| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "crypto/encryptor.h" |
| |
| #include <stddef.h> |
| |
| #include <memory> |
| #include <string> |
| |
| #include "base/containers/span.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "crypto/symmetric_key.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| TEST(EncryptorTest, EncryptDecrypt) { |
| std::unique_ptr<crypto::SymmetricKey> key( |
| crypto::SymmetricKey::DeriveKeyFromPasswordUsingPbkdf2( |
| crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); |
| EXPECT_TRUE(key.get()); |
| |
| crypto::Encryptor encryptor; |
| // The IV must be exactly as long as the cipher block size. |
| std::string iv("the iv: 16 bytes"); |
| EXPECT_EQ(16U, iv.size()); |
| EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); |
| |
| std::string plaintext("this is the plaintext"); |
| std::string ciphertext; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
| EXPECT_LT(0U, ciphertext.size()); |
| |
| std::string decrypted; |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
| EXPECT_EQ(plaintext, decrypted); |
| |
| // Repeat the test with the bytes API. |
| std::vector<uint8_t> plaintext_vec(plaintext.begin(), plaintext.end()); |
| std::vector<uint8_t> ciphertext_vec; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext_vec, &ciphertext_vec)); |
| EXPECT_LT(0U, ciphertext_vec.size()); |
| |
| std::vector<uint8_t> decrypted_vec; |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext_vec, &decrypted_vec)); |
| EXPECT_EQ(plaintext_vec, decrypted_vec); |
| } |
| |
| TEST(EncryptorTest, DecryptWrongKey) { |
| std::unique_ptr<crypto::SymmetricKey> key( |
| crypto::SymmetricKey::DeriveKeyFromPasswordUsingPbkdf2( |
| crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); |
| EXPECT_TRUE(key.get()); |
| |
| // A wrong key that can be detected by implementations that validate every |
| // byte in the padding. |
| std::unique_ptr<crypto::SymmetricKey> wrong_key( |
| crypto::SymmetricKey::DeriveKeyFromPasswordUsingPbkdf2( |
| crypto::SymmetricKey::AES, "wrongword", "sweetest", 1000, 256)); |
| EXPECT_TRUE(wrong_key.get()); |
| |
| // A wrong key that can't be detected by any implementation. The password |
| // "wrongword;" would also work. |
| std::unique_ptr<crypto::SymmetricKey> wrong_key2( |
| crypto::SymmetricKey::DeriveKeyFromPasswordUsingPbkdf2( |
| crypto::SymmetricKey::AES, "wrongword+", "sweetest", 1000, 256)); |
| EXPECT_TRUE(wrong_key2.get()); |
| |
| // A wrong key that can be detected by all implementations. |
| std::unique_ptr<crypto::SymmetricKey> wrong_key3( |
| crypto::SymmetricKey::DeriveKeyFromPasswordUsingPbkdf2( |
| crypto::SymmetricKey::AES, "wrongwordx", "sweetest", 1000, 256)); |
| EXPECT_TRUE(wrong_key3.get()); |
| |
| crypto::Encryptor encryptor; |
| // The IV must be exactly as long as the cipher block size. |
| std::string iv("the iv: 16 bytes"); |
| EXPECT_EQ(16U, iv.size()); |
| EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); |
| |
| std::string plaintext("this is the plaintext"); |
| std::string ciphertext; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
| |
| static const unsigned char expected_ciphertext[] = { |
| 0x7D, 0x67, 0x5B, 0x53, 0xE6, 0xD8, 0x0F, 0x27, |
| 0x74, 0xB1, 0x90, 0xFE, 0x6E, 0x58, 0x4A, 0xA0, |
| 0x0E, 0x35, 0xE3, 0x01, 0xC0, 0xFE, 0x9A, 0xD8, |
| 0x48, 0x1D, 0x42, 0xB0, 0xBA, 0x21, 0xB2, 0x0C |
| }; |
| |
| ASSERT_EQ(std::size(expected_ciphertext), ciphertext.size()); |
| for (size_t i = 0; i < ciphertext.size(); ++i) { |
| ASSERT_EQ(expected_ciphertext[i], |
| static_cast<unsigned char>(ciphertext[i])); |
| } |
| |
| std::string decrypted; |
| |
| // This wrong key causes the last padding byte to be 5, which is a valid |
| // padding length, and the second to last padding byte to be 137, which is |
| // invalid. If an implementation simply uses the last padding byte to |
| // determine the padding length without checking every padding byte, |
| // Encryptor::Decrypt() will still return true. This is the case for NSS |
| // (crbug.com/124434). |
| crypto::Encryptor decryptor; |
| EXPECT_TRUE(decryptor.Init(wrong_key.get(), crypto::Encryptor::CBC, iv)); |
| EXPECT_FALSE(decryptor.Decrypt(ciphertext, &decrypted)); |
| |
| // This demonstrates that not all wrong keys can be detected by padding |
| // error. This wrong key causes the last padding byte to be 1, which is |
