blob: abd6d147f612af377a2d7870f696b429d356985f [file] [log] [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "services/webnn/webnn_graph_impl.h"
#include <math.h>
#include <optional>
#include <utility>
#include <vector>
#include "base/containers/fixed_flat_map.h"
#include "base/ranges/algorithm.h"
#include "base/types/expected.h"
#include "components/ml/webnn/graph_validation_utils.h"
#include "services/webnn/public/mojom/webnn_error.mojom.h"
#include "third_party/abseil-cpp/absl/types/variant.h"
#if BUILDFLAG(IS_WIN)
#include "services/webnn/dml/graph_impl.h"
#endif
namespace webnn {
namespace {
// Maps the id to its `mojo::Operand`.
using IdToOperandMap = base::flat_map<uint64_t, mojom::OperandPtr>;
size_t GetBytesPerElement(mojom::Operand::DataType operand_type) {
switch (operand_type) {
case mojom::Operand::DataType::kFloat32:
return sizeof(float);
case mojom::Operand::DataType::kFloat16:
return sizeof(uint16_t);
case mojom::Operand::DataType::kInt32:
return sizeof(int32_t);
case mojom::Operand::DataType::kUint32:
return sizeof(uint32_t);
case mojom::Operand::DataType::kInt64:
return sizeof(int64_t);
case mojom::Operand::DataType::kUint64:
return sizeof(uint64_t);
case mojom::Operand::DataType::kInt8:
return sizeof(int8_t);
case mojom::Operand::DataType::kUint8:
return sizeof(uint8_t);
}
NOTREACHED();
}
webnn::Operand::DataType MojoOperandTypeToComponent(
mojom::Operand::DataType data_type) {
switch (data_type) {
case mojom::Operand::DataType::kFloat32:
return webnn::Operand::DataType::kFloat32;
case mojom::Operand::DataType::kFloat16:
return webnn::Operand::DataType::kFloat16;
case mojom::Operand::DataType::kInt32:
return webnn::Operand::DataType::kInt32;
case mojom::Operand::DataType::kUint32:
return webnn::Operand::DataType::kUint32;
case mojom::Operand::DataType::kInt64:
return webnn::Operand::DataType::kInt64;
case mojom::Operand::DataType::kUint64:
return webnn::Operand::DataType::kUint64;
case mojom::Operand::DataType::kInt8:
return webnn::Operand::DataType::kInt8;
case mojom::Operand::DataType::kUint8:
return webnn::Operand::DataType::kUint8;
}
NOTREACHED_NORETURN();
}
webnn::Operand ConvertToComponentOperand(const mojom::Operand* mojo_operand) {
return webnn::Operand(MojoOperandTypeToComponent(mojo_operand->data_type),
mojo_operand->dimensions);
}
webnn::InputOperandLayout MojoInputOperandLayoutToComponent(
webnn::mojom::InputOperandLayout layout) {
switch (layout) {
case webnn::mojom::InputOperandLayout::kChannelsFirst:
return webnn::InputOperandLayout::kNchw;
case webnn::mojom::InputOperandLayout::kChannelsLast:
return webnn::InputOperandLayout::kNhwc;
}
NOTREACHED_NORETURN();
}
webnn::ReduceKind MojoReduceTypeToComponent(mojom::Reduce::Kind kind) {
switch (kind) {
case mojom::Reduce::Kind::kL1:
return webnn::ReduceKind::kL1;
case mojom::Reduce::Kind::kL2:
return webnn::ReduceKind::kL2;
case mojom::Reduce::Kind::kLogSum:
return webnn::ReduceKind::kLogSum;
case mojom::Reduce::Kind::kLogSumExp:
return webnn::ReduceKind::kLogSumExp;
case mojom::Reduce::Kind::kMax:
return webnn::ReduceKind::kMax;
case mojom::Reduce::Kind::kMean:
return webnn::ReduceKind::kMean;
case mojom::Reduce::Kind::kMin:
return webnn::ReduceKind::kMin;
case mojom::Reduce::Kind::kProduct:
return webnn::ReduceKind::kProduct;
case mojom::Reduce::Kind::kSum:
return webnn::ReduceKind::kSum;
case mojom::Reduce::Kind::kSumSquare:
return webnn::ReduceKind::kSumSquare;
}
NOTREACHED_NORETURN();
}
bool ValidateClampAttributes(const mojom::ClampPtr& clamp) {
if (std::isnan(clamp->min_value) || std::isnan(clamp->max_value)) {
// The min or max value are nan.
return false;
}
if (clamp->min_value >= clamp->max_value) {
// The min value must be below the max value.
return false;
}
return true;
}
bool ValidateEluAttributes(const mojom::EluPtr& elu) {
if (std::isnan(elu->alpha) || elu->alpha <= 0.0f) {
// The value of alpha must be greater than 0.
return false;
}
return true;
}
bool ValidateHardSigmoidAttributes(const mojom::HardSigmoidPtr& hard_sigmoid) {
if (std::isnan(hard_sigmoid->alpha) || std::isnan(hard_sigmoid->beta)) {
// The value of alpha and beta should not be NAN.
return false;
}
return true;
}
bool ValidateLeakyReluAttributes(const mojom::LeakyReluPtr& leaky_relu) {
if (std::isnan(leaky_relu->alpha)) {
// The value of alpha should not be NAN.
return false;
}
return true;
}
bool ValidateLinearAttributes(const mojom::LinearPtr& linear) {
if (std::isnan(linear->alpha) || std::isnan(linear->beta)) {
// The values of alpha and beta should not be NAN.
return false;
}
return true;
}
bool ValidateSoftplusAttributes(const mojom::SoftplusPtr& softplus) {
if (std::isnan(softplus->steepness)) {
// The value of steepness should not be NAN.
