // Here we map and clip a quad with a point that disappears to infinity behind |
| // us while staying finite in one dimension (i.e., x goes to 0 as w goes to 0, |
| // and x' is constant along the edge). This differs from the previous test |
| // in that the edge with constant x' is at 100 rather than 0. |
| TEST(MathUtilTest, MapClippedQuadInfiniteInSomeDimensionsNonZero) { |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.Translate(100.0, 0.0); |
| transform.ApplyPerspectiveDepth(50.0); |
| transform.RotateAboutXAxis(89.0); |
| transform.Translate(-100.0, 0.0); |
| |
| gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(0.0f, 100.0f), |
| gfx::PointF(100.0f, 100.0f), gfx::PointF(100.0f, 0.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 4); |
| |
| EXPECT_EQ(clipped_quad[0].x(), 0.0f); |
| EXPECT_EQ(clipped_quad[0].y(), 0.0f); |
| EXPECT_EQ(clipped_quad[0].z(), 0.0f); |
| |
| EXPECT_LE_LT(-1000000.0f, clipped_quad[1].x(), -998000.0f); |
| EXPECT_LT_LT(8500.0f, clipped_quad[1].y(), 9000.0f); |
| EXPECT_LT_LE(499000.0f, clipped_quad[1].z(), 500000.0f); |
| |
| EXPECT_EQ(clipped_quad[2].x(), 100.0f); |
| EXPECT_LT_LT(17000.0f, clipped_quad[2].y(), 18000.0f); |
| EXPECT_LT_LE(996000.0f, clipped_quad[2].z(), 1000000.0f); |
| |
| EXPECT_EQ(clipped_quad[3].x(), 100.0f); |
| EXPECT_EQ(clipped_quad[3].y(), 0.0f); |
| EXPECT_EQ(clipped_quad[3].z(), 0.0f); |
| } |
| |
| // Test that planes that are parallel to the z axis (other than those going |
| // through the origin!) just fall through to clipping by points. |
| TEST(MathUtilTest, MapClippedQuadClampInvisiblePlane) { |
| gfx::Transform transform; |
| |
| gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(0.0f, 1000.0f), |
| gfx::PointF(1000.0f, 1000.0f), |
| gfx::PointF(1000.0f, 0.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| transform.MakeIdentity(); |
| transform.Translate(100.0, 0.0); |
| transform.RotateAboutYAxis(90.0); |
| transform.Scale(10000.0f, 10000.0); |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 4); |
| |
| EXPECT_EQ(clipped_quad[0].x(), 100.0f); |
| EXPECT_EQ(clipped_quad[0].y(), 0.0f); |
| EXPECT_EQ(clipped_quad[0].z(), 0.0f); |
| |
| EXPECT_EQ(clipped_quad[1].x(), 100.0f); |
| EXPECT_EQ(clipped_quad[1].y(), 1000000.0f); |
| EXPECT_EQ(clipped_quad[1].z(), 0.0f); |
| |
| EXPECT_EQ(clipped_quad[2].x(), 100.0f); |
| EXPECT_EQ(clipped_quad[2].y(), 1000000.0f); |
| EXPECT_EQ(clipped_quad[2].z(), -1000000.0f); |
| |
| EXPECT_EQ(clipped_quad[3].x(), 100.0f); |
| EXPECT_EQ(clipped_quad[3].y(), 0.0f); |
| EXPECT_EQ(clipped_quad[3].z(), -1000000.0f); |
| |
| transform.MakeIdentity(); |
| transform.Translate(0.0, -50.0); |
| transform.RotateAboutXAxis(-90.0); |
| transform.Scale(10000.0f, 10000.0); |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 4); |
| |
| EXPECT_EQ(clipped_quad[0].x(), 0.0f); |
| EXPECT_EQ(clipped_quad[0].y(), -50.0f); |
| EXPECT_EQ(clipped_quad[0].z(), 0.0f); |
| |
| EXPECT_EQ(clipped_quad[1].x(), 0.0f); |
| EXPECT_EQ(clipped_quad[1].y(), -50.0f); |
| EXPECT_EQ(clipped_quad[1].z(), -1000000.0f); |
| |
| EXPECT_EQ(clipped_quad[2].x(), 1000000.0f); |
| EXPECT_EQ(clipped_quad[2].y(), -50.0f); |
| EXPECT_EQ(clipped_quad[2].z(), -1000000.0f); |
| |
| EXPECT_EQ(clipped_quad[3].x(), 1000000.0f); |
| EXPECT_EQ(clipped_quad[3].y(), -50.0f); |
| EXPECT_EQ(clipped_quad[3].z(), 0.0f); |
| |
| transform.MakeIdentity(); |
| transform.Translate(10.0, 10.0); |
| transform.Rotate(30.0); |
| transform.RotateAboutXAxis(90.0); |
| transform.Scale(10000.0, 10000.0); |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 4); |
| |
| EXPECT_EQ(clipped_quad[0].x(), 10.0f); |
| EXPECT_EQ(clipped_quad[0].y(), 10.0f); |