| // a valid padding block of length 1. |
| crypto::Encryptor decryptor2; |
| EXPECT_TRUE(decryptor2.Init(wrong_key2.get(), crypto::Encryptor::CBC, iv)); |
| EXPECT_TRUE(decryptor2.Decrypt(ciphertext, &decrypted)); |
| |
| // This wrong key causes the last padding byte to be 253, which should be |
| // rejected by all implementations. |
| crypto::Encryptor decryptor3; |
| EXPECT_TRUE(decryptor3.Init(wrong_key3.get(), crypto::Encryptor::CBC, iv)); |
| EXPECT_FALSE(decryptor3.Decrypt(ciphertext, &decrypted)); |
| } |
| |
| namespace { |
| |
| // From NIST SP 800-38a test cast: |
| // - F.5.1 CTR-AES128.Encrypt |
| // - F.5.6 CTR-AES256.Encrypt |
| // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf |
| const unsigned char kAES128CTRKey[] = { |
| 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, |
| 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c |
| }; |
| |
| const unsigned char kAES256CTRKey[] = { |
| 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, |
| 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, |
| 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, |
| 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 |
| }; |
| |
| const unsigned char kAESCTRInitCounter[] = { |
| 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
| 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff |
| }; |
| |
| const unsigned char kAESCTRPlaintext[] = { |
| // Block #1 |
| 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, |
| 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, |
| // Block #2 |
| 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, |
| 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, |
| // Block #3 |
| 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, |
| 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, |
| // Block #4 |
| 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, |
| 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 |
| }; |
| |
| const unsigned char kAES128CTRCiphertext[] = { |
| // Block #1 |
| 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, |
| 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, |
| // Block #2 |
| 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, |
| 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff, |
| // Block #3 |
| 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, |
| 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab, |
| // Block #4 |
| 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, |
| 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee |
| }; |
| |
| const unsigned char kAES256CTRCiphertext[] = { |
| // Block #1 |
| 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, |
| 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28, |
| // Block #2 |
| 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, |
| 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5, |
| // Block #3 |
| 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, |
| 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d, |
| // Block #4 |
| 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, |
| 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6 |
| }; |
| |
| void TestAESCTREncrypt( |
| const unsigned char* key, size_t key_size, |
| const unsigned char* init_counter, size_t init_counter_size, |
| const unsigned char* plaintext, size_t plaintext_size, |
| const unsigned char* ciphertext, size_t ciphertext_size) { |
| std::string key_str(reinterpret_cast<const char*>(key), key_size); |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key_str)); |
| ASSERT_TRUE(sym_key.get()); |
| |
| crypto::Encryptor encryptor; |
| EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); |
| |
| std::string_view init_counter_str(reinterpret_cast<const char*>(init_counter), |
| init_counter_size); |
| std::string_view plaintext_str(reinterpret_cast<const char*>(plaintext), |
| plaintext_size); |
| |
| EXPECT_TRUE(encryptor.SetCounter(init_counter_str)); |
| std::string encrypted; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext_str, &encrypted)); |
| |
| EXPECT_EQ(ciphertext_size, encrypted.size()); |
| EXPECT_EQ(0, memcmp(encrypted.data(), ciphertext, encrypted.size())); |
| |
| std::string decrypted; |
| EXPECT_TRUE(encryptor.SetCounter(init_counter_str)); |
| EXPECT_TRUE(encryptor.Decrypt(encrypted, &decrypted)); |
| |
