| // Copyright 2010 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/base/tiling_data.h" |
| |
| #include <algorithm> |
| |
| #include "base/check_op.h" |
| #include "base/notreached.h" |
| #include "ui/gfx/geometry/rect.h" |
| #include "ui/gfx/geometry/rect_f.h" |
| #include "ui/gfx/geometry/vector2d.h" |
| |
| namespace cc { |
| |
| namespace { |
| // IndexRect which is at left top corner of the positive quadrant. |
| const IndexRect kNonPositiveQuadrantIndexRect(-1, -1, -1, -1); |
| } |
| |
| static int ComputeNumTiles(int max_texture_size, |
| int total_size, |
| int border_texels) { |
| if (max_texture_size - 2 * border_texels <= 0) |
| return total_size > 0 && max_texture_size >= total_size ? 1 : 0; |
| |
| int num_tiles = std::max(1, |
| 1 + (total_size - 1 - 2 * border_texels) / |
| (max_texture_size - 2 * border_texels)); |
| return total_size > 0 ? num_tiles : 0; |
| } |
| |
| TilingData::TilingData() : border_texels_(0) { |
| RecomputeNumTiles(); |
| } |
| |
| TilingData::TilingData(const gfx::Size& max_texture_size, |
| const gfx::Rect& tiling_rect, |
| int border_texels) |
| : max_texture_size_(max_texture_size), border_texels_(border_texels) { |
| SetTilingRect(tiling_rect); |
| } |
| |
| void TilingData::SetTilingRect(const gfx::Rect& tiling_rect) { |
| DCHECK_GE(tiling_rect.x(), 0); |
| DCHECK_GE(tiling_rect.y(), 0); |
| tiling_rect_ = tiling_rect; |
| RecomputeNumTiles(); |
| } |
| |
| void TilingData::SetMaxTextureSize(const gfx::Size& max_texture_size) { |
| max_texture_size_ = max_texture_size; |
| RecomputeNumTiles(); |
| } |
| |
| int TilingData::TileXIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_x_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); |
| int x = (src_position - tiling_rect_.x() - border_texels_) / |
| (max_texture_size_.width() - 2 * border_texels_); |
| return std::clamp(x, 0, num_tiles_x_ - 1); |
| } |
| |
| int TilingData::TileYIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_y_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); |
| int y = (src_position - tiling_rect_.y() - border_texels_) / |
| (max_texture_size_.height() - 2 * border_texels_); |
| return std::clamp(y, 0, num_tiles_y_ - 1); |
| } |
| |
| int TilingData::FirstBorderTileXIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_x_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); |
| int inner_tile_size = max_texture_size_.width() - 2 * border_texels_; |
| int x = |
| (src_position - tiling_rect_.x() - 2 * border_texels_) / inner_tile_size; |
| return std::clamp(x, 0, num_tiles_x_ - 1); |
| } |
| |
| int TilingData::FirstBorderTileYIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_y_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); |
| int inner_tile_size = max_texture_size_.height() - 2 * border_texels_; |
| int y = |
| (src_position - tiling_rect_.y() - 2 * border_texels_) / inner_tile_size; |
| return std::clamp(y, 0, num_tiles_y_ - 1); |
| } |
| |
| int TilingData::LastBorderTileXIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_x_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); |
| int inner_tile_size = max_texture_size_.width() - 2 * border_texels_; |
| int x = (src_position - tiling_rect_.x()) / inner_tile_size; |
| return std::clamp(x, 0, num_tiles_x_ - 1); |
| } |
| |
| int TilingData::LastBorderTileYIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_y_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); |
| int inner_tile_size = max_texture_size_.height() - 2 * border_texels_; |
| int y = (src_position - tiling_rect_.y()) / inner_tile_size; |
| return std::clamp(y, 0, num_tiles_y_ - 1); |
| } |
| |
| IndexRect TilingData::TileAroundIndexRect(const gfx::Rect& center_rect) const { |
| int around_left = 0; |
| // Determine around left, such that it is between -1 and num_tiles_x. |
