blob: f754eb9a2171d4e4090fb41a13fa5499d439397e [file] [log] [blame]
// Copyright 2010 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/tiling_data.h"
#include <algorithm>
#include "base/check_op.h"
#include "base/notreached.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/vector2d.h"
namespace cc {
namespace {
// IndexRect which is at left top corner of the positive quadrant.
const IndexRect kNonPositiveQuadrantIndexRect(-1, -1, -1, -1);
}
static int ComputeNumTiles(int max_texture_size,
int total_size,
int border_texels) {
if (max_texture_size - 2 * border_texels <= 0)
return total_size > 0 && max_texture_size >= total_size ? 1 : 0;
int num_tiles = std::max(1,
1 + (total_size - 1 - 2 * border_texels) /
(max_texture_size - 2 * border_texels));
return total_size > 0 ? num_tiles : 0;
}
TilingData::TilingData() : border_texels_(0) {
RecomputeNumTiles();
}
TilingData::TilingData(const gfx::Size& max_texture_size,
const gfx::Rect& tiling_rect,
int border_texels)
: max_texture_size_(max_texture_size), border_texels_(border_texels) {
SetTilingRect(tiling_rect);
}
void TilingData::SetTilingRect(const gfx::Rect& tiling_rect) {
DCHECK_GE(tiling_rect.x(), 0);
DCHECK_GE(tiling_rect.y(), 0);
tiling_rect_ = tiling_rect;
RecomputeNumTiles();
}
void TilingData::SetMaxTextureSize(const gfx::Size& max_texture_size) {
max_texture_size_ = max_texture_size;
RecomputeNumTiles();
}
int TilingData::TileXIndexFromSrcCoord(int src_position) const {
if (num_tiles_x_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0);
int x = (src_position - tiling_rect_.x() - border_texels_) /
(max_texture_size_.width() - 2 * border_texels_);
return std::clamp(x, 0, num_tiles_x_ - 1);
}
int TilingData::TileYIndexFromSrcCoord(int src_position) const {
if (num_tiles_y_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0);
int y = (src_position - tiling_rect_.y() - border_texels_) /
(max_texture_size_.height() - 2 * border_texels_);
return std::clamp(y, 0, num_tiles_y_ - 1);
}
int TilingData::FirstBorderTileXIndexFromSrcCoord(int src_position) const {
if (num_tiles_x_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0);
int inner_tile_size = max_texture_size_.width() - 2 * border_texels_;
int x =
(src_position - tiling_rect_.x() - 2 * border_texels_) / inner_tile_size;
return std::clamp(x, 0, num_tiles_x_ - 1);
}
int TilingData::FirstBorderTileYIndexFromSrcCoord(int src_position) const {
if (num_tiles_y_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0);
int inner_tile_size = max_texture_size_.height() - 2 * border_texels_;
int y =
(src_position - tiling_rect_.y() - 2 * border_texels_) / inner_tile_size;
return std::clamp(y, 0, num_tiles_y_ - 1);
}
int TilingData::LastBorderTileXIndexFromSrcCoord(int src_position) const {
if (num_tiles_x_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0);
int inner_tile_size = max_texture_size_.width() - 2 * border_texels_;
int x = (src_position - tiling_rect_.x()) / inner_tile_size;
return std::clamp(x, 0, num_tiles_x_ - 1);
}
int TilingData::LastBorderTileYIndexFromSrcCoord(int src_position) const {
if (num_tiles_y_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0);
int inner_tile_size = max_texture_size_.height() - 2 * border_texels_;
int y = (src_position - tiling_rect_.y()) / inner_tile_size;
return std::clamp(y, 0, num_tiles_y_ - 1);
}
IndexRect TilingData::TileAroundIndexRect(const gfx::Rect& center_rect) const {
int around_left = 0;
// Determine around left, such that it is between -1 and num_tiles_x.