return false;
}
return true;
}
bool ValidateActivation(const mojom::ActivationPtr& activation) {
switch (activation->which()) {
case mojom::Activation::Tag::kClamp:
return ValidateClampAttributes(activation->get_clamp());
case mojom::Activation::Tag::kElu:
return ValidateEluAttributes(activation->get_elu());
case mojom::Activation::Tag::kHardSigmoid:
return ValidateHardSigmoidAttributes(activation->get_hard_sigmoid());
case mojom::Activation::Tag::kLeakyRelu:
return ValidateLeakyReluAttributes(activation->get_leaky_relu());
case mojom::Activation::Tag::kLinear:
return ValidateLinearAttributes(activation->get_linear());
case mojom::Activation::Tag::kSoftplus:
return ValidateSoftplusAttributes(activation->get_softplus());
case mojom::Activation::Tag::kRelu:
case mojom::Activation::Tag::kSigmoid:
case mojom::Activation::Tag::kSoftmax:
case mojom::Activation::Tag::kSoftsign:
case mojom::Activation::Tag::kTanh:
return true;
}
NOTREACHED_NORETURN();
}
const mojom::Operand* GetMojoOperand(const IdToOperandMap& id_to_operand_map,
uint64_t operand_id) {
const auto operand_iterator = id_to_operand_map.find(operand_id);
if (operand_iterator == id_to_operand_map.end()) {
// There is no operand for the id.
return nullptr;
}
return operand_iterator->second.get();
}
webnn::BatchNormalizationAttributes ConvertToBatchNormalizationAttributes(
const IdToOperandMap& id_to_operand_map,
const mojom::BatchNormalizationPtr& batch_normalization) {
webnn::BatchNormalizationAttributes component_attributes;
const auto& scale_operand_id = batch_normalization->scale_operand_id;
if (scale_operand_id) {
const mojom::OperandPtr& scale_operand =
id_to_operand_map.at(scale_operand_id.value());
component_attributes.scale = ConvertToComponentOperand(scale_operand.get());
}
const auto& bias_operand_id = batch_normalization->bias_operand_id;
if (bias_operand_id) {
const mojom::OperandPtr& bias_operand =
id_to_operand_map.at(bias_operand_id.value());
component_attributes.bias = ConvertToComponentOperand(bias_operand.get());
}
component_attributes.axis = batch_normalization->axis;
return component_attributes;
}
template <typename Conv2dAttributesType>
Conv2dAttributesType ConvertToConv2dAttributes(
const IdToOperandMap& id_to_operand_map,
const webnn::mojom::Conv2dPtr& conv2d,
std::optional<Operand> bias_operand) {
Conv2dAttributesType attributes_base;
// Convert padding, strides, dilations.
auto& mojo_padding = conv2d->padding;
attributes_base.padding = webnn::Padding2d{
.beginning =
webnn::Size2d<uint32_t>{.height = mojo_padding->beginning->height,
.width = mojo_padding->beginning->width},
.ending = webnn::Size2d<uint32_t>{.height = mojo_padding->ending->height,
.width = mojo_padding->ending->width}};
attributes_base.strides = webnn::Size2d<uint32_t>{
.height = conv2d->strides->height, .width = conv2d->strides->width};
attributes_base.dilations = webnn::Size2d<uint32_t>{
.height = conv2d->dilations->height, .width = conv2d->dilations->width};
// Convert groups, input layout and bias.
attributes_base.groups = conv2d->groups;
attributes_base.input_layout =
MojoInputOperandLayoutToComponent(conv2d->input_layout);
attributes_base.bias_operand = std::move(bias_operand);
return std::move(attributes_base);
}
webnn::Conv2dAttributes ConvertToConv2dAttributes(
const IdToOperandMap& id_to_operand_map,
const webnn::mojom::Conv2dPtr& conv2d,
std::optional<Operand> bias_operand) {
return ConvertToConv2dAttributes<webnn::Conv2dAttributes>(
id_to_operand_map, conv2d, std::move(bias_operand));
}
webnn::ConvTranspose2dAttributes ConvertToConvTranspose2dAttributes(
const IdToOperandMap& id_to_operand_map,
const webnn::mojom::Conv2dPtr& conv2d,
std::optional<Operand> bias_operand) {
auto component_attributes =
ConvertToConv2dAttributes<webnn::ConvTranspose2dAttributes>(
id_to_operand_map, conv2d, std::move(bias_operand));
// Convert the output sizes that fetched from dimensions of output operand.
auto* output = GetMojoOperand(id_to_operand_map, conv2d->output_operand_id);
CHECK_EQ(output->dimensions.size(), 4u);
webnn::Size2d<uint32_t> output_sizes;
switch (conv2d->input_layout) {
case webnn::mojom::InputOperandLayout::kChannelsFirst:
// "channelsFirst": [batches, input_channels, height, width]
output_sizes.height = output->dimensions[2];
output_sizes.width = output->dimensions[3];
break;
case webnn::mojom::InputOperandLayout::kChannelsLast:
// "channelsLast": [batches, height, width, input_channels]
output_sizes.height = output->dimensions[1];
output_sizes.width = output->dimensions[2];
break;
}
component_attributes.output_sizes = std::move(output_sizes);
return component_attributes;
}
webnn::LayerNormalizationAttributes ConvertToLayerNormalizationAttributes(
const IdToOperandMap& id_to_operand_map,
const mojom::LayerNormalizationPtr& layer_normalization) {
webnn::LayerNormalizationAttributes component_attributes;
const auto& scale_operand_id = layer_normalization->scale_operand_id;
if (scale_operand_id.has_value()) {
const mojom::OperandPtr& scale_operand =
id_to_operand_map.at(scale_operand_id.value());
component_attributes.scale = ConvertToComponentOperand(scale_operand.get());
}
const auto& bias_operand_id = layer_normalization->bias_operand_id;
if (bias_operand_id.has_value()) {
const mojom::OperandPtr& bias_operand =
id_to_operand_map.at(bias_operand_id.value());
component_attributes.bias = ConvertToComponentOperand(bias_operand.get());
}
return component_attributes;
}
webnn::Pool2dAttributes ConvertToPool2dAttributes(
const webnn::mojom::Pool2dPtr& pool2d,
const mojom::Operand* output) {
webnn::Pool2dAttributes component_attributes;
auto& window_dimensions = pool2d->window_dimensions;
component_attributes.window_dimensions = webnn::Size2d<uint32_t>{
.height = window_dimensions->height, .width = window_dimensions->width};
auto& mojo_padding = pool2d->padding;
component_attributes.padding = webnn::Padding2d{
.beginning =
webnn::Size2d<uint32_t>{.height = mojo_padding->beginning->height,
.width = mojo_padding->beginning->width},
.ending = webnn::Size2d<uint32_t>{.height = mojo_padding->ending->height,
.width = mojo_padding->ending->width}};