| if (center_rect.x() < tiling_rect_.x() || center_rect.IsEmpty()) { |
| around_left = -1; |
| } else if (center_rect.x() >= tiling_rect_.right()) { |
| around_left = num_tiles_x(); |
| } else { |
| around_left = TileXIndexFromSrcCoord(center_rect.x()); |
| } |
| |
| // Determine around top, such that it is between -1 and num_tiles_y. |
| int around_top = 0; |
| if (center_rect.y() < tiling_rect_.y() || center_rect.IsEmpty()) { |
| around_top = -1; |
| } else if (center_rect.y() >= tiling_rect_.bottom()) { |
| around_top = num_tiles_y(); |
| } else { |
| around_top = TileYIndexFromSrcCoord(center_rect.y()); |
| } |
| |
| // Determine around right, such that it is between -1 and num_tiles_x. |
| int around_right = 0; |
| int right_src_coord = center_rect.right() - 1; |
| if (right_src_coord < tiling_rect_.x() || center_rect.IsEmpty()) { |
| around_right = -1; |
| } else if (right_src_coord >= tiling_rect_.right()) { |
| around_right = num_tiles_x(); |
| } else { |
| around_right = TileXIndexFromSrcCoord(right_src_coord); |
| } |
| |
| // Determine around bottom, such that it is between -1 and num_tiles_y. |
| int around_bottom = 0; |
| int bottom_src_coord = center_rect.bottom() - 1; |
| if (bottom_src_coord < tiling_rect_.y() || center_rect.IsEmpty()) { |
| around_bottom = -1; |
| } else if (bottom_src_coord >= tiling_rect_.bottom()) { |
| around_bottom = num_tiles_y(); |
| } else { |
| around_bottom = TileYIndexFromSrcCoord(bottom_src_coord); |
| } |
| |
| return IndexRect(around_left, around_right, around_top, around_bottom); |
| } |
| |
| gfx::Rect TilingData::ExpandRectIgnoringBordersToTileBounds( |
| const gfx::Rect& rect) const { |
| if (rect.IsEmpty() || has_empty_bounds()) { |
| return gfx::Rect(); |
| } |
| if (rect.x() > tiling_rect_.right() || rect.y() > tiling_rect_.bottom()) { |
| return gfx::Rect(); |
| } |
| int index_x = TileXIndexFromSrcCoord(rect.x()); |
| int index_y = TileYIndexFromSrcCoord(rect.y()); |
| int index_right = TileXIndexFromSrcCoord(rect.right() - 1); |
| int index_bottom = TileYIndexFromSrcCoord(rect.bottom() - 1); |
| |
| gfx::Rect rect_top_left(TileBounds(index_x, index_y)); |
| gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom)); |
| |
| return gfx::UnionRects(rect_top_left, rect_bottom_right); |
| } |
| |
| gfx::Rect TilingData::ExpandRectToTileBounds(const gfx::Rect& rect) const { |
| if (rect.IsEmpty() || has_empty_bounds()) { |
| return gfx::Rect(); |
| } |
| if (rect.x() > tiling_rect_.right() || rect.y() > tiling_rect_.bottom()) { |
| return gfx::Rect(); |
| } |
| int index_x = FirstBorderTileXIndexFromSrcCoord(rect.x()); |
| int index_y = FirstBorderTileYIndexFromSrcCoord(rect.y()); |
| int index_right = LastBorderTileXIndexFromSrcCoord(rect.right() - 1); |
| int index_bottom = LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1); |
| |
| gfx::Rect rect_top_left(TileBounds(index_x, index_y)); |
| gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom)); |
| |
| return gfx::UnionRects(rect_top_left, rect_bottom_right); |
| } |
| |
| gfx::Rect TilingData::TileBounds(int i, int j) const { |
| AssertTile(i, j); |
| int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_; |
| int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_; |
| |
| int lo_x = max_texture_size_x * i; |
| if (i != 0) |
| lo_x += border_texels_; |
| |
| int lo_y = max_texture_size_y * j; |
| if (j != 0) |
| lo_y += border_texels_; |
| |
| int hi_x = max_texture_size_x * (i + 1) + border_texels_; |
| if (i + 1 == num_tiles_x_) |
| hi_x += border_texels_; |
| |
| int hi_y = max_texture_size_y * (j + 1) + border_texels_; |
| if (j + 1 == num_tiles_y_) |
| hi_y += border_texels_; |
| |
| hi_x = std::min(hi_x, tiling_rect_.width()); |
| hi_y = std::min(hi_y, tiling_rect_.height()); |
| |
| int x = lo_x; |
| int y = lo_y; |
| int width = hi_x - lo_x; |
| int height = hi_y - lo_y; |