if (center_rect.x() < tiling_rect_.x() || center_rect.IsEmpty()) {
around_left = -1;
} else if (center_rect.x() >= tiling_rect_.right()) {
around_left = num_tiles_x();
} else {
around_left = TileXIndexFromSrcCoord(center_rect.x());
}
// Determine around top, such that it is between -1 and num_tiles_y.
int around_top = 0;
if (center_rect.y() < tiling_rect_.y() || center_rect.IsEmpty()) {
around_top = -1;
} else if (center_rect.y() >= tiling_rect_.bottom()) {
around_top = num_tiles_y();
} else {
around_top = TileYIndexFromSrcCoord(center_rect.y());
}
// Determine around right, such that it is between -1 and num_tiles_x.
int around_right = 0;
int right_src_coord = center_rect.right() - 1;
if (right_src_coord < tiling_rect_.x() || center_rect.IsEmpty()) {
around_right = -1;
} else if (right_src_coord >= tiling_rect_.right()) {
around_right = num_tiles_x();
} else {
around_right = TileXIndexFromSrcCoord(right_src_coord);
}
// Determine around bottom, such that it is between -1 and num_tiles_y.
int around_bottom = 0;
int bottom_src_coord = center_rect.bottom() - 1;
if (bottom_src_coord < tiling_rect_.y() || center_rect.IsEmpty()) {
around_bottom = -1;
} else if (bottom_src_coord >= tiling_rect_.bottom()) {
around_bottom = num_tiles_y();
} else {
around_bottom = TileYIndexFromSrcCoord(bottom_src_coord);
}
return IndexRect(around_left, around_right, around_top, around_bottom);
}
gfx::Rect TilingData::ExpandRectIgnoringBordersToTileBounds(
const gfx::Rect& rect) const {
if (rect.IsEmpty() || has_empty_bounds()) {
return gfx::Rect();
}
if (rect.x() > tiling_rect_.right() || rect.y() > tiling_rect_.bottom()) {
return gfx::Rect();
}
int index_x = TileXIndexFromSrcCoord(rect.x());
int index_y = TileYIndexFromSrcCoord(rect.y());
int index_right = TileXIndexFromSrcCoord(rect.right() - 1);
int index_bottom = TileYIndexFromSrcCoord(rect.bottom() - 1);
gfx::Rect rect_top_left(TileBounds(index_x, index_y));
gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom));
return gfx::UnionRects(rect_top_left, rect_bottom_right);
}
gfx::Rect TilingData::ExpandRectToTileBounds(const gfx::Rect& rect) const {
if (rect.IsEmpty() || has_empty_bounds()) {
return gfx::Rect();
}
if (rect.x() > tiling_rect_.right() || rect.y() > tiling_rect_.bottom()) {
return gfx::Rect();
}
int index_x = FirstBorderTileXIndexFromSrcCoord(rect.x());
int index_y = FirstBorderTileYIndexFromSrcCoord(rect.y());
int index_right = LastBorderTileXIndexFromSrcCoord(rect.right() - 1);
int index_bottom = LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1);
gfx::Rect rect_top_left(TileBounds(index_x, index_y));
gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom));
return gfx::UnionRects(rect_top_left, rect_bottom_right);
}
gfx::Rect TilingData::TileBounds(int i, int j) const {
AssertTile(i, j);
int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_;
int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_;
int lo_x = max_texture_size_x * i;
if (i != 0)
lo_x += border_texels_;
int lo_y = max_texture_size_y * j;
if (j != 0)
lo_y += border_texels_;
int hi_x = max_texture_size_x * (i + 1) + border_texels_;
if (i + 1 == num_tiles_x_)
hi_x += border_texels_;
int hi_y = max_texture_size_y * (j + 1) + border_texels_;
if (j + 1 == num_tiles_y_)
hi_y += border_texels_;
hi_x = std::min(hi_x, tiling_rect_.width());
hi_y = std::min(hi_y, tiling_rect_.height());
int x = lo_x;