component_attributes.strides = webnn::Size2d<uint32_t>{
.height = pool2d->strides->height, .width = pool2d->strides->width};
component_attributes.dilations = webnn::Size2d<uint32_t>{
.height = pool2d->dilations->height, .width = pool2d->dilations->width};
component_attributes.layout =
MojoInputOperandLayoutToComponent(pool2d->layout);
CHECK_EQ(output->dimensions.size(), 4u);
switch (component_attributes.layout) {
case webnn::InputOperandLayout::kNchw:
component_attributes.output_sizes = webnn::Size2d<uint32_t>{
.height = output->dimensions[2], .width = output->dimensions[3]};
break;
case webnn::InputOperandLayout::kNhwc:
component_attributes.output_sizes = webnn::Size2d<uint32_t>{
.height = output->dimensions[1], .width = output->dimensions[2]};
break;
}
return component_attributes;
}
webnn::GemmAttributes ConvertToGemmAttributes(
const IdToOperandMap& id_to_operand_map,
const mojom::GemmPtr& gemm) {
webnn::GemmAttributes component_attributes;
auto& c_operand_id = gemm->c_operand_id;
if (c_operand_id) {
const mojom::OperandPtr& c_operand =
id_to_operand_map.at(c_operand_id.value());
component_attributes.c_operand = ConvertToComponentOperand(c_operand.get());
}
component_attributes.alpha = gemm->alpha;
component_attributes.beta = gemm->beta;
component_attributes.a_transpose = gemm->a_transpose;
component_attributes.b_transpose = gemm->b_transpose;
return component_attributes;
}
webnn::InstanceNormalizationAttributes ConvertToInstanceNormalizationAttributes(
const IdToOperandMap& id_to_operand_map,
const mojom::InstanceNormalizationPtr& instance_normalization) {
webnn::InstanceNormalizationAttributes component_attributes;
const auto& scale_operand_id = instance_normalization->scale_operand_id;
if (scale_operand_id) {
const mojom::OperandPtr& scale_operand =
id_to_operand_map.at(scale_operand_id.value());
component_attributes.scale = ConvertToComponentOperand(scale_operand.get());
}
const auto& bias_operand_id = instance_normalization->bias_operand_id;
if (bias_operand_id) {
const mojom::OperandPtr& bias_operand =
id_to_operand_map.at(bias_operand_id.value());
component_attributes.bias = ConvertToComponentOperand(bias_operand.get());
}
component_attributes.layout =
MojoInputOperandLayoutToComponent(instance_normalization->layout);
return component_attributes;
}
webnn::SliceAttributes ConvertToSliceAttributes(
const webnn::mojom::SlicePtr& slice) {
webnn::SliceAttributes component_attributes;
component_attributes.starts.reserve(slice->starts_and_sizes.size());
component_attributes.sizes.reserve(slice->starts_and_sizes.size());
for (const auto& start_and_size : slice->starts_and_sizes) {
component_attributes.starts.push_back(start_and_size->start);
component_attributes.sizes.push_back(start_and_size->size);
}
return component_attributes;
}
template <typename Operation>
bool ValidateUnaryOperation(
const IdToOperandMap& id_to_operand_map,
const Operation& operation,
const webnn::DataTypeConstraintSet& input_constraint) {
const auto* input =
GetMojoOperand(id_to_operand_map, operation->input_operand_id);
const auto* output =
GetMojoOperand(id_to_operand_map, operation->output_operand_id);
if (!input || !output || output == input) {
// The unary operator is invalid.
return false;
}
const auto input_data_type = input->data_type;
if (!input_constraint.Has(MojoOperandTypeToComponent(input_data_type))) {
// The data type is not in the constraint.
return false;
}
if (output->data_type != input_data_type) {
// The output data type doesn't match input data type.
return false;
}
if (output->dimensions != input->dimensions) {
// The output shape is not expected.
return false;
}
return true;
}
bool ValidateCastOperation(const IdToOperandMap& id_to_operand_map,
const mojom::ElementWiseUnaryPtr& operation) {
const auto* input =
GetMojoOperand(id_to_operand_map, operation->input_operand_id);
const auto* output =
GetMojoOperand(id_to_operand_map, operation->output_operand_id);
if (!input || !output || output == input) {
// The unary operator is invalid.
return false;
}
if (output->dimensions != input->dimensions) {
// The output shape is not expected.
return false;
}
return true;
}
bool ValidateBatchNormalization(
const IdToOperandMap& id_to_operand_map,
const mojom::BatchNormalizationPtr& batch_normalization) {
const auto* input =
GetMojoOperand(id_to_operand_map, batch_normalization->input_operand_id);
const auto* mean =
GetMojoOperand(id_to_operand_map, batch_normalization->mean_operand_id);
const auto* variance = GetMojoOperand(
id_to_operand_map, batch_normalization->variance_operand_id);
const auto* output =
GetMojoOperand(id_to_operand_map, batch_normalization->output_operand_id);
if (!input || !mean || !variance || !output || output == input ||
output == mean || output == variance) {
// The batchNormalization operator is invalid.
return false;
}
const auto& scale_operand_id = batch_normalization->scale_operand_id;
if (scale_operand_id &&
!id_to_operand_map.contains(scale_operand_id.value())) {
// The scale operand is invalid.
return false;
}
const auto& bias_operand_id = batch_normalization->bias_operand_id;
if (bias_operand_id && !id_to_operand_map.contains(bias_operand_id.value())) {
// The bias operand is invalid.
return false;
}
// Validate the activation if the option is configured.
const auto& activation = batch_normalization->activation;
if (activation && !ValidateActivation(activation)) {
// The activation is invalid.
return false;
}
const auto validated_output = ValidateBatchNormalizationAndInferOutput(
ConvertToComponentOperand(input), ConvertToComponentOperand(mean),
ConvertToComponentOperand(variance),
ConvertToBatchNormalizationAttributes(id_to_operand_map,
batch_normalization));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateArgMinMax(const IdToOperandMap& id_to_operand_map,
const mojom::ArgMinMaxPtr& arg_min_max) {
const auto* input =
GetMojoOperand(id_to_operand_map, arg_min_max->input_operand_id);
const auto* output =
GetMojoOperand(id_to_operand_map, arg_min_max->output_operand_id);
if (!input || !output || output == input) {
// The argMinMax operator is invalid.