| DCHECK_GE(x, 0); |
| DCHECK_GE(y, 0); |
| DCHECK_GE(width, 0); |
| DCHECK_GE(height, 0); |
| DCHECK_LE(x, tiling_rect_.width()); |
| DCHECK_LE(y, tiling_rect_.height()); |
| return gfx::Rect(x + tiling_rect_.x(), y + tiling_rect_.y(), width, height); |
| } |
| |
| gfx::Rect TilingData::TileBoundsWithBorder(int i, int j) const { |
| AssertTile(i, j); |
| int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_; |
| int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_; |
| |
| int lo_x = max_texture_size_x * i; |
| int lo_y = max_texture_size_y * j; |
| |
| int hi_x = lo_x + max_texture_size_x + 2 * border_texels_; |
| int hi_y = lo_y + max_texture_size_y + 2 * border_texels_; |
| |
| hi_x = std::min(hi_x, tiling_rect_.width()); |
| hi_y = std::min(hi_y, tiling_rect_.height()); |
| |
| int x = lo_x; |
| int y = lo_y; |
| int width = hi_x - lo_x; |
| int height = hi_y - lo_y; |
| DCHECK_GE(x, 0); |
| DCHECK_GE(y, 0); |
| DCHECK_GE(width, 0); |
| DCHECK_GE(height, 0); |
| DCHECK_LE(x, tiling_rect_.width()); |
| DCHECK_LE(y, tiling_rect_.height()); |
| return gfx::Rect(x + tiling_rect_.x(), y + tiling_rect_.y(), width, height); |
| } |
| |
| int TilingData::TilePositionX(int x_index) const { |
| DCHECK_GE(x_index, 0); |
| DCHECK_LT(x_index, num_tiles_x_); |
| |
| int pos = (max_texture_size_.width() - 2 * border_texels_) * x_index; |
| if (x_index != 0) |
| pos += border_texels_; |
| |
| return pos + tiling_rect_.x(); |
| } |
| |
| int TilingData::TilePositionY(int y_index) const { |
| DCHECK_GE(y_index, 0); |
| DCHECK_LT(y_index, num_tiles_y_); |
| |
| int pos = (max_texture_size_.height() - 2 * border_texels_) * y_index; |
| if (y_index != 0) |
| pos += border_texels_; |
| |
| return pos + tiling_rect_.y(); |
| } |
| |
| int TilingData::TileSizeX(int x_index) const { |
| DCHECK_GE(x_index, 0); |
| DCHECK_LT(x_index, num_tiles_x_); |
| |
| if (!x_index && num_tiles_x_ == 1) { |
| return tiling_rect_.width(); |
| } |
| if (!x_index && num_tiles_x_ > 1) { |
| return max_texture_size_.width() - border_texels_; |
| } |
| if (x_index < num_tiles_x_ - 1) { |
| return max_texture_size_.width() - 2 * border_texels_; |
| } |
| if (x_index == num_tiles_x_ - 1) { |
| return tiling_rect_.right() - TilePositionX(x_index); |
| } |
| |
| NOTREACHED(); |
| return 0; |
| } |
| |
| int TilingData::TileSizeY(int y_index) const { |
| DCHECK_GE(y_index, 0); |
| DCHECK_LT(y_index, num_tiles_y_); |
| |
| if (!y_index && num_tiles_y_ == 1) { |
| return tiling_rect_.height(); |
| } |
| if (!y_index && num_tiles_y_ > 1) { |
| return max_texture_size_.height() - border_texels_; |
| } |
| if (y_index < num_tiles_y_ - 1) { |
| return max_texture_size_.height() - 2 * border_texels_; |
| } |
| if (y_index == num_tiles_y_ - 1) { |
| return tiling_rect_.bottom() - TilePositionY(y_index); |
| } |
| |
| NOTREACHED(); |
| return 0; |
| } |
| |
| gfx::RectF TilingData::TexelExtent(int i, int j) const { |
| gfx::RectF result(TileBoundsWithBorder(i, j)); |
| result.Inset(0.5f); |
| return result; |
| } |
| |
| gfx::Vector2d TilingData::TextureOffset(int x_index, int y_index) const { |
| int left = (!x_index || num_tiles_x_ == 1) ? 0 : border_texels_; |
| int top = (!y_index || num_tiles_y_ == 1) ? 0 : border_texels_; |
| |
| return gfx::Vector2d(left, top); |
| } |
| |
| void TilingData::RecomputeNumTiles() { |
| num_tiles_x_ = ComputeNumTiles(max_texture_size_.width(), |
| tiling_rect_.width(), border_texels_); |
| num_tiles_y_ = ComputeNumTiles(max_texture_size_.height(), |
| tiling_rect_.height(), border_texels_); |
| } |
| |
| TilingData::BaseIterator::BaseIterator() : index_x_(-1), index_y_(-1) { |
| } |
| |
| TilingData::Iterator::Iterator() : index_rect_(kNonPositiveQuadrantIndexRect) { |
| done(); |
| } |
| |
| TilingData::Iterator::Iterator(const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| bool include_borders) |