| EXPECT_EQ(plaintext_str, decrypted); |
| |
| // Repeat the test with the bytes API. |
| EXPECT_TRUE( |
| encryptor.SetCounter(base::make_span(init_counter, init_counter_size))); |
| std::vector<uint8_t> encrypted_vec; |
| EXPECT_TRUE(encryptor.Encrypt(base::make_span(plaintext, plaintext_size), |
| &encrypted_vec)); |
| |
| EXPECT_EQ(ciphertext_size, encrypted_vec.size()); |
| EXPECT_EQ(0, memcmp(encrypted_vec.data(), ciphertext, encrypted_vec.size())); |
| |
| std::vector<uint8_t> decrypted_vec; |
| EXPECT_TRUE( |
| encryptor.SetCounter(base::make_span(init_counter, init_counter_size))); |
| EXPECT_TRUE(encryptor.Decrypt(encrypted_vec, &decrypted_vec)); |
| |
| EXPECT_EQ(std::vector<uint8_t>(plaintext, plaintext + plaintext_size), |
| decrypted_vec); |
| } |
| |
| void TestAESCTRMultipleDecrypt( |
| const unsigned char* key, size_t key_size, |
| const unsigned char* init_counter, size_t init_counter_size, |
| const unsigned char* plaintext, size_t plaintext_size, |
| const unsigned char* ciphertext, size_t ciphertext_size) { |
| std::string key_str(reinterpret_cast<const char*>(key), key_size); |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key_str)); |
| ASSERT_TRUE(sym_key.get()); |
| |
| crypto::Encryptor encryptor; |
| EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); |
| |
| // Counter is set only once. |
| EXPECT_TRUE(encryptor.SetCounter(std::string_view( |
| reinterpret_cast<const char*>(init_counter), init_counter_size))); |
| |
| std::string ciphertext_str(reinterpret_cast<const char*>(ciphertext), |
| ciphertext_size); |
| |
| int kTestDecryptSizes[] = { 32, 16, 8 }; |
| |
| int offset = 0; |
| for (size_t i = 0; i < std::size(kTestDecryptSizes); ++i) { |
| std::string decrypted; |
| size_t len = kTestDecryptSizes[i]; |
| EXPECT_TRUE( |
| encryptor.Decrypt(ciphertext_str.substr(offset, len), &decrypted)); |
| EXPECT_EQ(len, decrypted.size()); |
| EXPECT_EQ(0, memcmp(decrypted.data(), plaintext + offset, len)); |
| offset += len; |
| } |
| } |
| |
| } // namespace |
| |
| TEST(EncryptorTest, EncryptAES128CTR) { |
| TestAESCTREncrypt(kAES128CTRKey, std::size(kAES128CTRKey), kAESCTRInitCounter, |
| std::size(kAESCTRInitCounter), kAESCTRPlaintext, |
| std::size(kAESCTRPlaintext), kAES128CTRCiphertext, |
| std::size(kAES128CTRCiphertext)); |
| } |
| |
| TEST(EncryptorTest, EncryptAES256CTR) { |
| TestAESCTREncrypt(kAES256CTRKey, std::size(kAES256CTRKey), kAESCTRInitCounter, |
| std::size(kAESCTRInitCounter), kAESCTRPlaintext, |
| std::size(kAESCTRPlaintext), kAES256CTRCiphertext, |
| std::size(kAES256CTRCiphertext)); |
| } |
| |
| TEST(EncryptorTest, EncryptAES128CTR_MultipleDecrypt) { |
| TestAESCTRMultipleDecrypt(kAES128CTRKey, std::size(kAES128CTRKey), |
| kAESCTRInitCounter, std::size(kAESCTRInitCounter), |
| kAESCTRPlaintext, std::size(kAESCTRPlaintext), |
| kAES128CTRCiphertext, |
| std::size(kAES128CTRCiphertext)); |
| } |
| |
| TEST(EncryptorTest, EncryptAES256CTR_MultipleDecrypt) { |
| TestAESCTRMultipleDecrypt(kAES256CTRKey, std::size(kAES256CTRKey), |
| kAESCTRInitCounter, std::size(kAESCTRInitCounter), |
| kAESCTRPlaintext, std::size(kAESCTRPlaintext), |
| kAES256CTRCiphertext, |
| std::size(kAES256CTRCiphertext)); |
| } |
| |
| TEST(EncryptorTest, EncryptDecryptCTR) { |
| std::unique_ptr<crypto::SymmetricKey> key( |
| crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, 128)); |
| |
| EXPECT_TRUE(key.get()); |
| const std::string kInitialCounter = "0000000000000000"; |
| |
| crypto::Encryptor encryptor; |
| EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CTR, "")); |
| EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); |
| |
| std::string plaintext("normal plaintext of random length"); |
| std::string ciphertext; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
| EXPECT_LT(0U, ciphertext.size()); |
| |
| std::string decrypted; |
| EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
| EXPECT_EQ(plaintext, decrypted); |
| |
| plaintext = "0123456789012345"; |
| EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); |
| EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
| EXPECT_LT(0U, ciphertext.size()); |
| |
| EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
| EXPECT_EQ(plaintext, decrypted); |
| } |
| |
| // TODO(wtc): add more known-answer tests. Test vectors are available from |
| // http://www.ietf.org/rfc/rfc3602 |
| // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf |
| // http://gladman.plushost.co.uk/oldsite/AES/index.php |
| // http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip |
| |
| // NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt. |
| TEST(EncryptorTest, EncryptAES256CBC) { |
| // From NIST SP 800-38a test cast F.2.5 CBC-AES256.Encrypt. |
| static const unsigned char kRawKey[] = { |
| 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, |
| 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, |
| 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, |
| 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 |
| }; |
| static const unsigned char kRawIv[] = { |
| 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f |
| }; |
| static const unsigned char kRawPlaintext[] = { |
| // Block #1 |
| 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, |
| 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, |
| // Block #2 |
| 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, |
| 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, |
| // Block #3 |
| 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, |
| 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, |
| // Block #4 |
| 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, |
| 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10, |
| }; |
| static const unsigned char kRawCiphertext[] = { |
| // Block #1 |
| 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, |
| 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6, |
| // Block #2 |
| 0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, |
| 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d, |
| // Block #3 |
| 0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, |
| 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61, |
| // Block #4 |
| 0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, |
| 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b, |
| // PKCS #5 padding, encrypted. |
| 0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2, |
| 0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44 |
| }; |
| |
| std::string key(reinterpret_cast<const char*>(kRawKey), sizeof(kRawKey)); |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key)); |
| ASSERT_TRUE(sym_key.get()); |
| |
| crypto::Encryptor encryptor; |
| // The IV must be exactly as long a the cipher block size. |
| std::string iv(reinterpret_cast<const char*>(kRawIv), sizeof(kRawIv)); |
| EXPECT_EQ(16U, iv.size()); |
| EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
| |
| std::string plaintext(reinterpret_cast<const char*>(kRawPlaintext), |
| sizeof(kRawPlaintext)); |
| std::string ciphertext; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
| |
| EXPECT_EQ(sizeof(kRawCiphertext), ciphertext.size()); |
| EXPECT_EQ(0, memcmp(ciphertext.data(), kRawCiphertext, ciphertext.size())); |
| |
| std::string decrypted; |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
| |
| EXPECT_EQ(plaintext, decrypted); |
| } |
| |
| // Expected output derived from the NSS implementation. |
| TEST(EncryptorTest, EncryptAES128CBCRegression) { |
| std::string key = "128=SixteenBytes"; |
| std::string iv = "Sweet Sixteen IV"; |
| std::string plaintext = "Plain text with a g-clef U+1D11E \360\235\204\236"; |
| std::string expected_ciphertext_hex = |
| "D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A" |
| "C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8"; |
| |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key)); |
| ASSERT_TRUE(sym_key.get()); |
| |
| crypto::Encryptor encryptor; |
| // The IV must be exactly as long a the cipher block size. |
| EXPECT_EQ(16U, iv.size()); |
| EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
| |
| std::string ciphertext; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
| EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext)); |
| |
| std::string decrypted; |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
| EXPECT_EQ(plaintext, decrypted); |
| } |
| |
| // Symmetric keys with an unsupported size should be rejected. Whether they are |
| // rejected by SymmetricKey::Import or Encryptor::Init depends on the platform. |
| TEST(EncryptorTest, UnsupportedKeySize) { |
| std::string key = "7 = bad"; |
| std::string iv = "Sweet Sixteen IV"; |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key)); |