return false;
}
const auto validated_output = ValidateArgMinMaxAndInferOutput(
ConvertToComponentOperand(input), arg_min_max->axes,
arg_min_max->keep_dimensions);
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateClamp(const IdToOperandMap& id_to_operand_map,
const mojom::ClampPtr& clamp) {
if (!ValidateUnaryOperation(id_to_operand_map, clamp,
DataTypeConstraintSet::All())) {
return false;
}
if (!ValidateClampAttributes(clamp)) {
return false;
}
return true;
}
bool ValidateConcat(const IdToOperandMap& id_to_operand_map,
const mojom::ConcatPtr& concat) {
auto* output = GetMojoOperand(id_to_operand_map, concat->output_operand_id);
if (!output) {
// The concat operator is invalid.
return false;
}
std::vector<Operand> inputs;
inputs.reserve(concat->input_operand_ids.size());
for (const auto& input_operand_id : concat->input_operand_ids) {
auto* input = GetMojoOperand(id_to_operand_map, input_operand_id);
if (!input || input == output) {
return false;
}
inputs.push_back(ConvertToComponentOperand(input));
}
auto validated_output = ValidateConcatAndInferOutput(inputs, concat->axis);
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateConv2d(const IdToOperandMap& id_to_operand_map,
const mojom::Conv2dPtr& conv2d) {
auto* input = GetMojoOperand(id_to_operand_map, conv2d->input_operand_id);
auto* filter = GetMojoOperand(id_to_operand_map, conv2d->filter_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, conv2d->output_operand_id);
if (!input || !filter || !output || output == input || output == filter) {
// The conv2d operator is invalid.
return false;
}
if (output->dimensions.size() != 4) {
// The element of output dimensions should be 4.
return false;
}
std::optional<webnn::Operand> bias_operand;
auto& bias_operand_id = conv2d->bias_operand_id;
if (bias_operand_id) {
const auto bias_operand_iterator =
id_to_operand_map.find(bias_operand_id.value());
if (bias_operand_iterator == id_to_operand_map.end()) {
// Invalid bias operand.
return false;
}
bias_operand =
ConvertToComponentOperand(bias_operand_iterator->second.get());
}
// Validate the activation if the option is configured.
auto& activation = conv2d->activation;
if (activation && !ValidateActivation(activation)) {
// The activation is invalid.
return false;
}
std::optional<base::expected<Operand, std::string>> validated_output;
switch (conv2d->type) {
case mojom::Conv2d_Type::kDirect: {
validated_output = ValidateConv2dAndInferOutput(
ConvertToComponentOperand(input), ConvertToComponentOperand(filter),
ConvertToConv2dAttributes(id_to_operand_map, conv2d,
std::move(bias_operand)));
break;
}
case mojom::Conv2d_Type::kTransposed: {
validated_output = ValidateConvTranspose2dAndInferOutput(
ConvertToComponentOperand(input), ConvertToComponentOperand(filter),
ConvertToConvTranspose2dAttributes(id_to_operand_map, conv2d,
std::move(bias_operand)));
break;
}
}
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool IsLogicalElementWiseBinary(mojom::ElementWiseBinary::Kind kind) {
return kind == mojom::ElementWiseBinary::Kind::kEqual ||
kind == mojom::ElementWiseBinary::Kind::kGreater ||
kind == mojom::ElementWiseBinary::Kind::kGreaterOrEqual ||
kind == mojom::ElementWiseBinary::Kind::kLesser ||
kind == mojom::ElementWiseBinary::Kind::kLesserOrEqual;
}
bool ValidateElementWiseBinaryDataTypes(
const mojom::Operand* lhs,
const mojom::Operand* rhs,
const mojom::Operand* output,
const mojom::ElementWiseBinaryPtr& operation) {
if (lhs->data_type != rhs->data_type) {
// The input types don't match.
return false;
}
if (IsLogicalElementWiseBinary(operation->kind)) {
if (output->data_type != mojom::Operand::DataType::kUint8) {
// For logical operations, the output data type must be uint8.
return false;
}
} else {
// For all other operations, the input and output data types must match.
if (output->data_type != lhs->data_type) {
return false;
}
}
return true;
}
bool ValidateElementWiseBinary(const IdToOperandMap& id_to_operand_map,
const mojom::ElementWiseBinaryPtr& operation) {
auto* a = GetMojoOperand(id_to_operand_map, operation->lhs_operand);
auto* b = GetMojoOperand(id_to_operand_map, operation->rhs_operand);
auto* output = GetMojoOperand(id_to_operand_map, operation->output_operand);
if (!a || !b || !output || output == a || output == b) {
// The elementWise binary operator is invalid.
return false;
}
if (!ValidateElementWiseBinaryDataTypes(a, b, output, operation)) {
return false;
}
auto dims_output = BroadcastShapes(a->dimensions, b->dimensions);
if (!dims_output) {
// The input shapes are not broadcastable.
return false;
}
if (output->dimensions != dims_output.value()) {
// The output shape is not expected.
return false;
}
return true;
}
bool ValidateElu(const IdToOperandMap& id_to_operand_map,
const mojom::EluPtr& elu) {
if (!ValidateUnaryOperation(id_to_operand_map, elu,
DataTypeConstraint::kFloat)) {
return false;
}
if (!ValidateEluAttributes(elu)) {
return false;
}
return true;
}
static constexpr auto kUnaryOperatorConstraints = base::MakeFixedFlatMap<
mojom::ElementWiseUnary::Kind,
webnn::DataTypeConstraintSet>({
{mojom::ElementWiseUnary::Kind::kAbs, DataTypeConstraint::kSignedNumber},
{mojom::ElementWiseUnary::Kind::kCeil, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kCos, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kExp, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kFloor, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kLog, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kNeg, DataTypeConstraint::kSignedNumber},
{mojom::ElementWiseUnary::Kind::kSin, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kTan, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kLogicalNot, {Operand::DataType::kUint8}},
{mojom::ElementWiseUnary::Kind::kIdentity, DataTypeConstraintSet::All()},
{mojom::ElementWiseUnary::Kind::kSqrt, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kErf, DataTypeConstraint::kFloat},
{mojom::ElementWiseUnary::Kind::kReciprocal, DataTypeConstraint::kFloat},
});
bool ValidateElementWiseUnary(const IdToOperandMap& id_to_operand_map,
const mojom::ElementWiseUnaryPtr& operation) {
// List the validation of cast operator separately because its output data
// type is different from the input data type.