int y = lo_y;
int width = hi_x - lo_x;
int height = hi_y - lo_y;
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
DCHECK_GE(width, 0);
DCHECK_GE(height, 0);
DCHECK_LE(x, tiling_rect_.width());
DCHECK_LE(y, tiling_rect_.height());
return gfx::Rect(x + tiling_rect_.x(), y + tiling_rect_.y(), width, height);
}
gfx::Rect TilingData::TileBoundsWithBorder(int i, int j) const {
AssertTile(i, j);
int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_;
int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_;
int lo_x = max_texture_size_x * i;
int lo_y = max_texture_size_y * j;
int hi_x = lo_x + max_texture_size_x + 2 * border_texels_;
int hi_y = lo_y + max_texture_size_y + 2 * border_texels_;
hi_x = std::min(hi_x, tiling_rect_.width());
hi_y = std::min(hi_y, tiling_rect_.height());
int x = lo_x;
int y = lo_y;
int width = hi_x - lo_x;
int height = hi_y - lo_y;
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
DCHECK_GE(width, 0);
DCHECK_GE(height, 0);
DCHECK_LE(x, tiling_rect_.width());
DCHECK_LE(y, tiling_rect_.height());
return gfx::Rect(x + tiling_rect_.x(), y + tiling_rect_.y(), width, height);
}
int TilingData::TilePositionX(int x_index) const {
DCHECK_GE(x_index, 0);
DCHECK_LT(x_index, num_tiles_x_);
int pos = (max_texture_size_.width() - 2 * border_texels_) * x_index;
if (x_index != 0)
pos += border_texels_;
return pos + tiling_rect_.x();
}
int TilingData::TilePositionY(int y_index) const {
DCHECK_GE(y_index, 0);
DCHECK_LT(y_index, num_tiles_y_);
int pos = (max_texture_size_.height() - 2 * border_texels_) * y_index;
if (y_index != 0)
pos += border_texels_;
return pos + tiling_rect_.y();
}
int TilingData::TileSizeX(int x_index) const {
DCHECK_GE(x_index, 0);
DCHECK_LT(x_index, num_tiles_x_);
if (!x_index && num_tiles_x_ == 1) {
return tiling_rect_.width();
}
if (!x_index && num_tiles_x_ > 1) {
return max_texture_size_.width() - border_texels_;
}
if (x_index < num_tiles_x_ - 1) {
return max_texture_size_.width() - 2 * border_texels_;
}
if (x_index == num_tiles_x_ - 1) {
return tiling_rect_.right() - TilePositionX(x_index);
}
NOTREACHED();
return 0;
}
int TilingData::TileSizeY(int y_index) const {
DCHECK_GE(y_index, 0);
DCHECK_LT(y_index, num_tiles_y_);
if (!y_index && num_tiles_y_ == 1) {
return tiling_rect_.height();
}
if (!y_index && num_tiles_y_ > 1) {
return max_texture_size_.height() - border_texels_;
}
if (y_index < num_tiles_y_ - 1) {
return max_texture_size_.height() - 2 * border_texels_;
}
if (y_index == num_tiles_y_ - 1) {
return tiling_rect_.bottom() - TilePositionY(y_index);
}
NOTREACHED();
return 0;
}
gfx::RectF TilingData::TexelExtent(int i, int j) const {
gfx::RectF result(TileBoundsWithBorder(i, j));
result.Inset(0.5f);
return result;
}
gfx::Vector2d TilingData::TextureOffset(int x_index, int y_index) const {
int left = (!x_index || num_tiles_x_ == 1) ? 0 : border_texels_;
int top = (!y_index || num_tiles_y_ == 1) ? 0 : border_texels_;
return gfx::Vector2d(left, top);
}
void TilingData::RecomputeNumTiles() {
num_tiles_x_ = ComputeNumTiles(max_texture_size_.width(),
tiling_rect_.width(), border_texels_);
num_tiles_y_ = ComputeNumTiles(max_texture_size_.height(),
tiling_rect_.height(), border_texels_);
}
TilingData::BaseIterator::BaseIterator() : index_x_(-1), index_y_(-1) {
}
TilingData::Iterator::Iterator() : index_rect_(kNonPositiveQuadrantIndexRect) {
done();
}
