blob: 43a610df84c184155aaf8247f04ae2fcbcca8a96 [file] [log] [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/disassembler_win32.h"
#include <algorithm>
#include "base/functional/bind.h"
#include "base/logging.h"
#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
#if COURGETTE_HISTOGRAM_TARGETS
#include <iostream>
#endif
namespace courgette {
DisassemblerWin32::DisassemblerWin32(const uint8_t* start, size_t length)
: Disassembler(start, length) {}
RVA DisassemblerWin32::FileOffsetToRVA(FileOffset file_offset) const {
for (int i = 0; i < number_of_sections_; ++i) {
const Section* section = &sections_[i];
if (file_offset >= section->file_offset_of_raw_data) {
FileOffset offset_in_section =
file_offset - section->file_offset_of_raw_data;
if (offset_in_section < section->size_of_raw_data)
return static_cast<RVA>(section->virtual_address + offset_in_section);
}
}
NOTREACHED();
return kNoRVA;
}
FileOffset DisassemblerWin32::RVAToFileOffset(RVA rva) const {
const Section* section = RVAToSection(rva);
if (section != nullptr) {
FileOffset offset_in_section = rva - section->virtual_address;
// Need this extra check, since an |rva| may be valid for a section, but is
// non-existent in an image (e.g. uninit data).
if (offset_in_section >= section->size_of_raw_data)
return kNoFileOffset;
return static_cast<FileOffset>(section->file_offset_of_raw_data +
offset_in_section);
}
// Small RVA values point into the file header in the loaded image.
// RVA 0 is the module load address which Windows uses as the module handle.
// RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
// DOS header.
if (rva == 0 || rva == 2)
return static_cast<FileOffset>(rva);
NOTREACHED();
return kNoFileOffset;
}
// ParseHeader attempts to match up the buffer with the Windows data
// structures that exist within a Windows 'Portable Executable' format file.
// Returns 'true' if the buffer matches, and 'false' if the data looks
// suspicious. Rather than try to 'map' the buffer to the numerous windows
// structures, we extract the information we need into the courgette::PEInfo
// structure.
//
bool DisassemblerWin32::ParseHeader() {
if (!IsRangeInBounds(kOffsetOfFileAddressOfNewExeHeader, 4))
return Bad("Too small");
// Have 'MZ' magic for a DOS header?
if (start()[0] != 'M' || start()[1] != 'Z')
return Bad("Not MZ");
// offset from DOS header to PE header is stored in DOS header.
FileOffset pe_header_offset = static_cast<FileOffset>(
ReadU32(start(), kOffsetOfFileAddressOfNewExeHeader));
if (pe_header_offset % 8 != 0)
return Bad("Misaligned PE header");
if (pe_header_offset < kOffsetOfFileAddressOfNewExeHeader + 4)
return Bad("PE header pathological overlap");
if (!IsRangeInBounds(pe_header_offset, kMinPeHeaderSize))
return Bad("PE header past end of file");
const uint8_t* const pe_header = FileOffsetToPointer(pe_header_offset);
// The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
// See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
//
// The first field of the IMAGE_NT_HEADERS is the signature.
if (!(pe_header[0] == 'P' && pe_header[1] == 'E' && pe_header[2] == 0 &&
pe_header[3] == 0)) {
return Bad("No PE signature");
}
// The second field of the IMAGE_NT_HEADERS is the COFF header.
// The COFF header is also called an IMAGE_FILE_HEADER
// http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
FileOffset coff_header_offset = pe_header_offset + 4;
if (!IsRangeInBounds(coff_header_offset, kSizeOfCoffHeader))
return Bad("COFF header past end of file");
const uint8_t* const coff_header = start() + coff_header_offset;
machine_type_ = ReadU16(coff_header, 0);
number_of_sections_ = ReadU16(coff_header, 2);
size_of_optional_header_ = ReadU16(coff_header, 16);
// Check we can read the magic.
if (size_of_optional_header_ < 2)
return Bad("Optional header no magic");
// Check that we can read the rest of the the fixed fields. Data directories
// directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
if (size_of_optional_header_ < RelativeOffsetOfDataDirectories())
return Bad("Optional header too short");
// The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
FileOffset optional_header_offset = pe_header_offset + kMinPeHeaderSize;
if (!IsRangeInBounds(optional_header_offset, size_of_optional_header_))
return Bad("Optional header past end of file");
optional_header_ = start() + optional_header_offset;
uint16_t magic = ReadU16(optional_header_, 0);
switch (kind()) {
case EXE_WIN_32_X86:
if (magic != kImageNtOptionalHdr32Magic)
return Bad("64 bit executables are not supported by this disassembler");
break;
case EXE_WIN_32_X64:
if (magic != kImageNtOptionalHdr64Magic)
return Bad("32 bit executables are not supported by this disassembler");
break;
default:
return Bad("Unrecognized magic");
}
// The optional header is either an IMAGE_OPTIONAL_HEADER32 or
// IMAGE_OPTIONAL_HEADER64
// http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
//
// Copy the fields we care about.