if (operation->kind == mojom::ElementWiseUnary::Kind::kCast) {
return ValidateCastOperation(id_to_operand_map, operation);
}
const auto* constraints_iterator =
kUnaryOperatorConstraints.find(operation->kind);
CHECK_NE(constraints_iterator, kUnaryOperatorConstraints.end());
return ValidateUnaryOperation(id_to_operand_map, operation,
constraints_iterator->second);
}
bool ValidateExpand(const IdToOperandMap& id_to_operand_map,
const mojom::ExpandPtr& expand) {
auto* input = GetMojoOperand(id_to_operand_map, expand->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, expand->output_operand_id);
if (!input || !output || output == input) {
// The expand operator is invalid.
return false;
}
if (output->data_type != input->data_type) {
// The output data type doesn't match input data type.
return false;
}
auto output_shape =
BroadcastShapes(input->dimensions, output->dimensions, false);
if (!output_shape) {
// The input shape is not broadcastable to the output shape.
return false;
}
CHECK(output_shape.value() == output->dimensions);
return true;
}
bool ValidateGather(const IdToOperandMap& id_to_operand_map,
const mojom::GatherPtr& gather) {
auto* input = GetMojoOperand(id_to_operand_map, gather->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, gather->output_operand_id);
auto* indices = GetMojoOperand(id_to_operand_map, gather->indices_operand_id);
if (!input || !output || !indices || output == input || output == indices) {
// The gather operator is invalid.
return false;
}
auto validated_output = ValidateGatherAndInferOutput(
ConvertToComponentOperand(input), ConvertToComponentOperand(indices),
gather->axis);
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateGemm(const IdToOperandMap& id_to_operand_map,
const mojom::GemmPtr& gemm) {
auto* a = GetMojoOperand(id_to_operand_map, gemm->a_operand_id);
auto* b = GetMojoOperand(id_to_operand_map, gemm->b_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, gemm->output_operand_id);
if (!a || !b || !output || output == a || output == b) {
// The gemm operator is invalid.
return false;
}
auto& c_operand_id = gemm->c_operand_id;
if (c_operand_id && !id_to_operand_map.contains(c_operand_id.value())) {
// The third operand is invalid.
return false;
}
auto validated_output = ValidateGemmAndInferOutput(
ConvertToComponentOperand(a), ConvertToComponentOperand(b),
ConvertToGemmAttributes(id_to_operand_map, gemm));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateHardSigmoid(const IdToOperandMap& id_to_operand_map,
const mojom::HardSigmoidPtr& hard_sigmoid) {
if (!ValidateUnaryOperation(id_to_operand_map, hard_sigmoid,
DataTypeConstraint::kFloat)) {
return false;
}
if (!ValidateHardSigmoidAttributes(hard_sigmoid)) {
return false;
}
return true;
}
bool ValidateLayerNormalization(
const IdToOperandMap& id_to_operand_map,
const mojom::LayerNormalizationPtr& layer_normalization) {
const auto* input =
GetMojoOperand(id_to_operand_map, layer_normalization->input_operand_id);
const auto* output =
GetMojoOperand(id_to_operand_map, layer_normalization->output_operand_id);
if (!input || !output || output == input) {
// The layerNormalization operator is invalid.
return false;
}
const auto& scale_operand_id = layer_normalization->scale_operand_id;
if (scale_operand_id &&
(!id_to_operand_map.contains(scale_operand_id.value()) ||
scale_operand_id.value() == layer_normalization->output_operand_id)) {
// The scale operand is invalid.
return false;
}
const auto& bias_operand_id = layer_normalization->bias_operand_id;
if (bias_operand_id &&
(!id_to_operand_map.contains(bias_operand_id.value()) ||
bias_operand_id.value() == layer_normalization->output_operand_id)) {
// The bias operand is invalid.
return false;
}
const auto validated_output = ValidateLayerNormalizationAndInferOutput(
ConvertToComponentOperand(input), layer_normalization->axes,
ConvertToLayerNormalizationAttributes(id_to_operand_map,
layer_normalization));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateLeakyRelu(const IdToOperandMap& id_to_operand_map,
const mojom::LeakyReluPtr& leaky_relu) {
if (!ValidateUnaryOperation(id_to_operand_map, leaky_relu,
DataTypeConstraint::kFloat)) {
return false;
}
if (!ValidateLeakyReluAttributes(leaky_relu)) {
return false;
}
return true;
}
bool ValidateLinear(const IdToOperandMap& id_to_operand_map,
const mojom::LinearPtr& linear) {
if (!ValidateUnaryOperation(id_to_operand_map, linear,
DataTypeConstraint::kFloat)) {
return false;
}
if (!ValidateLinearAttributes(linear)) {
return false;
}
return true;
}
bool ValidateInstanceNormalization(
const IdToOperandMap& id_to_operand_map,
const mojom::InstanceNormalizationPtr& instance_normalization) {
const auto* input = GetMojoOperand(id_to_operand_map,
instance_normalization->input_operand_id);
const auto* output = GetMojoOperand(
id_to_operand_map, instance_normalization->output_operand_id);
if (!input || !output || output == input) {
// The instanceNormalization operator is invalid.
return false;
}
const auto& scale_operand_id = instance_normalization->scale_operand_id;
if (scale_operand_id &&
(!id_to_operand_map.contains(scale_operand_id.value()) ||
scale_operand_id.value() == instance_normalization->output_operand_id)) {
// The scale operand is invalid.
return false;
}
const auto& bias_operand_id = instance_normalization->bias_operand_id;
if (bias_operand_id &&
(!id_to_operand_map.contains(bias_operand_id.value()) ||
bias_operand_id.value() == instance_normalization->output_operand_id)) {
// The bias operand is invalid.
return false;
}
const auto validated_output = ValidateInstanceNormalizationAndInferOutput(
ConvertToComponentOperand(input),
ConvertToInstanceNormalizationAttributes(id_to_operand_map,
instance_normalization));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateMatmul(const IdToOperandMap& id_to_operand_map,
const mojom::MatmulPtr& matmul) {
auto* a = GetMojoOperand(id_to_operand_map, matmul->a_operand_id);
auto* b = GetMojoOperand(id_to_operand_map, matmul->b_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, matmul->output_operand_id);
if (!a || !b || !output || output == a || output == b) {
// The matmul operator is invalid.