| : index_rect_(kNonPositiveQuadrantIndexRect) { |
| if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) { |
| done(); |
| return; |
| } |
| |
| gfx::Rect rect(consider_rect); |
| rect.Intersect(tiling_data->tiling_rect()); |
| if (rect.IsEmpty()) { |
| done(); |
| return; |
| } |
| |
| gfx::Rect top_left_tile; |
| if (include_borders) { |
| index_x_ = tiling_data->FirstBorderTileXIndexFromSrcCoord(rect.x()); |
| index_y_ = tiling_data->FirstBorderTileYIndexFromSrcCoord(rect.y()); |
| index_rect_ = IndexRect( |
| index_x_, |
| tiling_data->LastBorderTileXIndexFromSrcCoord(rect.right() - 1), |
| index_y_, |
| tiling_data->LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1)); |
| DCHECK(index_rect_.is_valid()); |
| top_left_tile = tiling_data->TileBoundsWithBorder(index_x_, index_y_); |
| } else { |
| index_x_ = tiling_data->TileXIndexFromSrcCoord(rect.x()); |
| index_y_ = tiling_data->TileYIndexFromSrcCoord(rect.y()); |
| index_rect_ = IndexRect( |
| index_x_, tiling_data->TileXIndexFromSrcCoord(rect.right() - 1), |
| index_y_, tiling_data->TileYIndexFromSrcCoord(rect.bottom() - 1)); |
| DCHECK(index_rect_.is_valid()); |
| top_left_tile = tiling_data->TileBounds(index_x_, index_y_); |
| } |
| |
| // Index functions always return valid indices, so explicitly check |
| // for non-intersecting rects. |
| if (!top_left_tile.Intersects(rect)) |
| done(); |
| } |
| |
| TilingData::Iterator& TilingData::Iterator::operator++() { |
| if (!*this) |
| return *this; |
| |
| index_x_++; |
| if (index_x_ > index_rect_.right()) { |
| index_x_ = index_rect_.left(); |
| index_y_++; |
| if (index_y_ > index_rect_.bottom()) |
| done(); |
| } |
| |
| return *this; |
| } |
| |
| TilingData::BaseDifferenceIterator::BaseDifferenceIterator() |
| : consider_index_rect_(kNonPositiveQuadrantIndexRect), |
| ignore_index_rect_(kNonPositiveQuadrantIndexRect) { |
| done(); |
| } |
| |
| TilingData::BaseDifferenceIterator::BaseDifferenceIterator( |
| const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| const gfx::Rect& ignore_rect) |
| : consider_index_rect_(kNonPositiveQuadrantIndexRect), |
| ignore_index_rect_(kNonPositiveQuadrantIndexRect) { |
| if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) { |
| done(); |
| return; |
| } |
| |
| gfx::Rect consider(consider_rect); |
| consider.Intersect(tiling_data->tiling_rect()); |
| |
| if (consider.IsEmpty()) { |
| done(); |
| return; |
| } |
| |
| consider_index_rect_ = |
| IndexRect(tiling_data->TileXIndexFromSrcCoord(consider.x()), |
| tiling_data->TileXIndexFromSrcCoord(consider.right() - 1), |
| tiling_data->TileYIndexFromSrcCoord(consider.y()), |
| tiling_data->TileYIndexFromSrcCoord(consider.bottom() - 1)); |
| DCHECK(consider_index_rect_.is_valid()); |
| |
| gfx::Rect ignore(ignore_rect); |
| ignore.Intersect(tiling_data->tiling_rect()); |
| |
| if (!ignore.IsEmpty()) { |
| ignore_index_rect_ = |
| IndexRect(tiling_data->TileXIndexFromSrcCoord(ignore.x()), |
| tiling_data->TileXIndexFromSrcCoord(ignore.right() - 1), |
| tiling_data->TileYIndexFromSrcCoord(ignore.y()), |
| tiling_data->TileYIndexFromSrcCoord(ignore.bottom() - 1)); |
| DCHECK(ignore_index_rect_.is_valid()); |
| |
| // Clamp ignore indices to consider indices. |
| ignore_index_rect_.ClampTo(consider_index_rect_); |
| |
| // If ignore rect is invalid, reset. |
| if (!ignore_index_rect_.is_valid()) |
| ignore_index_rect_ = kNonPositiveQuadrantIndexRect; |
| |
| if (ignore_index_rect_ == consider_index_rect_) { |
| consider_index_rect_ = kNonPositiveQuadrantIndexRect; |
| done(); |
| return; |
| } |
| } |
| } |
| |
| bool TilingData::BaseDifferenceIterator::HasConsiderRect() const { |
| // Consider indices are either all valid or all equal to -1. |
| DCHECK(consider_index_rect_.is_in_positive_quadrant() || |
| consider_index_rect_ == kNonPositiveQuadrantIndexRect); |