size_of_code_ = ReadU32(optional_header_, 4);
size_of_initialized_data_ = ReadU32(optional_header_, 8);
size_of_uninitialized_data_ = ReadU32(optional_header_, 12);
base_of_code_ = ReadU32(optional_header_, 20);
switch (kind()) {
case EXE_WIN_32_X86:
base_of_data_ = ReadU32(optional_header_, 24);
image_base_ = ReadU32(optional_header_, 28);
size_of_image_ = ReadU32(optional_header_, 56);
number_of_data_directories_ = ReadU32(optional_header_, 92);
break;
case EXE_WIN_32_X64:
base_of_data_ = 0;
image_base_ = ReadU64(optional_header_, 24);
size_of_image_ = ReadU32(optional_header_, 56);
number_of_data_directories_ = ReadU32(optional_header_, 108);
break;
default:
NOTREACHED();
}
if (size_of_image_ >= 0x80000000U)
return Bad("Invalid SizeOfImage");
if (size_of_code_ >= length() || size_of_initialized_data_ >= length() ||
size_of_code_ + size_of_initialized_data_ >= length()) {
// This validation fires on some perfectly fine executables.
// return Bad("code or initialized data too big");
}
// TODO(sra): we can probably get rid of most of the data directories.
bool b = true;
// 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
// for correctness and it compiles smaller this way.
b &= ReadDataDirectory(0, &export_table_);
b &= ReadDataDirectory(1, &import_table_);
b &= ReadDataDirectory(2, &resource_table_);
b &= ReadDataDirectory(3, &exception_table_);
b &= ReadDataDirectory(5, &base_relocation_table_);
b &= ReadDataDirectory(11, &bound_import_table_);
b &= ReadDataDirectory(12, &import_address_table_);
b &= ReadDataDirectory(13, &delay_import_descriptor_);
b &= ReadDataDirectory(14, &clr_runtime_header_);
if (!b)
return Bad("Malformed data directory");
// Sections follow the optional header.
FileOffset sections_offset =
optional_header_offset + size_of_optional_header_;
if (!IsArrayInBounds(sections_offset, number_of_sections_, sizeof(Section)))
return Bad("Sections past end of file");
sections_ = reinterpret_cast<const Section*>(start() + sections_offset);
if (!CheckSectionRanges())
return Bad("Out of bound section");
size_t detected_length = 0;
for (int i = 0; i < number_of_sections_; ++i) {
const Section* section = &sections_[i];
// TODO(sra): consider using the 'characteristics' field of the section
// header to see if the section contains instructions.
if (memcmp(section->name, ".text", 6) == 0)
has_text_section_ = true;
uint32_t section_end =
section->file_offset_of_raw_data + section->size_of_raw_data;
if (section_end > detected_length)
detected_length = section_end;
}
// Pretend our in-memory copy is only as long as our detected length.
ReduceLength(detected_length);
if (!has_text_section()) {
return Bad("Resource-only executables are not yet supported");
}
return Good();
}
////////////////////////////////////////////////////////////////////////////////
bool DisassemblerWin32::ParseRelocs(std::vector<RVA>* relocs) {
relocs->clear();
size_t relocs_size = base_relocation_table_.size_;
if (relocs_size == 0)
return true;
// The format of the base relocation table is a sequence of variable sized
// IMAGE_BASE_RELOCATION blocks. Search for
// "The format of the base relocation data is somewhat quirky"
// at http://msdn.microsoft.com/en-us/library/ms809762.aspx
const uint8_t* relocs_start = RVAToPointer(base_relocation_table_.address_);
if (relocs_start == nullptr || relocs_start < start() ||
relocs_start >= end())
return Bad(".relocs outside image");
// Make sure entire base relocation table is within the buffer.
if (relocs_size > static_cast<size_t>(end() - relocs_start))
return Bad(".relocs outside image");
const uint8_t* relocs_end = relocs_start + relocs_size;
const uint8_t* block = relocs_start;
// Walk the variable sized blocks.
while (block + 8 < relocs_end) {
RVA page_rva = ReadU32(block, 0);
uint32_t size = ReadU32(block, 4);
if (size < 8 || // Size includes header ...
size % 4 != 0) // ... and is word aligned.