return false;
}
auto validated_output = ValidateMatmulAndInferOutput(
ConvertToComponentOperand(a), ConvertToComponentOperand(b));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidatePad(const IdToOperandMap& id_to_operand_map,
const mojom::PadPtr& pad) {
auto* input = GetMojoOperand(id_to_operand_map, pad->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, pad->output_operand_id);
if (!input || !output || output == input) {
// The pad operator is invalid.
return false;
}
auto validated_output =
ValidatePadAndInferOutput(ConvertToComponentOperand(input),
pad->beginning_padding, pad->ending_padding);
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidatePool2d(const IdToOperandMap& id_to_operand_map,
const mojom::Pool2dPtr& pool2d) {
auto* input = GetMojoOperand(id_to_operand_map, pool2d->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, pool2d->output_operand_id);
if (!input || !output || output == input) {
// The pool2d operator is invalid.
return false;
}
if (output->dimensions.size() != 4) {
// The element of output dimensions should be 4.
return false;
}
auto validated_output =
ValidatePool2dAndInferOutput(ConvertToComponentOperand(input),
ConvertToPool2dAttributes(pool2d, output));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidatePrelu(const IdToOperandMap& id_to_operand_map,
const mojom::PreluPtr& prelu) {
auto* input = GetMojoOperand(id_to_operand_map, prelu->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, prelu->output_operand_id);
auto* slope = GetMojoOperand(id_to_operand_map, prelu->slope_operand_id);
if (!input || !output || !slope || output == input || output == slope) {
// The prelu operator is invalid.
return false;
}
auto validated_output = ValidatePreluAndInferOutput(
ConvertToComponentOperand(input), ConvertToComponentOperand(slope));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateResample2d(const IdToOperandMap& id_to_operand_map,
const mojom::Resample2dPtr& resample2d) {
auto* input = GetMojoOperand(id_to_operand_map, resample2d->input_operand_id);
auto* output =
GetMojoOperand(id_to_operand_map, resample2d->output_operand_id);
if (!input || !output || output == input) {
// The resample2d operator is invalid.
return false;
}
// Validate and infer the output for resample2d with given scales or with the
// sizes from output dimensions along axes.
absl::variant<base::span<const float>, base::span<const uint32_t>>
scales_or_sizes;
const auto& axes = resample2d->axes;
std::vector<uint32_t> sizes;
if (resample2d->scales) {
scales_or_sizes = resample2d->scales.value();
} else {
const auto& output_dimensions = output->dimensions;
if (axes.size() != 2 || axes[0] >= output_dimensions.size() ||
axes[1] >= output_dimensions.size()) {
return false;
}
sizes = {output_dimensions[axes[0]], output_dimensions[axes[1]]};
scales_or_sizes = sizes;
}
auto validated_output = ValidateResample2dAndInferOutput(
ConvertToComponentOperand(input), scales_or_sizes, axes);
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateReshape(const IdToOperandMap& id_to_operand_map,
const mojom::ReshapePtr& reshape) {
auto* input = GetMojoOperand(id_to_operand_map, reshape->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, reshape->output_operand_id);
if (!input || !output || output == input) {
// The reshape operator is invalid.
return false;
}
if (output->data_type != input->data_type) {
// The output data type doesn't match input data type.
return false;
}
base::expected<size_t, std::string> output_number_of_elements =
ValidateAndCalculateElementsNumber(output->dimensions);
// The dimensions of input and output operand are valid which were already
// validated before calling this function.
CHECK(output_number_of_elements.has_value());
base::expected<size_t, std::string> input_number_of_elements =
ValidateAndCalculateElementsNumber(input->dimensions);
CHECK(input_number_of_elements.has_value());
if (output_number_of_elements.value() != input_number_of_elements.value()) {
// The output shape is not expected.
return false;
}
return true;
}
bool ValidateSlice(const IdToOperandMap& id_to_operand_map,
const mojom::SlicePtr& slice) {
auto* input = GetMojoOperand(id_to_operand_map, slice->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, slice->output_operand_id);
if (!input || !output || output == input) {
// The slice operator is invalid.
return false;
}
auto validated_output = ValidateSliceAndInferOutput(
ConvertToComponentOperand(input), ConvertToSliceAttributes(slice));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateSoftmax(const IdToOperandMap& id_to_operand_map,
const mojom::SoftmaxPtr& softmax) {
auto* input = GetMojoOperand(id_to_operand_map, softmax->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, softmax->output_operand_id);
if (!input || !output || output == input) {
// The softmax operator is invalid.
return false;
}
auto validated_output =
ValidateSoftmaxAndInferOutput(ConvertToComponentOperand(input));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateSoftplus(const IdToOperandMap& id_to_operand_map,
const mojom::SoftplusPtr& softplus) {
if (!ValidateUnaryOperation(id_to_operand_map, softplus,
DataTypeConstraint::kFloat)) {
return false;
}
if (!ValidateSoftplusAttributes(softplus)) {
return false;
}
return true;
}
bool ValidateSplit(const IdToOperandMap& id_to_operand_map,
const mojom::SplitPtr& split) {
auto* input = GetMojoOperand(id_to_operand_map, split->input_operand_id);
if (!input) {
// The split operator is invalid.
return false;
}
std::vector<uint32_t> splits;
splits.reserve(split->output_operand_ids.size());
for (uint64_t output_id : split->output_operand_ids) {
auto* output = GetMojoOperand(id_to_operand_map, output_id);
if (!output || input == output) {
return false;
}
if (split->axis >= output->dimensions.size()) {
return false;
}
splits.push_back(output->dimensions[split->axis]);
}
auto validated_output =
ValidateSplitAndInferOutput(ConvertToComponentOperand(input),
{.splits = splits, .axis = split->axis});
if (!validated_output.has_value()) {
return false;
}
if (split->output_operand_ids.size() != validated_output->size()) {
// The number of specified outputs did not match the expected number of
// outputs.
return false;
}
for (uint32_t i = 0; i < validated_output->size(); ++i) {
auto* output =
GetMojoOperand(id_to_operand_map, split->output_operand_ids[i]);
if (validated_output->at(i) != ConvertToComponentOperand(output)) {
return false;
}
}
return true;
}
bool ValidateTranspose(const IdToOperandMap& id_to_operand_map,
const mojom::TransposePtr& transpose) {
auto* input = GetMojoOperand(id_to_operand_map, transpose->input_operand_id);
auto* output =
GetMojoOperand(id_to_operand_map, transpose->output_operand_id);
if (!input || !output || output == input) {
// The transpose operator is invalid.