| return consider_index_rect_.left() != -1; |
| } |
| |
| TilingData::DifferenceIterator::DifferenceIterator() = default; |
| |
| TilingData::DifferenceIterator::DifferenceIterator( |
| const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| const gfx::Rect& ignore_rect) |
| : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) { |
| if (!HasConsiderRect()) { |
| done(); |
| return; |
| } |
| |
| index_x_ = consider_index_rect_.left(); |
| index_y_ = consider_index_rect_.top(); |
| |
| if (ignore_index_rect_.Contains(index_x_, index_y_)) |
| ++(*this); |
| } |
| |
| TilingData::DifferenceIterator& TilingData::DifferenceIterator::operator++() { |
| if (!*this) |
| return *this; |
| |
| index_x_++; |
| if (ignore_index_rect_.Contains(index_x_, index_y_)) |
| index_x_ = ignore_index_rect_.right() + 1; |
| |
| if (index_x_ > consider_index_rect_.right()) { |
| index_x_ = consider_index_rect_.left(); |
| index_y_++; |
| |
| if (ignore_index_rect_.Contains(index_x_, index_y_)) { |
| index_x_ = ignore_index_rect_.right() + 1; |
| // If the ignore rect spans the whole consider rect horizontally, then |
| // ignore_right + 1 will be out of bounds. |
| if (ignore_index_rect_.Contains(index_x_, index_y_) || |
| index_x_ > consider_index_rect_.right()) { |
| index_y_ = ignore_index_rect_.bottom() + 1; |
| index_x_ = consider_index_rect_.left(); |
| } |
| } |
| |
| if (index_y_ > consider_index_rect_.bottom()) |
| done(); |
| } |
| |
| return *this; |
| } |
| |
| TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator() { |
| done(); |
| } |
| |
| TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator( |
| const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| const gfx::Rect& ignore_rect, |
| const gfx::Rect& center_rect) |
| : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) { |
| if (!HasConsiderRect()) { |
| done(); |
| return; |
| } |
| |
| IndexRect around_index_rect = tiling_data->TileAroundIndexRect(center_rect); |
| DCHECK(around_index_rect.is_valid()); |
| |
| spiral_iterator_ = SpiralIterator(around_index_rect, consider_index_rect_, |
| ignore_index_rect_); |
| |
| if (!spiral_iterator_) { |
| done(); |
| return; |
| } |
| |
| index_x_ = spiral_iterator_.index_x(); |
| index_y_ = spiral_iterator_.index_y(); |
| } |
| |
| TilingData::SpiralDifferenceIterator& TilingData::SpiralDifferenceIterator:: |
| operator++() { |
| ++spiral_iterator_; |
| |
| if (!spiral_iterator_) { |
| done(); |
| return *this; |
| } |
| |
| index_x_ = spiral_iterator_.index_x(); |
| index_y_ = spiral_iterator_.index_y(); |
| |
| return *this; |
| } |
| |
| TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator() { |
| done(); |
| } |
| |
| TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator( |
| const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| const gfx::Rect& ignore_rect, |
| const gfx::Rect& center_rect) |
| : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) { |
| if (!HasConsiderRect()) { |
| done(); |
| return; |
| } |
| |
| IndexRect around_index_rect = tiling_data->TileAroundIndexRect(center_rect); |
| DCHECK(around_index_rect.is_valid()); |
| |
| reverse_spiral_iterator_ = ReverseSpiralIterator( |
| around_index_rect, consider_index_rect_, ignore_index_rect_); |
| |
| if (!reverse_spiral_iterator_) { |
| done(); |
| return; |
| } |
| |
| index_x_ = reverse_spiral_iterator_.index_x(); |
| index_y_ = reverse_spiral_iterator_.index_y(); |
| } |
| |
| TilingData::ReverseSpiralDifferenceIterator& |
| TilingData::ReverseSpiralDifferenceIterator:: |
| operator++() { |
| ++reverse_spiral_iterator_; |
| |
| if (!reverse_spiral_iterator_) { |
| done(); |
| return *this; |
| } |
| |
| index_x_ = reverse_spiral_iterator_.index_x(); |
| index_y_ = reverse_spiral_iterator_.index_y(); |
| |
| return *this; |
| } |
| |
| } // namespace cc |