return Bad("Unreasonable relocs block");
const uint8_t* end_entries = block + size;
if (end_entries <= block || end_entries <= start() || end_entries > end())
return Bad(".relocs block outside image");
// Walk through the two-byte entries.
for (const uint8_t* p = block + 8; p < end_entries; p += 2) {
uint16_t entry = ReadU16(p, 0);
int type = entry >> 12;
int offset = entry & 0xFFF;
RVA rva = page_rva + offset;
// Skip the relocs that live outside of the image. It might be the case
// if a reloc is relative to a register, e.g.:
// mov ecx,dword ptr [eax+044D5888h]
RVA target_rva = PointerToTargetRVA(RVAToPointer(rva));
if (target_rva == kNoRVA) {
continue;
}
if (SupportsRelTableType(type)) {
relocs->push_back(rva);
} else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE
// Ignore, used as padding.
} else {
// Does not occur in Windows x86/x64 executables.
return Bad("Unknown type of reloc");
}
}
block += size;
}
std::sort(relocs->begin(), relocs->end());
DCHECK(relocs->empty() || relocs->back() != kUnassignedRVA);
return true;
}
const Section* DisassemblerWin32::RVAToSection(RVA rva) const {
for (int i = 0; i < number_of_sections_; ++i) {
const Section* section = &sections_[i];
if (rva >= section->virtual_address) {
FileOffset offset_in_section = rva - section->virtual_address;
if (offset_in_section < section->virtual_size)
return section;
}
}
return nullptr;
}
std::string DisassemblerWin32::SectionName(const Section* section) {
if (section == nullptr)
return "<none>";
char name[9];
memcpy(name, section->name, 8);
name[8] = '\0'; // Ensure termination.
return name;
}
// static
bool DisassemblerWin32::QuickDetect(const uint8_t* start,
size_t length,
uint16_t magic) {
if (length < kOffsetOfFileAddressOfNewExeHeader + 4)
return false;
// Have 'MZ' magic for a DOS header?
if (start[0] != 'M' || start[1] != 'Z')
return false;
FileOffset pe_header_offset = static_cast<FileOffset>(
ReadU32(start, kOffsetOfFileAddressOfNewExeHeader));
if (pe_header_offset % 8 != 0 ||
pe_header_offset < kOffsetOfFileAddressOfNewExeHeader + 4 ||
pe_header_offset >= length ||
length - pe_header_offset < kMinPeHeaderSize) {
return false;
}
const uint8_t* pe_header = start + pe_header_offset;
if (!(pe_header[0] == 'P' && pe_header[1] == 'E' && pe_header[2] == 0 &&
pe_header[3] == 0)) {
return false;
}
FileOffset optional_header_offset = pe_header_offset + kMinPeHeaderSize;
if (optional_header_offset >= length || length - optional_header_offset < 2)
return false;
const uint8_t* optional_header = start + optional_header_offset;
return magic == ReadU16(optional_header, 0);
}
bool DisassemblerWin32::IsRvaRangeInBounds(size_t start, size_t length) {
return start < size_of_image_ && length <= size_of_image_ - start;
}
bool DisassemblerWin32::CheckSectionRanges() {
for (int i = 0; i < number_of_sections_; ++i) {
const Section* section = &sections_[i];
if (!IsRangeInBounds(section->file_offset_of_raw_data,
section->size_of_raw_data) ||
!IsRvaRangeInBounds(section->virtual_address, section->virtual_size)) {
return false;
}
}
return true;
}
bool DisassemblerWin32::ExtractAbs32Locations() {
abs32_locations_.clear();
if (!ParseRelocs(&abs32_locations_))
return false;
#if COURGETTE_HISTOGRAM_TARGETS
for (size_t i = 0; i < abs32_locations_.size(); ++i) {
RVA rva = abs32_locations_[i];
// The 4 bytes at the relocation are a reference to some address.
