blob: 8935a4bfe1ec5637665fd68ce0aafe8e306c47a3 [file] [log] [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COURGETTE_IMAGE_UTILS_H_
#define COURGETTE_IMAGE_UTILS_H_
#include <stddef.h>
#include <stdint.h>
#include <iterator>
#include <vector>
// COURGETTE_HISTOGRAM_TARGETS prints out a histogram of how frequently
// different target addresses are referenced. Purely for debugging.
#define COURGETTE_HISTOGRAM_TARGETS 0
namespace courgette {
// There are several ways to reason about addresses in an image:
// - File Offset: Position relative to start of image.
// - VA (Virtual Address): Virtual memory address of a loaded image. This is
// subject to relocation by the OS.
// - RVA (Relative Virtual Address): VA relative to some base address. This is
// the preferred way to specify pointers in an image.
//
// In Courgette we consider two types of addresses:
// - abs32: In an image these are directly stored as VA whose locations are
// stored in the relocation table.
// - rel32: In an image these appear in branch/call opcodes, and are represented
// as offsets from an instruction address.
using RVA = uint32_t;
const RVA kUnassignedRVA = 0xFFFFFFFFU;
const RVA kNoRVA = 0xFFFFFFFFU;
using FileOffset = size_t;
const FileOffset kNoFileOffset = UINTPTR_MAX;
// An interface translate and read addresses. The main conversion path is:
// (1) Location RVA.
// (2) Location FileOffset.
// (3) Pointer in image.
// (4) Target VA (32-bit or 64-bit).
// (5) Target RVA (32-bit).
// For abs32, we get (1) from relocation table, and convert to (5).
// For rel32, we get (2) from scanning opcode, and convert to (1).
class AddressTranslator {
public:
// (2) -> (1): Returns the RVA corresponding to |file_offset|, or kNoRVA if
// nonexistent.
virtual RVA FileOffsetToRVA(FileOffset file_offset) const = 0;
// (1) -> (2): Returns the file offset corresponding to |rva|, or
// kNoFileOffset if nonexistent.
virtual FileOffset RVAToFileOffset(RVA rva) const = 0;
// (2) -> (3): Returns image data pointer correspnoding to |file_offset|.
// Assumes 0 <= |file_offset| <= image size.
// If |file_offset| == image size, then the resulting pointer is an end bound
// for iteration, and should not be dereferenced.
virtual const uint8_t* FileOffsetToPointer(FileOffset file_offset) const = 0;
// (1) -> (3): Returns the pointer to the image data for |rva|, or null if
// |rva| is invalid.
virtual const uint8_t* RVAToPointer(RVA rva) const = 0;
// (3) -> (5): Returns the target RVA located at |p|, where |p| is a pointer
// to image data.
virtual RVA PointerToTargetRVA(const uint8_t* p) const = 0;
};
// A Label is a symbolic reference to an address. Unlike a conventional
// assembly language, we always know the address. The address will later be
// stored in a table and the Label will be replaced with the index into the
// table.
// TODO(huangs): Make this a struct, and remove "_" from member names.
class Label {
public:
enum : int { kNoIndex = -1 };
explicit Label(RVA rva) : rva_(rva) {}
Label(RVA rva, int index) : rva_(rva), index_(index) {}
Label(RVA rva, int index, int32_t count)
: rva_(rva), index_(index), count_(count) {}
bool operator==(const Label& other) const {
return rva_ == other.rva_ && index_ == other.index_ &&
count_ == other.count_;
}
RVA rva_ = kUnassignedRVA; // Address referred to by the label.
int index_ = kNoIndex; // Index of address in address table.
int32_t count_ = 0;
};
// An interface for sequential visit of RVAs.
// Use case: Translating from RVA locations to RVA targets is platform-specific,
// and works differently for abs32 vs. rel32. A function that sequentually
// visits RVA targets only requires an RvaVisitor. The caller can provide an
// implementation that stores a fixed list of RVA locations, and translates each
// to the matching RVA target on demand without extra storage.
class RvaVisitor {
public:
virtual ~RvaVisitor() { }
// Returns the number of remaining RVAs to visit.
virtual size_t Remaining() const = 0;
// Returns the current RVA.
virtual RVA Get() const = 0;
// Advances to the next RVA.
virtual void Next() = 0;
};
// RvaVisitor whose data are backed by std::vector<T>. Translating from T to RVA
// is should be implemented in Get().
template <typename T>
class VectorRvaVisitor : public RvaVisitor {
public:
// Assumes |v| does not change for the lifetime of this instance.
explicit VectorRvaVisitor(const std::vector<T>& v)
: it_(v.begin()), end_(v.end()) { }
~VectorRvaVisitor() override { }
// RvaVisitor interfaces.
size_t Remaining() const override { return std::distance(it_, end_); }
virtual RVA Get() const override = 0;
void Next() override { ++it_; }
protected:
typename std::vector<T>::const_iterator it_;
typename std::vector<T>::const_iterator end_;
};
// RvaVisitor that simply stores a list of RVAs for traversal. For testing.
class TrivialRvaVisitor : public VectorRvaVisitor<RVA> {
public:
explicit TrivialRvaVisitor(const std::vector<RVA>& rvas)
: VectorRvaVisitor<RVA>(rvas) { }
~TrivialRvaVisitor() override { }
// VectorRvaVisitor<RVA> interfaces.
RVA Get() const override { return *it_; }
};
// These helper functions avoid the need for casts in the main code.
inline uint16_t ReadU16(const uint8_t* address, size_t offset) {
return *reinterpret_cast<const uint16_t*>(address + offset);
}
inline uint32_t ReadU32(const uint8_t* address, size_t offset) {
return *reinterpret_cast<const uint32_t*>(address + offset);
}
inline uint64_t ReadU64(const uint8_t* address, size_t offset) {
return *reinterpret_cast<const uint64_t*>(address + offset);
}
inline uint16_t Read16LittleEndian(const void* address) {
return *reinterpret_cast<const uint16_t*>(address);
}
inline uint32_t Read32LittleEndian(const void* address) {
return *reinterpret_cast<const uint32_t*>(address);
}
inline uint64_t Read64LittleEndian(const void* address) {
return *reinterpret_cast<const uint64_t*>(address);
}
} // namespace courgette
#endif // COURGETTE_IMAGE_UTILS_H_