TilingData::Iterator::Iterator(const TilingData* tiling_data,
const gfx::Rect& consider_rect,
bool include_borders)
: index_rect_(kNonPositiveQuadrantIndexRect) {
if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) {
done();
return;
}
gfx::Rect rect(consider_rect);
rect.Intersect(tiling_data->tiling_rect());
if (rect.IsEmpty()) {
done();
return;
}
gfx::Rect top_left_tile;
if (include_borders) {
index_x_ = tiling_data->FirstBorderTileXIndexFromSrcCoord(rect.x());
index_y_ = tiling_data->FirstBorderTileYIndexFromSrcCoord(rect.y());
index_rect_ = IndexRect(
index_x_,
tiling_data->LastBorderTileXIndexFromSrcCoord(rect.right() - 1),
index_y_,
tiling_data->LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1));
DCHECK(index_rect_.is_valid());
top_left_tile = tiling_data->TileBoundsWithBorder(index_x_, index_y_);
} else {
index_x_ = tiling_data->TileXIndexFromSrcCoord(rect.x());
index_y_ = tiling_data->TileYIndexFromSrcCoord(rect.y());
index_rect_ = IndexRect(
index_x_, tiling_data->TileXIndexFromSrcCoord(rect.right() - 1),
index_y_, tiling_data->TileYIndexFromSrcCoord(rect.bottom() - 1));
DCHECK(index_rect_.is_valid());
top_left_tile = tiling_data->TileBounds(index_x_, index_y_);
}
// Index functions always return valid indices, so explicitly check
// for non-intersecting rects.
if (!top_left_tile.Intersects(rect))
done();
}
TilingData::Iterator& TilingData::Iterator::operator++() {
if (!*this)
return *this;
index_x_++;
if (index_x_ > index_rect_.right()) {
index_x_ = index_rect_.left();
index_y_++;
if (index_y_ > index_rect_.bottom())
done();
}
return *this;
}
TilingData::BaseDifferenceIterator::BaseDifferenceIterator()
: consider_index_rect_(kNonPositiveQuadrantIndexRect),
ignore_index_rect_(kNonPositiveQuadrantIndexRect) {
done();
}
TilingData::BaseDifferenceIterator::BaseDifferenceIterator(
const TilingData* tiling_data,
const gfx::Rect& consider_rect,
const gfx::Rect& ignore_rect)
: consider_index_rect_(kNonPositiveQuadrantIndexRect),
ignore_index_rect_(kNonPositiveQuadrantIndexRect) {
if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) {
done();
return;
}
gfx::Rect consider(consider_rect);
consider.Intersect(tiling_data->tiling_rect());
if (consider.IsEmpty()) {
done();
return;
}
consider_index_rect_ =
IndexRect(tiling_data->TileXIndexFromSrcCoord(consider.x()),
tiling_data->TileXIndexFromSrcCoord(consider.right() - 1),
tiling_data->TileYIndexFromSrcCoord(consider.y()),
tiling_data->TileYIndexFromSrcCoord(consider.bottom() - 1));
DCHECK(consider_index_rect_.is_valid());
gfx::Rect ignore(ignore_rect);
ignore.Intersect(tiling_data->tiling_rect());
if (!ignore.IsEmpty()) {
ignore_index_rect_ =
IndexRect(tiling_data->TileXIndexFromSrcCoord(ignore.x()),
tiling_data->TileXIndexFromSrcCoord(ignore.right() - 1),
tiling_data->TileYIndexFromSrcCoord(ignore.y()),
tiling_data->TileYIndexFromSrcCoord(ignore.bottom() - 1));
DCHECK(ignore_index_rect_.is_valid());
// Clamp ignore indices to consider indices.
ignore_index_rect_.ClampTo(consider_index_rect_);
// If ignore rect is invalid, reset.
if (!ignore_index_rect_.is_valid())
ignore_index_rect_ = kNonPositiveQuadrantIndexRect;
if (ignore_index_rect_ == consider_index_rect_) {
consider_index_rect_ = kNonPositiveQuadrantIndexRect;
done();
return;
}
}
}
bool TilingData::BaseDifferenceIterator::HasConsiderRect() const {
// Consider indices are either all valid or all equal to -1.