++abs32_target_rvas_[PointerToTargetRVA(RVAToPointer(rva))];
}
#endif
return true;
}
bool DisassemblerWin32::ExtractRel32Locations() {
FileOffset file_offset = 0;
while (file_offset < length()) {
const Section* section = FindNextSection(file_offset);
if (section == nullptr)
break;
if (file_offset < section->file_offset_of_raw_data)
file_offset = section->file_offset_of_raw_data;
ParseRel32RelocsFromSection(section);
file_offset += section->size_of_raw_data;
}
std::sort(rel32_locations_.begin(), rel32_locations_.end());
DCHECK(rel32_locations_.empty() || rel32_locations_.back() != kUnassignedRVA);
#if COURGETTE_HISTOGRAM_TARGETS
VLOG(1) << "abs32_locations_ " << abs32_locations_.size()
<< "\nrel32_locations_ " << rel32_locations_.size()
<< "\nabs32_target_rvas_ " << abs32_target_rvas_.size()
<< "\nrel32_target_rvas_ " << rel32_target_rvas_.size();
int common = 0;
std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin();
std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin();
while (abs32_iter != abs32_target_rvas_.end() &&
rel32_iter != rel32_target_rvas_.end()) {
if (abs32_iter->first < rel32_iter->first) {
++abs32_iter;
} else if (rel32_iter->first < abs32_iter->first) {
++rel32_iter;
} else {
++common;
++abs32_iter;
++rel32_iter;
}
}
VLOG(1) << "common " << common;
#endif
return true;
}
RvaVisitor* DisassemblerWin32::CreateAbs32TargetRvaVisitor() {
return new RvaVisitor_Abs32(abs32_locations_, *this);
}
RvaVisitor* DisassemblerWin32::CreateRel32TargetRvaVisitor() {
return new RvaVisitor_Rel32(rel32_locations_, *this);
}
void DisassemblerWin32::RemoveUnusedRel32Locations(
AssemblyProgram* program) {
auto cond = [this, program](RVA rva) -> bool {
// + 4 since offset is relative to start of next instruction.
RVA target_rva = rva + 4 + Read32LittleEndian(RVAToPointer(rva));
return program->FindRel32Label(target_rva) == nullptr;
};
rel32_locations_.erase(
std::remove_if(rel32_locations_.begin(), rel32_locations_.end(), cond),
rel32_locations_.end());
}
InstructionGenerator DisassemblerWin32::GetInstructionGenerator(
AssemblyProgram* program) {
return base::BindRepeating(&DisassemblerWin32::ParseFile,
base::Unretained(this), program);
}
CheckBool DisassemblerWin32::ParseFile(AssemblyProgram* program,
InstructionReceptor* receptor) const {
// Walk all the bytes in the file, whether or not in a section.
FileOffset file_offset = 0;
while (file_offset < length()) {
const Section* section = FindNextSection(file_offset);
if (section == nullptr) {
// No more sections. There should not be extra stuff following last
// section.
// ParseNonSectionFileRegion(file_offset, pe_info().length(), receptor);
break;
}
if (file_offset < section->file_offset_of_raw_data) {
FileOffset section_start_offset = section->file_offset_of_raw_data;
if (!ParseNonSectionFileRegion(file_offset, section_start_offset,
receptor)) {
return false;
}
file_offset = section_start_offset;
}
FileOffset end = file_offset + section->size_of_raw_data;
if (!ParseFileRegion(section, file_offset, end, program, receptor))
return false;
file_offset = end;
}
#if COURGETTE_HISTOGRAM_TARGETS
HistogramTargets("abs32 relocs", abs32_target_rvas_);
HistogramTargets("rel32 relocs", rel32_target_rvas_);
#endif
return true;
}
CheckBool DisassemblerWin32::ParseNonSectionFileRegion(
FileOffset start_file_offset,
FileOffset end_file_offset,
InstructionReceptor* receptor) const {
if (incomplete_disassembly_)
return true;
if (end_file_offset > start_file_offset) {
if (!receptor->EmitMultipleBytes(FileOffsetToPointer(start_file_offset),
end_file_offset - start_file_offset)) {
return false;
}
}
return true;
}
CheckBool DisassemblerWin32::ParseFileRegion(
const Section* section,
FileOffset start_file_offset,
FileOffset end_file_offset,
AssemblyProgram* program,
InstructionReceptor* receptor) const {
RVA relocs_start_rva = base_relocation_table().address_;
const uint8_t* start_pointer = FileOffsetToPointer(start_file_offset);
const uint8_t* end_pointer = FileOffsetToPointer(end_file_offset);
RVA start_rva = FileOffsetToRVA(start_file_offset);
RVA end_rva = start_rva + section->virtual_size;
const int kVAWidth = AbsVAWidth();
// Quick way to convert from Pointer to RVA within a single Section is to
// subtract 'pointer_to_rva'.
const uint8_t* const adjust_pointer_to_rva = start_pointer - start_rva;
std::vector<RVA>::const_iterator rel32_pos = rel32_locations_.begin();
std::vector<RVA>::const_iterator abs32_pos = abs32_locations_.begin();
if (!receptor->EmitOrigin(start_rva))
return false;
const uint8_t* p = start_pointer;
while (p < end_pointer) {
RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
// The base relocation table is usually in the .relocs section, but it could
// actually be anywhere. Make sure we skip it because we will regenerate it
// during assembly.
if (current_rva == relocs_start_rva) {
if (!receptor->EmitPeRelocs())
return false;
uint32_t relocs_size = base_relocation_table().size_;
if (relocs_size) {
p += relocs_size;
continue;
}
}
while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
++abs32_pos;
if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
RVA target_rva = PointerToTargetRVA(p);
DCHECK_NE(kNoRVA, target_rva);
// TODO(sra): target could be Label+offset. It is not clear how to guess
// which it might be. We assume offset==0.