return false;
}
auto validated_output = ValidateTransposeAndInferOutput(
ConvertToComponentOperand(input), transpose->permutation);
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateWhere(const IdToOperandMap& id_to_operand_map,
const mojom::WherePtr& where) {
auto* condition =
GetMojoOperand(id_to_operand_map, where->condition_operand_id);
auto* true_value =
GetMojoOperand(id_to_operand_map, where->true_value_operand_id);
auto* false_value =
GetMojoOperand(id_to_operand_map, where->false_value_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, where->output_operand_id);
if (!condition || !true_value || !false_value || !output ||
output == condition || output == true_value || output == false_value) {
// The where operator is invalid.
return false;
}
auto validated_output =
ValidateWhereAndInferOutput(ConvertToComponentOperand(condition),
ConvertToComponentOperand(true_value),
ConvertToComponentOperand(false_value));
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
bool ValidateReduce(const IdToOperandMap& id_to_operand_map,
const mojom::ReducePtr& reduce) {
auto* input = GetMojoOperand(id_to_operand_map, reduce->input_operand_id);
auto* output = GetMojoOperand(id_to_operand_map, reduce->output_operand_id);
if (!input || !output || output == input) {
// The reduce operator is invalid.
return false;
}
auto validated_output = ValidateReduceAndInferOutput(
MojoReduceTypeToComponent(reduce->kind), ConvertToComponentOperand(input),
reduce->axes, reduce->keep_dimensions);
if (!validated_output.has_value()) {
return false;
}
if (validated_output != ConvertToComponentOperand(output)) {
return false;
}
return true;
}
base::flat_map<std::string, size_t> CreateByteLengthMap(
const std::vector<uint64_t>& operand_ids,
const base::flat_map<uint64_t, mojom::OperandPtr>& id_to_operand_map) {
base::flat_map<std::string, size_t> name_to_byte_length_map;
name_to_byte_length_map.reserve(operand_ids.size());
for (auto& operand_id : operand_ids) {
const mojom::OperandPtr& operand = id_to_operand_map.at(operand_id);
// The `operand` is valid and the byte length of it was already verified in
// `ValidateGraph` function.
CHECK(operand);
auto byte_length = ValidateAndCalculateByteLength(
GetBytesPerElement(operand->data_type), operand->dimensions);
CHECK(byte_length.has_value());
CHECK(operand->name.has_value());
name_to_byte_length_map[operand->name.value()] = byte_length.value();
}
return name_to_byte_length_map;
}
bool ValidateOperation(const IdToOperandMap& id_to_operand_map,
const mojom::OperationPtr& operation) {
switch (operation->which()) {
case mojom::Operation::Tag::kArgMinMax:
return ValidateArgMinMax(id_to_operand_map, operation->get_arg_min_max());
case mojom::Operation::Tag::kBatchNormalization:
return ValidateBatchNormalization(id_to_operand_map,
operation->get_batch_normalization());
case mojom::Operation::Tag::kClamp:
return ValidateClamp(id_to_operand_map, operation->get_clamp());
case mojom::Operation::Tag::kConcat:
return ValidateConcat(id_to_operand_map, operation->get_concat());
case mojom::Operation::Tag::kConv2d:
return ValidateConv2d(id_to_operand_map, operation->get_conv2d());
case mojom::Operation::Tag::kElementWiseBinary:
return ValidateElementWiseBinary(id_to_operand_map,
operation->get_element_wise_binary());
case mojom::Operation::Tag::kElu:
return ValidateElu(id_to_operand_map, operation->get_elu());
case mojom::Operation::Tag::kElementWiseUnary:
return ValidateElementWiseUnary(id_to_operand_map,
operation->get_element_wise_unary());
case mojom::Operation::Tag::kExpand:
return ValidateExpand(id_to_operand_map, operation->get_expand());
case mojom::Operation::Tag::kGather:
return ValidateGather(id_to_operand_map, operation->get_gather());
case mojom::Operation::Tag::kGemm:
return ValidateGemm(id_to_operand_map, operation->get_gemm());
case mojom::Operation::Tag::kHardSigmoid:
return ValidateHardSigmoid(id_to_operand_map,
operation->get_hard_sigmoid());
case mojom::Operation::Tag::kHardSwish:
return ValidateUnaryOperation(id_to_operand_map,
operation->get_hard_swish(),
DataTypeConstraint::kFloat);
case mojom::Operation::Tag::kLayerNormalization:
return ValidateLayerNormalization(id_to_operand_map,
operation->get_layer_normalization());
case mojom::Operation::Tag::kInstanceNormalization:
return ValidateInstanceNormalization(
id_to_operand_map, operation->get_instance_normalization());
case mojom::Operation::Tag::kLeakyRelu:
return ValidateLeakyRelu(id_to_operand_map, operation->get_leaky_relu());
case mojom::Operation::Tag::kLinear:
return ValidateLinear(id_to_operand_map, operation->get_linear());
case mojom::Operation::Tag::kMatmul:
return ValidateMatmul(id_to_operand_map, operation->get_matmul());
case mojom::Operation::Tag::kPad:
return ValidatePad(id_to_operand_map, operation->get_pad());
case mojom::Operation::Tag::kPool2d:
return ValidatePool2d(id_to_operand_map, operation->get_pool2d());
case mojom::Operation::Tag::kPrelu:
return ValidatePrelu(id_to_operand_map, operation->get_prelu());
case mojom::Operation::Tag::kReduce:
return ValidateReduce(id_to_operand_map, operation->get_reduce());
case mojom::Operation::Tag::kResample2d:
return ValidateResample2d(id_to_operand_map, operation->get_resample2d());
case mojom::Operation::Tag::kReshape:
return ValidateReshape(id_to_operand_map, operation->get_reshape());
case mojom::Operation::Tag::kRelu:
return ValidateUnaryOperation(id_to_operand_map, operation->get_relu(),
DataTypeConstraintSet::All());
case mojom::Operation::Tag::kSlice:
return ValidateSlice(id_to_operand_map, operation->get_slice());
case mojom::Operation::Tag::kSigmoid:
return ValidateUnaryOperation(id_to_operand_map, operation->get_sigmoid(),
DataTypeConstraint::kFloat);
case mojom::Operation::Tag::kSoftmax:
return ValidateSoftmax(id_to_operand_map, operation->get_softmax());
case mojom::Operation::Tag::kSoftplus:
return ValidateSoftplus(id_to_operand_map, operation->get_softplus());
case mojom::Operation::Tag::kSoftsign:
return ValidateUnaryOperation(id_to_operand_map,
operation->get_softsign(),
DataTypeConstraint::kFloat);
case mojom::Operation::Tag::kSplit:
return ValidateSplit(id_to_operand_map, operation->get_split());
case mojom::Operation::Tag::kTanh:
return ValidateUnaryOperation(id_to_operand_map, operation->get_tanh(),
DataTypeConstraint::kFloat);
case mojom::Operation::Tag::kTranspose:
return ValidateTranspose(id_to_operand_map, operation->get_transpose());
case mojom::Operation::Tag::kWhere:
return ValidateWhere(id_to_operand_map, operation->get_where());
}
NOTREACHED_NORETURN();
}
// Return false if the named inputs for computation don't match the built
// graph's expectation.