DCHECK(consider_index_rect_.is_in_positive_quadrant() ||
consider_index_rect_ == kNonPositiveQuadrantIndexRect);
return consider_index_rect_.left() != -1;
}
TilingData::DifferenceIterator::DifferenceIterator() = default;
TilingData::DifferenceIterator::DifferenceIterator(
const TilingData* tiling_data,
const gfx::Rect& consider_rect,
const gfx::Rect& ignore_rect)
: BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) {
if (!HasConsiderRect()) {
done();
return;
}
index_x_ = consider_index_rect_.left();
index_y_ = consider_index_rect_.top();
if (ignore_index_rect_.Contains(index_x_, index_y_))
++(*this);
}
TilingData::DifferenceIterator& TilingData::DifferenceIterator::operator++() {
if (!*this)
return *this;
index_x_++;
if (ignore_index_rect_.Contains(index_x_, index_y_))
index_x_ = ignore_index_rect_.right() + 1;
if (index_x_ > consider_index_rect_.right()) {
index_x_ = consider_index_rect_.left();
index_y_++;
if (ignore_index_rect_.Contains(index_x_, index_y_)) {
index_x_ = ignore_index_rect_.right() + 1;
// If the ignore rect spans the whole consider rect horizontally, then
// ignore_right + 1 will be out of bounds.
if (ignore_index_rect_.Contains(index_x_, index_y_) ||
index_x_ > consider_index_rect_.right()) {
index_y_ = ignore_index_rect_.bottom() + 1;
index_x_ = consider_index_rect_.left();
}
}
if (index_y_ > consider_index_rect_.bottom())
done();
}
return *this;
}
TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator() {
done();
}
TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator(
const TilingData* tiling_data,
const gfx::Rect& consider_rect,
const gfx::Rect& ignore_rect,
const gfx::Rect& center_rect)
: BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) {
if (!HasConsiderRect()) {
done();
return;
}
IndexRect around_index_rect = tiling_data->TileAroundIndexRect(center_rect);
DCHECK(around_index_rect.is_valid());
spiral_iterator_ = SpiralIterator(around_index_rect, consider_index_rect_,
ignore_index_rect_);
if (!spiral_iterator_) {
done();
return;
}
index_x_ = spiral_iterator_.index_x();
index_y_ = spiral_iterator_.index_y();
}
TilingData::SpiralDifferenceIterator& TilingData::SpiralDifferenceIterator::
operator++() {
++spiral_iterator_;
if (!spiral_iterator_) {
done();
return *this;
}
index_x_ = spiral_iterator_.index_x();
index_y_ = spiral_iterator_.index_y();
return *this;
}
TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator() {
done();
}
TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator(
const TilingData* tiling_data,
const gfx::Rect& consider_rect,
const gfx::Rect& ignore_rect,
const gfx::Rect& center_rect)
: BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) {
if (!HasConsiderRect()) {
done();
return;
}
IndexRect around_index_rect = tiling_data->TileAroundIndexRect(center_rect);
DCHECK(around_index_rect.is_valid());
reverse_spiral_iterator_ = ReverseSpiralIterator(
around_index_rect, consider_index_rect_, ignore_index_rect_);
if (!reverse_spiral_iterator_) {
done();
return;
}
index_x_ = reverse_spiral_iterator_.index_x();
index_y_ = reverse_spiral_iterator_.index_y();
}
TilingData::ReverseSpiralDifferenceIterator&
TilingData::ReverseSpiralDifferenceIterator::
operator++() {
++reverse_spiral_iterator_;
if (!reverse_spiral_iterator_) {
done();
return *this;
}
index_x_ = reverse_spiral_iterator_.index_x();
index_y_ = reverse_spiral_iterator_.index_y();
return *this;
}
} // namespace cc