Label* label = program->FindAbs32Label(target_rva);
DCHECK(label);
if (!EmitAbs(label, receptor))
return false;
p += kVAWidth;
continue;
}
while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva)
++rel32_pos;
if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) {
// + 4 since offset is relative to start of next instruction.
RVA target_rva = current_rva + 4 + Read32LittleEndian(p);
Label* label = program->FindRel32Label(target_rva);
DCHECK(label);
if (!receptor->EmitRel32(label))
return false;
p += 4;
continue;
}
if (incomplete_disassembly_) {
if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) &&
(rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) &&
(end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) {
// No more relocs in this section, don't bother encoding bytes.
break;
}
}
if (!receptor->EmitSingleByte(*p))
return false;
p += 1;
}
return true;
}
#if COURGETTE_HISTOGRAM_TARGETS
// Histogram is printed to std::cout. It is purely for debugging the algorithm
// and is only enabled manually in 'exploration' builds. I don't want to add
// command-line configuration for this feature because this code has to be
// small, which means compiled-out.
void DisassemblerWin32::HistogramTargets(const char* kind,
const std::map<RVA, int>& map) const {
int total = 0;
std::map<int, std::vector<RVA>> h;
for (std::map<RVA, int>::const_iterator p = map.begin(); p != map.end();
++p) {
h[p->second].push_back(p->first);
total += p->second;
}
std::cout << total << " " << kind << " to " << map.size() << " unique targets"
<< std::endl;
std::cout << "indegree: #targets-with-indegree (example)" << std::endl;
const int kFirstN = 15;
bool someSkipped = false;
int index = 0;
for (std::map<int, std::vector<RVA>>::reverse_iterator p = h.rbegin();
p != h.rend(); ++p) {
++index;
if (index <= kFirstN || p->first <= 3) {
if (someSkipped) {
std::cout << "..." << std::endl;
}
size_t count = p->second.size();
std::cout << std::dec << p->first << ": " << count;
if (count <= 2) {
for (size_t i = 0; i < count; ++i)
std::cout << " " << DescribeRVA(p->second[i]);
}
std::cout << std::endl;
someSkipped = false;
} else {
someSkipped = true;
}
}
}
#endif // COURGETTE_HISTOGRAM_TARGETS
// DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except
// that during development I'm finding I need to call it when compiled in
// Release mode. Hence:
// TODO(sra): make this compile only for debug mode.
std::string DisassemblerWin32::DescribeRVA(RVA rva) const {
const Section* section = RVAToSection(rva);
std::ostringstream s;
s << std::hex << rva;
if (section) {
s << " (";
s << SectionName(section) << "+" << std::hex
<< (rva - section->virtual_address) << ")";
}
return s.str();
}
const Section* DisassemblerWin32::FindNextSection(
FileOffset file_offset) const {
const Section* best = nullptr;
for (int i = 0; i < number_of_sections_; ++i) {
const Section* section = &sections_[i];
if (section->size_of_raw_data > 0) { // i.e. has data in file.
if (file_offset <= section->file_offset_of_raw_data) {
if (best == nullptr ||
section->file_offset_of_raw_data < best->file_offset_of_raw_data) {
best = section;
}
}
}
}
return best;
}
bool DisassemblerWin32::ReadDataDirectory(int index,
ImageDataDirectory* directory) {
if (index < number_of_data_directories_) {
FileOffset file_offset = index * 8 + RelativeOffsetOfDataDirectories();
if (file_offset >= size_of_optional_header_)
return Bad("Number of data directories inconsistent");
const uint8_t* data_directory = optional_header_ + file_offset;
if (data_directory < start() || data_directory + 8 >= end())
return Bad("Data directory outside image");
RVA rva = ReadU32(data_directory, 0);
size_t size = ReadU32(data_directory, 4);
if (size > size_of_image_)
return Bad("Data directory size too big");
// TODO(sra): validate RVA.
directory->address_ = rva;
directory->size_ = static_cast<uint32_t>(size);
return true;
} else {
directory->address_ = 0;
directory->size_ = 0;
return true;
}
}
} // namespace courgette