bool ValidateInputsForComputation(
const base::flat_map<std::string, mojo_base::BigBuffer>& named_inputs,
const base::flat_map<std::string, size_t>& input_name_to_byte_length_map) {
return base::ranges::equal(
named_inputs, input_name_to_byte_length_map,
[](const auto& input, const auto& input_spec) {
const auto& [input_name, input_buffer] = input;
const auto& [input_spec_name, input_spec_byte_length] = input_spec;
return input_name == input_spec_name &&
input_buffer.size() == input_spec_byte_length;
});
}
} // namespace
WebNNGraphImpl::ComputeResourceInfo::ComputeResourceInfo(
const mojom::GraphInfoPtr& graph_info) {
input_name_to_byte_length_map = CreateByteLengthMap(
graph_info->input_operands, graph_info->id_to_operand_map);
output_name_to_byte_length_map = CreateByteLengthMap(
graph_info->output_operands, graph_info->id_to_operand_map);
}
WebNNGraphImpl::ComputeResourceInfo::ComputeResourceInfo(
ComputeResourceInfo&&) = default;
WebNNGraphImpl::ComputeResourceInfo&
WebNNGraphImpl::ComputeResourceInfo::operator=(ComputeResourceInfo&&) = default;
WebNNGraphImpl::ComputeResourceInfo::~ComputeResourceInfo() = default;
WebNNGraphImpl::WebNNGraphImpl(ComputeResourceInfo compute_resource_info)
: compute_resource_info_(std::move(compute_resource_info)) {}
WebNNGraphImpl::~WebNNGraphImpl() = default;
bool WebNNGraphImpl::ValidateGraph(const mojom::GraphInfoPtr& graph_info) {
// The input operands of graph can be empty.
if (graph_info->id_to_operand_map.empty() || graph_info->operations.empty() ||
graph_info->output_operands.empty()) {
return false;
}
// Validate all operands in the graph for the dimensions and the byte length
// of operand that can't be out of range, and hold the temporary information
// of inputs, constants, outputs for further validation.
std::vector<uint64_t> graph_inputs;
graph_inputs.reserve(graph_info->input_operands.size());
std::vector<uint64_t> graph_outputs;
graph_outputs.reserve(graph_info->output_operands.size());
base::flat_map<uint64_t, size_t> constant_id_to_byte_length_map;
for (auto& [id, operand] : graph_info->id_to_operand_map) {
base::expected<size_t, std::string> byte_length =
ValidateAndCalculateByteLength(GetBytesPerElement(operand->data_type),
operand->dimensions);
if (!byte_length.has_value()) {
return false;
}
const std::optional<std::string>& name = operand->name;
switch (operand->kind) {
case mojom::Operand::Kind::kInput: {
if (!name || name.value().empty()) {
// The name of input is empty.
return false;
}
graph_inputs.push_back(id);
break;
}
case mojom::Operand::Kind::kOutput: {
// The intermediate operands have no the name value, only the graph
// outputs have the name.
if (name) {
if (name.value().empty()) {
// The name of output is empty.
return false;
}
graph_outputs.push_back(id);
} else {
// The intermediate operand that connects with two operators has no
// the name value.
}
break;
}
case mojom::Operand::Kind::kConstant: {
if (name) {
// Constant operand should not have a name.
return false;
}
constant_id_to_byte_length_map[id] = byte_length.value();
break;
}
}
}
// The `id_to_operand_map` is an ordered map, so the `graph_inputs` and
// `graph_outputs` are also an ordered array for the value id, the
// `input_operands` and `graph_outputs` are also an ordered array configured
// in blink side.
if (graph_info->input_operands != graph_inputs ||
graph_info->output_operands != graph_outputs) {
return false;
}
// Validate the constant weight data are valid.
if (!base::ranges::equal(graph_info->constant_id_to_buffer_map,
constant_id_to_byte_length_map,
[](const auto& iter_a, const auto& iter_b) {
// Compare the constant id with the key of map and
// the byte length of buffer with value of map.
return iter_a.first == iter_b.first &&
iter_a.second.size() == iter_b.second;
})) {
return false;
}
// Validate the operations which are sorted in the topological order.
for (auto& operation : graph_info->operations) {
if (!ValidateOperation(graph_info->id_to_operand_map, operation)) {
return false;
}
}
return true;
}
void WebNNGraphImpl::Compute(
base::flat_map<std::string, mojo_base::BigBuffer> named_inputs,
mojom::WebNNGraph::ComputeCallback callback) {
if (!ValidateInputsForComputation(
named_inputs, compute_resource_info_.input_name_to_byte_length_map)) {
mojo::ReportBadMessage(
"The inputs for computation don't match the built graph's "
"expectation.");
// `mojo::ReportBadMessage()` will kill the renderer process, but Mojo
// complains if the callback is not run. Just run it with nonsense
// arguments.
std::move(callback).Run(mojom::ComputeResult::NewError(
mojom::Error::New(mojom::Error::Code::kUnknownError,
"Unexpected inputs received from the caller.")));
return;
}
// Call ComputeImpl() implemented by an `mojom::WebNNGraph` backend.
ComputeImpl(std::move(named_inputs), std::move(callback));
}
} // namespace webnn