| EXPECT_EQ(clipped_quad[0].z(), 0.0f); |
| |
| EXPECT_EQ(clipped_quad[1].x(), 10.0f); |
| EXPECT_EQ(clipped_quad[1].y(), 10.0f); |
| EXPECT_EQ(clipped_quad[1].z(), 1000000.0f); |
| |
| EXPECT_EQ(clipped_quad[2].x(), 1000000.0f); |
| EXPECT_EQ(clipped_quad[2].y(), 1000000.0f); |
| EXPECT_EQ(clipped_quad[2].z(), 1000000.0f); |
| |
| EXPECT_EQ(clipped_quad[3].x(), 1000000.0f); |
| EXPECT_EQ(clipped_quad[3].y(), 1000000.0f); |
| EXPECT_EQ(clipped_quad[3].z(), 0.0f); |
| } |
| |
| // Test that when the plane passes too far from the origin, we bring it closer |
| // before clamping coordinates. |
| TEST(MathUtilTest, MapClippedQuadClampWholePlane) { |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.Scale3d(1000.0, 1000.0, 1000.0); |
| transform.Translate3d(0.0, 0.0, 10000.0); |
| transform.RotateAboutXAxis(-45.0); |
| |
| gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(0.0f, 10000.0f), |
| gfx::PointF(100.0f, 10000.0f), |
| gfx::PointF(100.0f, -10000.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 4); |
| |
| EXPECT_EQ(clipped_quad[0].x(), 0.0f); |
| EXPECT_EQ(clipped_quad[0].y(), 0.0f); |
| EXPECT_LE_LE(750000.0f, clipped_quad[0].z(), 750001.0f); |
| |
| EXPECT_EQ(clipped_quad[1].x(), 0.0f); |
| EXPECT_LE_LE(999999.0f, clipped_quad[1].y(), 1000000.0f); |
| EXPECT_LE_LE(-250001.0f, clipped_quad[1].z(), -249999.0f); |
| |
| EXPECT_LE_LE(14100.0f, clipped_quad[2].x(), 14200.0f); |
| EXPECT_LE_LE(999999.0f, clipped_quad[2].y(), 1000000.0f); |
| EXPECT_LE_LE(-250001.0f, clipped_quad[2].z(), -249999.0f); |
| |
| EXPECT_LE_LE(3500.0f, clipped_quad[3].x(), 3600.0f); |
| EXPECT_LE_LE(-250001.0f, clipped_quad[3].y(), -249999.0f); |
| EXPECT_EQ(clipped_quad[3].z(), 1000000.0f); |
| } |
| |
| // Like the previous test, but with a plane with large negative z. |
| TEST(MathUtilTest, MapClippedQuadClampWholePlaneBelow) { |
| gfx::Transform transform; |
| transform.MakeIdentity(); |
| transform.Scale3d(1000.0, 1000.0, 1000.0); |
| transform.Translate3d(0.0, 0.0, -5000.0); |
| transform.RotateAboutYAxis(30.0); |
| |
| gfx::QuadF src_quad(gfx::PointF(0.0f, 0.0f), gfx::PointF(-10000.0f, 100.0f), |
| gfx::PointF(10000.0f, 100.0f), |
| gfx::PointF(10000.0f, 0.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| EXPECT_EQ(num_vertices_in_clipped_quad, 4); |
| |
| EXPECT_EQ(clipped_quad[0].x(), 0.0f); |
| EXPECT_EQ(clipped_quad[0].y(), 0.0f); |
| EXPECT_LE_LE(-750001.0f, clipped_quad[0].z(), -750000.0f); |
| |
| EXPECT_EQ(clipped_quad[1].x(), -1000000.0f); |
| EXPECT_LE_LE(11540.0f, clipped_quad[1].y(), 11550.0f); |
| EXPECT_LE_LE(-172660.0f, clipped_quad[1].z(), -172640.0f); |
| |
| EXPECT_LE_LE(433000.0f, clipped_quad[2].x(), 433025.0f); |
| EXPECT_LT_LT(4999.9f, clipped_quad[2].y(), 5000.1f); |
| EXPECT_EQ(clipped_quad[2].z(), -1000000.0f); |
| |
| EXPECT_LE_LE(433000.0f, clipped_quad[3].x(), 433025.0f); |
| EXPECT_EQ(clipped_quad[3].y(), 0.0f); |
| EXPECT_EQ(clipped_quad[3].z(), -1000000.0f); |
| } |
| |
| TEST(MathUtilTest, MapClippedQuadInfiniteMatrix) { |
| // clang-format off |
| auto transform = gfx::Transform::RowMajor( |
| 1.0f, 0.0f, 0.0f, 0.0f, |
| 0.0f, -100.0f, 0.0f, std::numeric_limits<float>::infinity(), |
| 0.0f, 0.0f, 1.0f, 0.0f, |
| 0.0f, 0.0f, 0.0f, 1.0f); |
| // clang-format on |
| |
| gfx::QuadF src_quad(gfx::PointF(0.0f, 1.0f), gfx::PointF(1.0f, 1.0f), |
| gfx::PointF(1.0f, 2.0f), gfx::PointF(0.0f, 2.0f)); |
| |
| gfx::Point3F clipped_quad[8]; |
| int num_vertices_in_clipped_quad; |
| |
| MathUtil::MapClippedQuad3d(transform, src_quad, clipped_quad, |
| &num_vertices_in_clipped_quad); |
| |
| // Nothing to test other than we don't fail DCHECK()s. |
| } |
| |
| } // namespace |
| } // namespace cc |