| if (!sym_key.get()) |
| return; |
| |
| crypto::Encryptor encryptor; |
| // The IV must be exactly as long as the cipher block size. |
| EXPECT_EQ(16U, iv.size()); |
| EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
| } |
| |
| TEST(EncryptorTest, UnsupportedIV) { |
| std::string key = "128=SixteenBytes"; |
| std::string iv = "OnlyForteen :("; |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key)); |
| ASSERT_TRUE(sym_key.get()); |
| |
| crypto::Encryptor encryptor; |
| EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
| } |
| |
| TEST(EncryptorTest, EmptyEncryptCBC) { |
| std::string key = "128=SixteenBytes"; |
| std::string iv = "Sweet Sixteen IV"; |
| std::string plaintext; |
| std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396"; |
| |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key)); |
| ASSERT_TRUE(sym_key.get()); |
| |
| crypto::Encryptor encryptor; |
| // The IV must be exactly as long as the cipher block size. |
| EXPECT_EQ(16U, iv.size()); |
| EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
| |
| std::string ciphertext; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
| EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext)); |
| |
| std::string decrypted; |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
| EXPECT_EQ(decrypted, plaintext); |
| |
| // Decrypting the empty string should fail. Our formulation of CBC expects a |
| // full block of padding for CBC. |
| EXPECT_FALSE(encryptor.Decrypt(std::string(), &decrypted)); |
| |
| // Repeat the test with the byte-based API. |
| EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
| std::vector<uint8_t> ciphertext_bytes; |
| EXPECT_TRUE( |
| encryptor.Encrypt(base::span<const uint8_t>(), &ciphertext_bytes)); |
| EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext_bytes)); |
| |
| std::vector<uint8_t> decrypted_bytes; |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext_bytes, &decrypted_bytes)); |
| EXPECT_EQ(decrypted_bytes.size(), 0u); |
| |
| // Decrypting the empty string should fail. Our formulation of CBC expects a |
| // full block of padding for CBC. |
| EXPECT_FALSE( |
| encryptor.Decrypt(base::span<const uint8_t>(), &decrypted_bytes)); |
| } |
| |
| TEST(EncryptorTest, EmptyEncryptCTR) { |
| std::string key = "128=SixteenBytes"; |
| std::string iv = "Sweet Sixteen IV"; |
| std::string plaintext; |
| std::string expected_ciphertext; |
| |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key)); |
| ASSERT_TRUE(sym_key.get()); |
| |
| crypto::Encryptor encryptor; |
| EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); |
| ASSERT_TRUE(encryptor.SetCounter(iv)); |
| |
| std::string ciphertext; |
| EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
| EXPECT_EQ(expected_ciphertext, ciphertext); |
| |
| std::string decrypted; |
| EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
| EXPECT_EQ(decrypted, plaintext); |
| |
| // Repeat the test with the byte-based API. |
| ASSERT_TRUE(encryptor.SetCounter(iv)); |
| std::vector<uint8_t> ciphertext_bytes; |
| EXPECT_TRUE( |
| encryptor.Encrypt(base::span<const uint8_t>(), &ciphertext_bytes)); |
| EXPECT_EQ(ciphertext_bytes.size(), 0u); |
| |
| std::vector<uint8_t> decrypted_bytes; |
| EXPECT_TRUE(encryptor.Decrypt(base::span<const uint8_t>(), &decrypted_bytes)); |
| EXPECT_EQ(decrypted_bytes.size(), 0u); |
| } |
| |
| TEST(EncryptorTest, CipherTextNotMultipleOfBlockSize) { |
| std::string key = "128=SixteenBytes"; |
| std::string iv = "Sweet Sixteen IV"; |
| |
| std::unique_ptr<crypto::SymmetricKey> sym_key( |
| crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, key)); |
| ASSERT_TRUE(sym_key.get()); |
| |
| crypto::Encryptor encryptor; |
| // The IV must be exactly as long a the cipher block size. |
| EXPECT_EQ(16U, iv.size()); |
| EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
| |
| // Use a separately allocated array to improve the odds of the memory tools |
| // catching invalid accesses. |
| // |
| // Otherwise when using std::string as the other tests do, accesses several |
| // bytes off the end of the buffer may fall inside the reservation of |
| // the string and not be detected. |
| std::unique_ptr<char[]> ciphertext(new char[1]); |
| |
| std::string plaintext; |
| EXPECT_FALSE( |
| encryptor.Decrypt(std::string_view(ciphertext.get(), 1), &plaintext)); |
| } |